首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An Analysis of Seasonal Effects on Leaf Nitrate Reductase Activity and Nitrogen Accumulation in Maize (Zea mays L.)
Authors:S Naresh Kumar  & C P Singh
Institution:Central Plantation Crops Research Institute, Kasaragod, 671 124 Kerala, India,;Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005, India
Abstract:The important enzyme in nitrogen (N) assimilation, nitrate reductase (NR), is an inducible enzyme influenced by many external (light, temperature, etc.) and internal (genotype) factors. The efficiency of the N assimilation system may vary with genotype and season. In the present study, the effects of season on NR activity in relation to N accumulation in maize plants were investigated. Six different cultivars of maize, namely Ganga-11, Deccan-103, Hi-starch (hybrids), Arun, Manjari and Vijay (composites), were sown during the monsoon (88-day crop duration) and in winter (150-day crop duration). In vivo NR activity in the last fully expanded leaf (LFEL), and the N contents of the whole plant and the LFEL were estimated at seven phenological growth stages. Three different states of N metabolism in maize, namely (i) low NR activity per unit leaf area per unit time coinciding with high accumulation of N, (ii) high NR activity coinciding with low N accumulation, and (iii) low NR activity coinciding with low N accumulation, were noted. These results clearly demonstrate that the relationships between N uptake and accumulation parameters change with the season and crop growth stage and are subject to a genotypic influence. Thus it is necessary to evaluate genotypes under similar environments to select a genotype with high N use efficiency. As these relationships are growth dependent, care must be taken to evaluate them at a particular phenological stage rather than on the basis of days after sowing.
Keywords:growth rate  maize  nitrate reductase  nitrogen accumulation  seasons  yield              Zea maize
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号