首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Heritabilities and genetic correlations for different prolificacy traits were estimated to assess possibilities of selection for high number of piglets weaned. Three litter-size traits: total number of piglets born (TNB), number of piglets born alive (NBA), number of piglets weaned (NW); four piglet survival traits: number of stillborn piglets (NSB), percent of stillborn piglets (NSB%), piglet mortality between birth and weaning (PM), percent of dead piglets during suckling (PM%); and three traits measuring time intervals: age at first farrowing (AFF), first farrowing interval (FFI), and gestation length (GL) were analysed. The Finnish national litter recording scheme provided data on the first parity litters of 11 329 Landrace and 8 362 Large White pigs born between 1986 and 2000. The heritabilitiy estimates were moderate for AFF and GL (0.24–0.37), and low for all the other traits (0.03–0.11). The genetic correlations between TNB and PM (0.68 in Landrace and 0.43 in Large White) and between NBA and PM (0.64 in Landrace and 0.31 in Large White) suggest that selection only for high TNB or NBA will lead to increased PM. The results showed further that GL will increase indirectly if the selection pressure is for low PM (r g =?0.050 in Landrace and ?0.43 in Large White.  相似文献   

2.
The objective of this study was to estimate direct and indirect selection potential for length of productive life and lifetime prolificacy in Finnish Large White and Landrace swine populations. To study the direct selection potential, the heritabilities of these traits were estimated. The genetic correlations of length of productive life and lifetime prolificacy with prolificacy traits and overall leg conformation were estimated to evaluate whether selection for these traits could indirectly improve measures of sow longevity. In addition, correlations between length of productive life, lifetime prolificacy, ADG, and backfat thickness were estimated. Records were used from Finnish purebred Landrace (n = 26,744) and Large White (n = 24,007) sows born on operations that perform on-farm production tests on all females. Heritabilities were estimated using both a survival analysis procedure and a linear model. Due to computational limitations, correlations were estimated with the linear model only. Estimated length of productive life heritabilities obtained from linear model analyses were less (0.05 to 0.10) than those obtained from survival analyses (0.16 to 0.19). This may be indicative of the superiority of survival analysis compared with linear model analysis methods when evaluating longevity or similar types of data. All the prolificacy traits were genetically correlated with length of productive life and lifetime prolificacy, and the correlations were greater than 0.13. These results indicate that selection for increased number of piglets weaned in the first litter and for short first farrowing interval is beneficial for sow longevity and also for sow's lifetime prolificacy. The genetic correlations between length of productive life and leg conformation score also were favorable (0.32 in Landrace and 0.17 in Large White). The heritability estimates indicate that survival analysis is likely the most appropriate method of evaluating longevity traits in swine. Because of computational problems, simultaneous analysis of linear traits and longevity is not currently possible. More research is needed to develop methods for multiple linear and survival trait analyses.  相似文献   

3.
A Bayesian threshold model was fitted to analyze the genetic parameters for farrowing mortality at the piglet level in Large White, Landrace, and Pietrain populations. Field data were collected between 1999 and 2006. They were provided by 3 pig selection nucleus farms of a commercial breeding company registered in the Spanish Pig Data Bank (BDporc). Analyses were performed on 3 data sets of Large White (60,535 piglets born from 4,551 litters), Landrace (57,987 piglets from 5,008 litters), and Pietrain (42,707 piglets from 4,328 litters) populations. In the analysis, farrowing mortality was considered as a binary trait at the piglet level and scored as 1 (alive piglet) or 0 (dead piglet) at farrowing or within the first 12 h of life. Each breed was analyzed separately, and operational models included systematic effects (year-season, sex, litter size, and order of parity), direct and maternal additive genetic effects, and common litter effects. Analyses were performed by Bayesian methods using Gibbs sampling. The posterior means of direct heritability were 0.02, 0.06, and 0.10, and the posterior means of maternal heritability were 0.05, 0.13, and 0.06 for Large White, Landrace, and Pietrain populations, respectively. The posterior means of genetic correlation between the direct and maternal genetic effects for Landrace and Pietrain populations were -0.56 and -0.53, and the highest posterior intervals at 95% did not include zero. In contrast, the posterior mean of the genetic correlation between direct and maternal effects was 0.15 in the Large White population, with the null correlation included in the highest posterior interval at 95%. These results suggest that the genetic model of evaluation for the Landrace and Pietrain populations should include direct and maternal genetic effects, whereas farrowing mortality could be considered as a sow trait in the Large White population.  相似文献   

