首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Advantages of prefreezing for reducing shrinkage-related degrade in eucalypts: General considerations and review of the literature
Authors:J Ilic
Institution:(1) CSIRO, Division of Forest Products, 10 Clayton, Private Bag, 3168 Melbourne, Vic., Australia
Abstract:Summary Difficulties associated with the drying of ash eucalypts including collapse and internal checking, are discussed briefly. Prefreezing is one method that has been used successfully as a pretreatment for the drying of both hardwoods and softwoods from temperate and tropical regions.Prefreezing has produced marked reductions in shrinkage, collapse and drying degrade of the heartwood in the following species: California redwood, black walnut, black cherry, tanoak, toon, bamboo, and eucalypts. Little or no collapse reduction has been observed in New Zealand red beech, Pacific madrone, white birch, sitka spruce, and white ash. Limited response has been observed for numerous other species notably red oak and white oak.Reduced drying time in response to prefreezing has been observed in jarrah, karri, black walnut, Asian oak, toon, and California redwood; in Pacific madrone and tanoak the drying time increased. Not all species which respond with a reduction in shrinkage show reduced drying rates.Prefreezing wood at -20°C appears to be the most practicable temperature, although some species respond better at lower temperatures. However, in all cases, it is critical to ensure that the wood freezes and remains frozen for a number of hours. Indications are that the effect is retained for days to weeks and that the length of time of freezing need not exceed 12–24 hours.A number of explanations have been put forward to explain the behaviour of prefrozen wood. It is suggested that the main mechanism responsible for reduced shrinkage is due to the migration of moisture from the cell wall onto frozen lumen water. The moisture loss from the cell wall produces a lsquocold shrinkagersquo; water to ice transformation leads to an expansion of liquid water in the lumen, thus imparting a compressive stress to the cell wall, which together with the moisture loss, make the cell more rigid, and therefore likely to shrink less. There is some evidence that certain types of wood extractives migrate into the cell wall during freezing and may play a role in the reinforcement of the wall. Reduced shrinkage after prefreezing has also been attributed to a reduction of the plasticising effect of wood extractives in wood dried at higher temperatures and low humidities; this effect does not occur at low temperatures.Many suggestions and discussion from Dr. W. E. Hillis are gratefully acknowledged
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号