首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Production and characterization of oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin-pectin membranes
Authors:Moreau Lydie  Kim Hyun-Jung  Decker Eric A  McClements D Julian
Institution:Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
Abstract:Oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin (beta-Lg)-pectin membranes were produced using a two-stage process. A primary emulsion containing small droplets (d(32) approximately 0.3 microm) was prepared by homogenizing 10 wt % corn oil with 90 wt % aqueous solution (1 wt % beta-Lg, 5 mM imidazole/acetate buffer, pH 3.0) using a high-pressure valve homogenizer. The primary emulsion was then diluted with pectin solutions to produce secondary emulsions with a range of pectin concentrations (5 wt % corn oil, 0.45 wt % beta-Lg, 5 mM imidazole/acetate buffer, 0-0.22 wt % pectin, pH 3.0). The electrical charge on the droplets in the secondary emulsions decreased from +33 +/- 3 to -19 +/- 1 mV as the pectin concentration was increased from 0 to 0.22 wt %, which indicated that pectin adsorbed to the droplet surfaces. The mean particle diameter of the secondary emulsions was small (d(32) < 1 microm) at relatively low pectin concentrations (<0.04 wt %), but increased dramatically at higher pectin concentrations (e.g., d(32) approximately 13 microm at 0.1 wt % pectin), which was attributed to charge neutralization and bridging flocculation effects. Emulsions with relatively small mean particle diameters (d(32) approximately 1.2 microm at 0.1 wt % pectin) could be produced by disrupting flocs formed in secondary emulsions containing highly negatively charged droplets, for example, by sonication, blending, or homogenization. The particles in these emulsions probably consisted of small flocs containing a number of protein-coated droplets bound together by pectin molecules. These emulsions had good stability to further particle aggregation up to relatively high ionic strengths (< or =500 mM NaCl) and low pH (pH 3). The interfacial engineering technology used in this study could lead to the creation of food emulsions with improved physicochemical properties or stability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号