4.
The objective of this study was to obtain heritability estimates for longevity (length of life, length of productive life, number of litters) and lifetime productivity traits (lifetime pig production, lifetime pig efficiency, lifetime litter efficiency) and genetic correlation between them and litter size at first farrowing, growth (ADG), backfat thickness (BF), loin depth, lean meat percentage (LMP), phenotypic selection index (PSI), and exterior in 19423 Polish Landrace (L) and 16049 Polish Large White (LW) sows. Heritabilities for longevity and lifetime productivity traits were 0.10–0.13 for L sows and 0.09–0.11 for LW sows depending on the trait definition. The genetic correlations among these traits were all high and positive, ranging from 0.76 to 0.99. Antagonistic genetic correlations (?0.21 to ?0.26) were found between longevity traits and PSI and LMP in LW sows, while in L sows the respective parameters were lower and not significant for length of productive life. The number of live‐born piglets in the first litter was positively correlated with lifetime pig production and lifetime pig efficiency in both breeds. The genetic correlations of longevity and lifetime pig production with ADG, BF, loin depth and exterior were small, and in most cases, not significant.  相似文献   

5.
Genetic parameters were estimated for six reproductive traits related to farrowing events in Landrace and Large White pigs; total number born (TNB), number born alive (NBA), number stillborn (NSB), total litter weight at birth (LWB), mean litter weight at birth (MWB), and gestation length (GL). We analyzed 62,534 farrowing records for 10,637 Landrace dams and 49,817 farrowing records for 8,649 Large White dams. Estimated heritabilities of TNB, NBA, NSB, LWB, MWB, and GL by single‐trait repeatability model analyses were 0.12, 0.12, 0.08, 0.18, 0.19, and 0.29, respectively, in Landrace, and 0.12, 0.10, 0.08, 0.18, 0.16, and 0.34, respectively, in Large White. Genetic correlation between NBA and NSB was unfavorable: 0.20 in Landrace and 0.33 in Large White. Genetic correlations of GL with the other five traits were weak: from ?0.18 with NSB to ?0.03 with NBA in Landrace, and from ?0.22 with NSB to ?0.07 with NBA in Large White. LWB had a highly favorable genetic correlation with NBA (0.74 in both breeds), indicating the possibility of using LWB for the genetic improvement of NBA.  相似文献   

6.
We estimated genetic parameters in Landrace and Large White pig populations for litter traits at farrowing (total number born, number born alive, number stillborn, total litter weight at birth (LWB), and mean litter weight at birth) and those at weaning (litter size at weaning (LSW), total litter weight at weaning (LWW), mean litter weight at weaning (MWW), and survival rate from farrowing to weaning). We analyzed 65,579 records at farrowing and 6,306 at weaning for Landrace, and 52,557 and 5,360, respectively, for Large White. Single‐trait and two‐trait repeatability animal models were exploited to estimate heritability and genetic correlation respectively. Heritability estimates of LSW were 0.09 for Landrace and 0.08 for Large White. Genetic correlations of LSW with MWW were –0.43 for Landrace and –0.24 for Large White. Genetic correlations of LSW with LWW and LWB ranged from 0.5 to 0.6. The genetic correlation of MWW with LWW was positive, but that with LWB was negligible. The results indicate that utilizing LWW or LWB could improve LSW efficiently, despite the antagonistic genetic correlation between LSW and MWW.  相似文献   

