首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Plant biotechnology: A case study ofBacillus thuringiensis (Bt) and its application to the future of genetic engineered trees
Authors:Tang Wei  Latoya Harris  Ronald J Newton
Institution:(1) Department of Biology, Howell Science Complex, East Carolina University, 27858-4353 Greenville, NC, USA
Abstract:Agricultural productivity may be raised in a sustainable way by many different technologies such as biological fertilizers, soil and water conservation, biodiversity conservation, improved pest control, and changes in land ownership and distribution. Of these measures, biotechnology applications probably hold the most promise in augmenting conventional agricultural productivity, because biotechnology applications give not only the need to increase production, but also protect the environment and conserving natural resources for future generations. Biotechnology applications will have the possibilities to increase productivity and food availability through better agronomic performance of new varieties, including resistance to pests; rapid multiplication of disease-free plants; ability to obtain natural plant products using tissue culture; diagnosis of diseases of plants and livestock; manipulation of reproduction methods increasing the efficiency of breeding; and the provision of incentives for greater participation by the private sector through investments. Insect resistance through the transfer of a gene for resistance fromBacillus thuringiensis (Bt) is one of the most advanced biotechnology applications already being commercialized in many parts of the world. This paper reviews the development and the status ofBt technology and application ofBt transgenic plants in current agriculture, and discusses specific issues related to the transfer of the technology to the future of genetic engineered trees with emphasis on conifers. Biography: Tang Wei (1964-), male, Ph. Doctor, Research associate, Department of Biology, Howell Science Complex, East Carelina University, Greenville, NC 27858-4353, USA. Responsible editor: Chal Ruihai
Keywords:Agricultural productivity            Bacillus thuringiensis            Genetic engineering  Insect resistance  Trees
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号