首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling multiscale effects of light limitations and edge-induced mortality on carbon stores in forest landscapes
Authors:Smithwick  Erica A H  Harmon  Mark E  Domingo  James B
Institution:(1) Department of Forest Science, Oregon State University, Corvallis, OR 97331-7501, USA;(2) Present address: Department of Zoology, University of Wisconsin-Madison, Birge Hall, 430 Lincoln Drive, Madison, WI, 53706
Abstract:Analyses of carbon (C) dynamics at broad scales usually do not consider spatial interactions. The assumption is that C dynamics can be modeled within homogenous (i.e., even-aged) patches and then summed to predict broad-scale dynamics (an additive approach). The goal of this paper is to elucidate the scales over which this additive approach is sufficient to explain observed C dynamics at broad scales. We define emergent ldquobehaviorsrdquo (vs. emergent ldquopropertiesrdquo) as those behaviors that cannot be predicted solely from the additive properties of units at a finer scale. We used a forest process model to check for possible emergent behaviors due to pattern-process interactions at multiple levels, from the patch to the landscape. Specifically, using artificial forest landscapes with various spatial structures, we estimated the relative effects of edge-induced, tree mortality (mainly due to wind) and light limitations on C dynamics. Emergent behaviors were observed at all levels examined, indicating that emergent behaviors did not cease as one proceeded from the patch to the landscape level, as we had expected. However, the magnitude of the emergent behaviors depended on the level of spatial interaction considered as well as the type and intensity of the processes included. In all simulations, interactions of light and wind processes resulted in significant emergent behaviors only when parameters controlling wind mortality were set to the highest levels observed in the literature. In one simulation, the magnitude of emergent behaviors differed among the landscapes, indicating that interactions among patches may not be accounted for by an additive correction for edge effects unless spatial interactions are addressed. The implication is that some C dynamics in fragmented landscapes may not be captured at broad-scales using an additive approach, whereas in other cases spatial interactions are small enough to be ignored.This revised version was published online in May 2005 with corrections to the Cover Date.
Keywords:Additive model  Carbon  Disturbance  Emergent behaviors  Forest edges  Horizontal interactions  Light  Models  Scale  Spatial pattern  Wind
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号