7.
Data from about 2900 litters (approximately 40,000 piglets) originating from 1063 Czech Large White hyperprolific sows were analyzed. The phenotypic and genetic relations between litter size traits, piglet mortality during farrowing and from birth to weaning and several statistics referring to the distribution of the birth weight within litter were analyzed. All genetic parameters were estimated from multi-trait animal models including the following factors: mating type (natural service or insemination), parity, linear and quadratic regression on age at first farrowing (1st litter) or farrowing interval (2nd and subsequent litters), herd-year-season effect and additive-genetic effect of the sow. The phenotypic correlations of the mean birth weight with the total number of piglets born and piglets born alive were − 0.30. Traits describing the variability of the birth weight within litter (range, variance, standard deviation, coefficient of variation) were mostly positively correlated with litter size. A statistically significant phenotypic correlation (− 0.09 to − 0.15) between mean birth weight and losses at birth and from birth to weaning was found. The heritability for the number of piglets born, piglets born alive and piglets weaned was around 0.15. The number of stillborn piglets had only a very low heritability less than 0.05, whereas the heritability for losses from birth to weaning was 0.13. The heritabilities of the mean, minimal and maximal birth weight were 0.16, 0.10 and 0.10, respectively. The heritability for all statistics and measures referring to the variability of the birth weight within litter was very low and did never exceed the value of 0.05. An increase in litter size was shown to be genetically connected with a decrease in the mean piglet birth weight and an increase in the within-litter variability of birth weight. Selection on litter size should be accompanied by selection on mortality traits and/or birth-weight traits. Losses from birth to weaning and the minimal birth weight in the litter were proposed as potential traits for a selection against piglet mortality.  相似文献   

8.
杜洛克、大白、长白猪的生长和肉用性状杂交效果研究   总被引:2,自引:0,他引:2  
为筛选优化杂交组合,进行了杜洛克(杜)、大白(大)、长白(长)品种间杂交试验,测定了不同品种组合的生长速度、饲料转化率、胴体和肉质性状及其杂种优势率。结果表明,杜洛克、父系大白猪作终端父本与长大杂母猪杂交,其后代的日增重、饲料转化率、屠宰率、胴体长、眼肌面积、后腿比例、瘦肉率及肉质等主要性状均无显著差异。  相似文献   

9.
Individual records from 49,788 Large White piglets were used to evaluate preweaning mortality and its relationship with birth weight (BW). Preweaning mortality included farrowing mortality (TM) was also divided into stillbirth (SB), early (EM), late (LM) and total (ELM) preweaning mortality. Farrowing mortality was also studied as a sow's trait as number of piglets born dead (NBD). Threshold-linear models were used via MCMC. Traits included (1) TM-BW, (2) SB-ELM-BW, (3) SB-EM-LM and (4) NBD-ELM-BW. Model for BW included parity number, litter size, sex, contemporary group (farm-farrowing year-month), litter, and direct and maternal additive genetic effects. For mortality traits, litter effect was of the nursing litter for cross-fostered piglets (4.9%). Models for SB (2, 3) and NBD (4) excluded the effect of sex. In Model 3, BW was fitted as covariable for EM and LM. Estimates of direct and maternal heritability for BW were 0.03–0.06 and 0.14–0.19; and for mortality traits 0.03–0.12 and 0.08–0.12. Direct-maternal correlations were negative for all traits. Genetic correlations between all mortality traits were positive. Results confirmed the importance of BW for the genetic evaluation of piglet mortality. Early mortality is a good candidate for improvement of TM because of larger heritability and high genetic correlations with other mortality traits. It is most efficient to treat SB at sow level and preweaning mortality at the piglet level.  相似文献   

