首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Time-trajectory of mean component weight and density in self-thinning <Emphasis Type="Italic">Pinus densiflora</Emphasis> stands
Authors:Li Xue  Hui-fang Feng  Feng-xia Chen
Institution:(1) College of Forestry, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
Abstract:The allometric relationships between mean weights of components, such as stems, branches and leaves and tree weight as well as their time-trajectories, were studied with data of self-thinning Pinus densiflora stands with different densities. The allometric relationships existed between the weights of stems, branches and leaves and the tree weight during the course of self-thinning. The stem weight ratio increased with increasing tree weight because the allometric coefficient in stem was higher than unity, whereas the branch weight ratio and the leaf weight ratio decreased because the allometric coefficients in branches and leaves were less than unity. An allometric power relationship existed between mean component weight and mean tree weight during the course of self-thinning. The time-trajectory of mean component weight (w o) and density (ρ) in the early growth stage was expressed as a mathematical model which incorporates the allometric power relationship into the Tadaki’s model, whereas the model for describing w o-ρ trajectory in the later growth stage was derived by combining the allometric power relationship with 3/2 power law. The two models, Tadaki’s model and 3/2 power law, showed a good fit to data from P. densiflora stands. The time-trajectories of mean tree weight (w)-density (ρ) or w o-ρ initially almost moves nearly vertically in the low-density stand, moves along a steep curve and an inclined curve in the medium- and high-density stands, respectively, and gradually approaches self-thinning line in the early stage of stand development, whereas they reached and moved along the self-thinning line in the later stage of stand development. The self-thinning exponents were determined to be 1.71, 1.19 and 1.13 for the trees, 2.38, 1.33 and 1.20 for the stem, 3.16, 1.55 and 1.46 for the branches, 2.66, 1.39 and 1.35 for the leaves in the low-, medium- and high-density stands, respectively. The 3/2 power law of self-thinning is derived on the basis of simple geometric model of space occupation by growing trees, but allometric growth of tree and components can make the slope of the self-thinning line being different from −3/2. The reasons that the self-thinning exponents of components in the low-density stand were greater than those in the medium- and high-density stands were discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号