首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于生成对抗网络的抗阴影树木检测方法
引用本文:叶阳,沈冰雁,沈毓琦.基于生成对抗网络的抗阴影树木检测方法[J].农业工程学报,2021,37(10):118-126.
作者姓名:叶阳  沈冰雁  沈毓琦
作者单位:浙江工业大学计算机科学与技术学院,杭州 310023
摘    要:森林遥感影像数据在采集过程中会因为光照的影响产生阴影区域,为了解决这些阴影区域对单棵树木检测的干扰问题,该研究在快速区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster RCNN)目标检测框架基础上,提出基于生成对抗网络的抗阴影树木检测方法(GenerativeAdversarialBasedFasterRegionConvolutionalNeural Networks,GA-FasterRCNN),通过采用基于对抗生成策略的树木生成器,提高分类网络对树木信息的敏感度,降低阴影的干扰。该研究对3块树木阴影与郁闭度各不相同的测试样地高分遥感影像进行了树木检测试验,并与现存的3种算法进行了对比。结果显示,基于生成对抗网络的抗阴影干扰树木检测方法在3块样地的综合性能指标F1值分别达到了78.4%、91.6%和81.7%,均高于另外3种算法,并且树木识别准确率比现有方法有了明显的提高,漏检数和误检数也均明显减少。此外,在采用不同特征提取网络时该算法依然能保持其检测的稳定性。研究结果表明通过对抗生成训练策略学习表征树木的最少特征信息可有效降低阴影对树木检测的干扰。

关 键 词:遥感  算法  树木  检测  影像  阴影干扰  深度学习
收稿时间:2021/4/13 0:00:00
修稿时间:2021/5/9 0:00:00

Research on anti-shadow tree detection method based on generative adversarial network
Ye Yang,Shen Bingyan,Shen Yuqi.Research on anti-shadow tree detection method based on generative adversarial network[J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(10):118-126.
Authors:Ye Yang  Shen Bingyan  Shen Yuqi
Institution:College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
Abstract:Abstract: High-scoring remote sensing imaging has widely been applied in most management of agriculture and forestry, especially to monitor and evaluate crops and forest resources on a large scale. Nevertheless, there is a great challenge to the accuracy of single tree identification and detection during the image acquisition, due mainly to the fact that the shadow area is inevitably formed by the light. The shadow areas in the remote sensing images can be assumed as a kind of noise in the image sampling. As such, the degradation of high-resolution parameters can cause image distortion after post-processing. In this study, an anti-shadow tree detection method was proposed to detect the single tree with shadow interference using a generative adversarial network (GA-Faster RCNN). This framework consisted of a Faster RCNN network and a tree generator. The Faster RCNN network was mainly used for the tasks of feature extraction and detection. The tree generator was utilized to process the shadows in tree detection. The adversarial generation strategy was adopted by the tree generator to learn generating the minimum feature information characterizing trees. The generator was first trained separately and then put into the Faster RCNN network to finally lock its parameters. Two parts were then trained end-to-end to further improve the tree recognition ability of the network. The GA-Faster RCNN was also compared with 3 state-of-the-art methods, including region-growing, progressive cascaded convolutional neural network, and Faster RCNN on three test areas with shadows. Test area 1 presented a lot of shadows of trees, where the canopy density of trees was very high. Test area 2 showed fewer tree shadows and lower canopy closure, compared with test area 1. The shades of trees and the canopy density of trees in test area 3 were between those in test area 1 and 2. Results demonstrated that the GA-Faster RCNN achieved the highest harmonic average of precision and recall (F1) on the test area 1, 2, and 3, which were 78.4%, 91.6%, and 81.7%, respectively. The average F1 of three test areas was 84.7% for the GA-Faster RCNN, 6.2% higher than that of Faster RCNN. The user accuracy (UA) and producer accuracy (PA) of GA-Faster RCNN were also the highest among four methods, where UA was 79.8%, 95.0%, 85.3%, and PA was 77.0%, 88.5%, and 78.4% on test area 1, 2, 3, respectively. Moreover, a significance analysis, McNemar, was performed to eliminate the interference of experimental errors and other factors. It was found that there was a statistically significant difference between the three comparison methods and GA-Faster RCNN. The shadow misrecognition rate SR (proportion of the count of shadows misrecognized as trees to the count of total recognized trees) of GA-Faster RCNN was compared with that of Faster RCNN on test area 1, in order to clarify the effect of the mask on tree identification. Although the SR of GA-Faster RCNN was 13.8%, higher than that of Faster RCNN (8.6%), the UA and the number of missed tree identification were both better than those of Faster RCNN. Therefore, the GA-Faster RCNN behaved significant advantages over the other identification. In addition, the GA-Faster RCNN can still maintain the detection stability, when using different feature extraction networks, including ResNet101, ResNet50, and DenseNet. Consequently, the adversarial generative training strategy is highly suitable for learning the minimum feature information characterizing trees, while effectively reducing the interference of shadows, indicating the promising practical value for higher accuracy of tree detection.
Keywords:remote sensing  algorithm  tree  detection  image  shadow interference  deep learning
本文献已被 CNKI 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号