10.
The aim of this study was to investigate whether selection for number of live born piglets has led to prolonged parturition and increased requirement for birth assistance, resulting in increased numbers of stillborn piglets. Data were collected from 6,718 primiparous Norwegian Landrace sows farrowing between 2001 and 2003. The need for birth assistance was recorded as a binary response. Physical intervention in the birth of piglets and/or hormonal treatment by the farmer was recorded as birth assistance. The duration of the parturition was analyzed as a binary trait (<4 h and >4 h). The statistical model used for analysis included contemporary groups of herd-year, litter breed, season of farrowing, parity in which the sow was born, a regression on the age of sow at farrowing, an additive genetic effect, and a service sire effect. A full Bayesian approach via Gibbs sampling was adopted to estimate the genetic relationships between these four traits. A total chain length of 100,000 iterations was run. The first 10,000 samples were discarded as burn-in, and the remaining 90,000 iterations were retained without thinning for post-Gibbs analysis. The highest direct heritability was estimated for the number of live-born piglets (h2 = 0.07), followed by the duration of farrowing (h2 = 0.05), the need for birth assistance (h2 = 0.05), and the number of stillborn piglets (h2 = 0.04). The genetic correlations revealed that the number of live and stillborn piglets was uncorrelated; however, the number of live piglets born had a moderate genetic correlation to the need for birth assistance (rg = 0.24 +/- 0.01) and duration of farrowing (rg = -0.20 +/- 0.01), whereas the number of stillborn piglets was highly correlated to the need for birth assistance (rg = 0.74 +/- 0.01) and the duration of parturition (rg = 0.66 +/- 0.01). The duration of farrowing and the need for birth assistance were genetically highly correlated (rg = 0.89 +/- 0.00). For all traits, the service sire variance was approximately one quarter in magnitude compared with its respective genetic variance. The results showed that selection for the number of live born piglets is not expected to influence the number of stillborn piglets. Increasing the number of live piglets born through selection should have a slight negative effect on farrowing duration and a minor increase in the need for birth assistance. Sows with a high genetic potential for birth assistance and prolonged parturition were more likely to give birth to greater numbers of stillborn piglets.  相似文献   

11.
Twelve different mating types among the Hampshire and Landrace breeds were used to determine direct, maternal, heterosis, and recombination effects for performance and carcass traits. Mating types used were two purebred, two F1, two F2, two F3, and four backcross. Carcass data were collected on 238 barrows and 262 gilts over four replications. Traits measured were length (LENG), 10th rib off midline backfat (BF10), longissimus muscle area (LMA), and dressing percentage (DRS%). Average backfat (AVBF) was calculated as the mean of three midline fat depths measured opposite the first rib, last rib, and last lumbar vertebra. The model used to evaluate the carcass traits included main effects of mating type, farrowing season, and sex and included slaughter weight as a covariate. The performance traits of ADG, feed efficiency (FE), daily feed consumption (DFC), lean gain per day (LNGN), and lean efficiency (LNEF) were measured on a pen basis. Comparisons of reciprocal F1 crosses showed that carcasses from pigs sired by Hampshire boars were leaner and had more LMA than those sired by Landrace boars. Heterosis percentages were significant for AVBF (7.2%; P less than .01), BF10 (8.8%; P less than .01), DRS% (1.5%; P less than .01), ADG (11.5%; P less than .01), DFC (10.2%; P less than .01), LNGN (10.6%; P less than .01), and LNEF (6.0%; P less than .05). Epistatic recombination losses in the offspring were significant for LENG (3.6 cm; P less than .05) and approached significance for BF10 (6.1 mm; P less than .10).  相似文献   

12.
Data were collected over the first 4 generations of a divergent selection experiment for residual feed intake of Large White pigs having ad libitum access to feed. This data set was used to obtain estimates of heritability for residual feed intake and genetic correlations (r(a)) between this trait and growth, carcass, and meat quality traits. Individual feed intake of group-housed animals was measured by single-space electronic feeders. Upward and downward selection lines were maintained contemporarily, with 6 boars and 35 to 40 sows per line and generation. Numbers of records were 793 for residual feed intake (RFI1) of boar candidates for selection issued from first-parity (P1) litters and tested over a fixed BW range (35 to 95 kg) and 657 for residual feed intake (RFI2) and growth, carcass, and meat quality traits of castrated males and females issued from second-parity (P2) litters and tested from 28 to 107 kg of BW. Variance and covariance components were estimated using REML methodology applied to a series of multitrait animal models, which always included the criterion for selection as 1 of the traits. Estimates of heritability for RFI1 and RFI2 were 0.14 +/- 0.03 and 0.24 +/- 0.03, respectively, whereas the estimate of r(a) between the 2 traits was 0.91 +/- 0.08. Estimates of r(a) indicated that selection for low residual feed intake has the potential to improve feed conversion ratio and reduce daily feed intake, with minimal correlated effect for ADG of P2 animals. Estimates of r(a) between RFI2 and body composition traits of P2 animals were positive for traits related to the amount of fat depots (r(a) = 0.44 +/- 0.16 for carcass backfat thickness) and negative for carcass lean meat content (r(a) = -0.55 +/- 0.14). There was a tendency for a negative genetic correlation between RFI2 and carcass dressing percent (r(a) = -0.36 +/- 0.21). Moreover, selection for low residual feed intake is expected, through lower ultimate pH and lighter color, to decrease pork quality (r(a) = 0.77 +/- 0.14 between RFI2 and a meat quality index intended to predict the ratio of the weight of ham after curing and cooking to the weight of defatted and boneless fresh ham).  相似文献   

13.
旨在分析母猪的出生年份、出生季节、初生重、开测日龄等固定效应对长白、大白猪主要生长性状的影响,并对目标生长性状进行遗传参数估计(遗传力、遗传方差、表型相关和遗传相关),为猪的遗传改良提供基本依据。本试验利用GLM模型分析试验猪群(398头长白猪和1 176头大白猪)的固定效应对猪生长性状的影响,并采用多性状动物模型对目标性状进行遗传参数估计。目标生长性状包括达100 kg体重日龄(age to 100 kg,AGE)、达100 kg背膘厚(backfat to 100 kg,BF)、100 kg平均日增重(average daily gain to 100 kg,ADG)。研究表明,在大白和长白猪中,猪的出生年、出生季、初生重以及开测日龄对生长性状均具有极显著的影响(P<0.001);长白猪的AGE、ADG和BF的遗传力分别为0.321、0.327和0.324,大白猪对应性状的遗传力分别为0.454、0.469和0.408;长白猪的ADG和AGE之间的遗传相关、表型相关分别为-0.990、-0.995,大白猪的ADG和AGE之间的遗传相关、表型相关分别为-0.993、-0.998,均呈现较强的负相关。长白、大白猪的生长性状(AGE、ADG、BF)均属于中等遗传力性状,其出生年份、出生季节、初生重和开测日龄对猪的生长性状影响较大。在遗传参数估计分析时,提高样本数量并提升表型数据质量,可以增加遗传参数估计的可靠性。本研究中的生长性状遗传参数估计结果较为可靠,可为后续的遗传改良提供参考。  相似文献   

14.
The objective of this project was to characterize changes in growth, carcass yield, and meat quality traits in castrates and gilts in response to divergent selection for testosterone production. In generation 21, endogenous testosterone concentrations in Duroc boars of the high (HTL) and low (LTL) testosterone lines averaged 49.0 and 27.8 ng/mL (P < 0.01), respectively. Eight LTL and 10 HTL boars were used to sire 29 LTL and 33 HTL litters. To remove the effects of inbreeding, these same boars were mated to females of a Large White x Landrace composite (WC) to generate 11 WC by LTL litters (WLT) and 23 WC by HTL litters (WHT). Castrates and gilts were then allotted to LTL (n = 53), HTL (n = 61), WLT (n = 102), and WHT (n = 101) for testing. Growth and carcass traits analyzed included days to 114 kg (D114), ADG, backfat adjusted to 114 kg (ABF), LM area adjusted to 114 kg and predicted percent lean (PPL). Fat-O-Meater data collected were adjusted fat depth (AFD), adjusted loin depth, and percent lean. Meat quality traits characterized at 24 h postmortem included marbling score, percent lipid, pH, drip loss, color score, and Minolta L*, a*, and b*. Data were analyzed with a mixed model including fixed effects of line, mating type (purebred or crossbred), sex, and the random effect of sire nested within line. All possible interactions among fixed effects were tested. The HTL had fewer D114 (P < 0.05), greater ADG (P < 0.01), greater ABF (P < 0.01), and lower PPL (P < 0.01) than LTL. The WHT and WLT did not differ for D114, ADG, or ABF. The WHT had smaller LM area adjusted to 114 kg (P < 0.05) and greater drip loss (P < 0.05) than WLT. The WLT had lower adjusted loin depth (P < 0.05) than LTL and HTL. The LTL and HTL had greater subjective scores for marbling (P < 0.05) compared with WLT and WHT. The least squares mean for percent lipid for HTL and LTL was 4.00. The WHT had greater means for L*, a*, and b* (P < 0.05) than WLT. Pigs selected for increased testosterone production grew faster and produced fatter carcasses than pigs selected for decreased testosterone. Changes in growth, carcass yield, and meat quality traits were detected in castrates and gilts in response to divergent selection for testosterone production.  相似文献   

15.
The primary objective was to estimate breed, heterosis, and recombination effects on growth and carcass traits of two different four-breed composite populations of pigs. Experiment 1 (Exp. 1) included purebred and crossbred pigs originating from Yorkshire, Landrace, Large White, and Chester White breeds, and Experiment 2 (Exp. 2) included pigs from Duroc, Hampshire, Pietrain, and Spot breeds. Data were recorded on purebred pigs, two-breed cross pigs, and pigs from generations F1 through F6, where F1 pigs were the first generation of a four-breed cross. Pig weights were recorded at birth and at 14, 28, 56, 70, and 154 d of age. Average daily gain was calculated for intervals between weights, and ultrasonic backfat measurements (A-mode) were taken at 154 d of age. Feed intake was measured between 70 and 154 d of age on mixed pens of boars and barrows. Carcass backfat, length, and loin muscle area were measured on barrows at slaughter. Mixed-model analyses were done separately by experiment, fitting an animal model. Fixed effects included farrowing group and sex for growth traits and farrowing group for carcass traits. For ADFI, a weighted mixed-model analysis was done fitting farrowing group as a fixed effect, sire nested within farrowing group as a random effect, and weighting each observation by the number of pigs in each pen. To test feed efficiency, a second analysis of ADFI was done adding ADG as a covariate in the previous model. Included as covariates in all models were direct, maternal, and maternal grandam breed effects, direct and maternal heterosis effects, and a direct recombination effect. Recombination is the breakup of additive x additive epistatic effects present in purebreds during gamete formation by crossbred parents. Effects of direct heterosis significantly increased weights at birth, 14, 56, 70, and 154 d of age in Exp. 1. Effects of direct heterosis significantly increased ADG from birth to 14, 28 to 56, and 70 to 154 d of age in Exp. 1. In Exp. 2, effect of direct heterosis significantly increased weights and ADG at all ages. In Exp. 1, recombination significantly reduced loin muscle area. In Exp. 2, recombination significantly increased weights at birth, 14, 28, and 56 d, ADFI from 70 to 154 d, and ADFI adjusted for ADG. The correlation between maternal heterosis and recombination effects for all traits in Exp. 1 and Exp. 2 was approximately -0.90. Maternal heterosis and recombination effects were estimable, but greatly confounded.  相似文献   

16.
Background:The protein/energy ratio is important for the production performance and utilization of available feed resources by animals.Increased protein consumption by mammals leads to elevated feed costs and increased nitrogen release into the environment.This study aimed to evaluate the effects of dietary protein/energy ratio on the growth performance,carcass traits,meat quality,and plasma metabolites of pigs of different genotypes.Methods:Bama mini-pigs and Landrace pigs were randomly assigned to two dietary treatment groups(Chinese conventional diet with low protein/energy ratio or National Research Council diet with high protein/energy ratio;n = 24 per treatment) in a 2x2 factorial arrangement.Blood and muscle samples were collected at the end of the nursery,growing,and finishing phases.Results:We observed significant interactions(P 0.05) between breed and diet for total fat percentage,intramuscular fat(IMF) content,protein content in biceps femoris(BF) muscle,and plasma urea nitrogen(UN) concentration in the nursery phase;for average daily gain(ADG),average daily feed intake(ADFI),dry matter,IMF content in psoas major(PM) muscle,and plasma total protein and albumin concentrations in the growing phase;and for drip loss and plasma UN concentration in the finishing phase.Breed influenced(P 0.05) growth performance,carcass traits,and meat quality,but not plasma metabolites.Throughout the trial,Landrace pigs showed significantly higher(P 0.05) ADG,ADFI,dressing percentage,lean mass rate,and loin-eye area than did Bama mini-pigs,but significantly lower(P 0.05)feed/gain ratio,fat percentage,backfat thickness,and IMF content.Dietary protein/energy ratio influenced the pH value,chemical composition of BF and PM muscles,and plasma activities of glutamic-pyruvic transaminase and gamma-glutamyl transpeptidase,and plasma concentration of UN.Conclusions:Compared with Landrace pigs,Bama mini-pigs showed slower growth and lower carcass performance,but had better meat quality.Moreover,unlike Landrace pigs,the dietary protein/energy ratio did not affect the growth performance of Bama mini-pigs.These results suggest that,in swine production,low dietary protein/energy ratio may be useful for reducing feed costs and minimizing the adverse effects of ammonia release into the environment.  相似文献   

17.

The aim of this study was to estimate genetic and phenotypic parameters for the three mortality traits crushing, stillbirth and total mortality in piglets, and their respective correlations with birth weight. Records were available from 11 016 Yorkshire piglets from 1046 first parity litters in a Swedish experimental herd. Each mortality trait was analysed jointly with birth weight, using bivariate models. Both mixed linear models and threshold models were used. The threshold models took environmental and maternal genetic effects into account, whereas the linear models also included a direct genetic effect of the piglet on its birth weight. The estimated heritabilities were low for all mortality traits (0.01-0.15), with the lowest estimate for crushing and the highest for stillbirth. The estimated environmental correlations between the different mortality traits and birth weight were negative. The estimated genetic correlations between crushing and birth weight (both direct and maternal effect) were also negative in both models, indicating that sows with low-weight piglets are more likely to crush piglets. However, the genetic correlations between stillbirth and birth weight (both direct and maternal effect) were positive. These results suggest that stillbirth and crushing are traits with different genetic backgrounds, and that genetically increasing the birth weight of the piglets may result in more stillborn piglets.  相似文献   

18.
The objective of this study was to compare growth and carcass traits of 1,252 progeny of six commercially available dam lines included in the National Pork Producers Council Maternal Line Evaluation Project. Lines compared included one maternal line supplied by each of American Diamond Swine Genetics (ADSG), Danbred NA (DB), two lines supplied by Monsanto Choice Genetics (DK and GPK347), Newsham Hybrids (NH), and Landrace x Large White females supplied by the National Swine Registry (NSR). All females were mated to DB, Duroc-Hampshire terminal sires. Traits analyzed were ADG from 56 to 115 kg live weight, days to 115 kg, backfat thickness measured at the 10th rib, carcass length, dressing percent, and 10th-rib LM area. Carcass traits were adjusted to a carcass weight of 85 kg. The statistical model included fixed effects of maternal line, sex, farrowing group, and finishing unit (farm). All two-way interactions among main effects were tested and removed from final models because they were not significant. In addition, because they were not significant, effects of farm and farrowing group were removed from models for carcass length and 10th-rib backfat thickness, and farm was removed from the model for LM area. Least squares means for ADG ranged from 0.74 to 0.79 kg/d. The GPK347 line had lower ADG and greater days to 115 kg than all other lines (P < 0.05). The ADSG (P < 0.05) and NH (P < 0.01) progeny had lower ADG than DK progeny. The DK line had the fewest days to 115 kg (P < 0.05). Progeny for the DB and NH lines had the least 10th-rib backfat, differing from ADSG, DK, and GPK347 (P < 0.05). Pigs from DB females had the greatest dressing percent, differing from ADSG, DK, GPK347, and NH (P < 0.05). The GPK347 had a lower dressing percent than all other lines (P < 0.05). Progeny of DB females had the greatest LM area, differing from ADSG, DK, GPK347, and NSR (P < 0.05). Offspring from ADSG and GPK347 had the smallest LM area; however, GPK347 and NSR did not differ. Differences in carcass length were statistically significant; however, actual differences were small. Economic weights for these traits relative to reproductive traits must be considered in integrated economic analyses to properly compare differences among lines in net economic value for specific markets.  相似文献   

19.
We estimated genetic parameters for number born alive (NBA) from the first to the seventh parities in Landrace and Large White pigs using three models. Analyzing 55,160 farrowing records for 12,677 Landrace dams and 43,839 for 10,405 Large White dams, we used a single‐trait animal model to estimate the heritability of NBA at each parity and a two‐trait animal model and a single‐trait random regression model to estimate the genetic correlations between parities. Heritability estimates of NBA at each parity ranged from 0.08 to 0.13 for Landrace and from 0.05 to 0.16 for Large White. Estimated genetic correlations between parities in all cases were positive. Genetic correlations between the first and second parities were slightly lower than those between other neighboring parities. Genetic correlations between more distant parities tended to be lower, in some cases <0.8. The results indicate the necessity to investigate the applicability of evaluating NBA at different parities as different traits (e.g., the first and later parities), although a repeatability model might still be reasonable.  相似文献   

20.
Crossbred pigs (n = 240) from Pietrain x Large White sires mated to Landrace x Large White dams, with an average age of 100 d (60.5 +/- 2.3 kg of BW), were used to investigate the effects of sex and slaughter weight (SW) on growth performance and on carcass and meat quality characteristics. There were 6 treatments arranged factorially, with 3 classes (intact females, IF; castrated females, CF; and castrated males, CM) and 2 slaughter weights (114 and 122 kg of BW). Each of the 6 combinations of treatments was replicated 4 times, and the experimental unit was a pen with 10 pigs. Castrated males and CF ate more feed, grew faster, and had more carcass backfat depth and fat thickness at the gluteus medius muscle but lower loin yield than IF (P < 0.05). In addition, CF and CM had more intramuscular fat (P < 0.05) and less linoleic acid content in the subcutaneous fat (P < 0.01) than IF. Pigs slaughtered at 122 kg of BW had lower ADG (P < 0.05), decreased G:F (P < 0.05), and more gluteus medius fat than pigs slaughtered at 114 kg of BW (P < 0.05). It was concluded that CF and CM had similar productive performance and meat quality characteristics when slaughtered at the same age, and that castration of females improved ADG and increased weight and fat content of primal cuts with respect to IF. Therefore, castration of females is recommended in pigs destined for the dry-cured industry because of the beneficial effects on quality of the primal cuts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号