首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An 8-week growth trial was conducted to assess the effect of dietary protein on growth, feed utilization, protein retention efficiency, and body composition of young Heteropneustes fossilis (10.02 ± 0.09 g; 9.93 ± 0.07 cm). Isocaloric (4.15 kcal g−1, GE) diets with varying levels of protein (25, 30, 35, 40, 45, and 50% of the diet) were fed near to satiation to triplicate groups of fish. Optimum dietary protein was determined by analyzing live weight gain (LWG%), feed conversion ratio (FCR), protein efficiency ratio (PER), specific growth rate (SGR%), and protein retention efficiency (PRE%) data. Maximum LWG% (167), best FCR (1.42), PER (1.75), SGR (1.76), and PRE (31.7%) were evident in fish fed 40% protein diet (Diet 4). Body protein data also supported the above level. However, second-degree polynomial regression analysis of the above data indicated that inclusion of dietary protein in the range of 40–43% is optimum for the growth of young H. fossilis.  相似文献   

2.
Growth, feed conversion, and nutrient retention efficiencies of African catfish fingerling, Clarias gariepinus (5.22 ± .07 cm; 8.22 ± 0.03 g), fed diets with varying levels of protein were assessed by feeding seven casein/gelatin based isocaloric (17.62 kJ/g GE) experimental diets with graded levels of dietary protein (20%, 25%, 30%, 35%, 40%, 45%, and 50% of the diet) to triplicate groups of fish to apparent satiation for eight weeks. Effects of feeding these diets on live weight gain (LWG%), feed conversion ratio (FCR), protein efficiency ratio (PER), protein retention efficiency (PRE%), and energy retention efficiency (ERE%) were assessed. Maximum LWG% (867%), PER (2.01), highest PRE (32%), ERE (69%), best FCR (1.39), and maximum body protein were recorded in fish fed diet containing 35% protein. On the basis of the second-degree polynomial regression analysis of the above response variables, it is recommended that the inclusion of protein in the range of 34.4%–39.6% is optimum for maximizing growth potential, feed conversion, and nutrient retention in African catfish fingerling, Clarias gariepinus.  相似文献   

3.
Growth of juvenile giant tiger prawn, Penaeus monodon Fabricius, was evaluated at an aquarium-scale in co-culture with a discarded filamentous seaweed, Chaetomorpha ligustica (Kützing) Kützing. Juveniles at different ages in days were examined, designated as J 16, J 44, J 58, J 93 and J 128, where a 1-day-old juvenile (J 1) is equivalent to a 20-day-old post-larva (PL 20)). Juveniles at every age group grazed directly on live C. ligustica, even those fed an artificial shrimp diet to satiation. Mean specific growth rate (SGR: % day−1) was higher in early age juveniles. Compared to mono-culture, significant differences in growth were observed at J 16 (4.44% day−1) and J 44 (1.60% day−1); however, no significant differences were recorded at J 58 (1.16% day−1), J 93 (0.75% day−1) or J 128 (0.45% day−1). It was concluded that co-culture of giant tiger prawn with C. ligustica has a dietary advantage, especially in early age juveniles.  相似文献   

4.
Dietary arginine requirement of Heteropneustes fossilis fry (3.0 ± 0.5 cm; 5.1 ± 0.3 g) was determined by feeding casein‐gelatin‐based isonitrogenous (400 g kg?1 crude protein) and isocaloric (17.97 kJ g?1) amino acid test diets containing graded levels of l ‐arginine (15, 17, 19, 21, 23 and 25 g kg?1 dry diet) for 12 weeks. Maximum absolute weight gain (AWG) (44.4), best feed conversion ratio (FCR) (1.22), highest protein retention efficiency (PRE%) (41%), energy retention efficiency (ERE%) (75%), best condition factor, hepatosomatic index and viscerosomatic index were noted at 21 g kg?1 arginine of the dry diet. Maximum body protein (189.8 g kg?1) was also obtained in fish fed above diet. Highest haematocrit value (35%), Hb concentration (9.54 g dL?1), RBC count (3.44 × 109 mL?1) and lowest Erythrocyte sedimentation rate (ESR) (1.93 mm h?1) were obtained at the above level of arginine in the diet. AWG, FCR, PRE% and ERE% data were analysed using broken‐line and an exponential fit to obtain more precise dietary arginine requirement. On the basis of broken‐line and exponential analyses of AWG, FCR, PRE and ERE data, inclusion of dietary arginine in the range of 20.4–22.6 g kg?1 dry diet, corresponding to 51–56.5 g kg?1 dietary protein, is recommended for formulating arginine‐balanced feeds for rearing H. fossilis fry.  相似文献   

5.
An 8-week feeding trial was conducted in a flow-through system (1–1.5 L min−1) at 27°C to determine dietary protein requirement for Channa punctatus fingerlings (4.58 ± 0.29 g) by feeding six isocaloric diets (18.39 kJ g−1, gross energy). Diets containing graded levels of protein (300, 350, 400, 450, 500 and 550 g kg−1) were fed to triplicate groups of fish to apparent satiation at 09:00 and 16:00 h. Maximum absolute weight gain (AWG; 8.11 g fish−1), specific growth rate (SGR; 1.82%) and best feed conversion ratio (FCR; 1.48) were recorded in fish fed diet containing 450 g kg−1 protein, whereas protein efficiency ratio (PER; 1.52), protein retention efficiency (PRE; 25%), energy retention efficiency (ERE; 78%) and RNA/DNA ratio (3.01) were maximum for the group fed dietary protein at 400 g kg−1. Second-degree polynomial regression analysis of AWG, SGR and FCR data against varying levels of dietary protein yielded optimum dietary protein requirement of fingerling between 462.24 and 476.72 g kg−1, whereas the regression analysis of PER, PRE, ERE and RNA/DNA ratio data showed a lower protein requirement of 438.28–444.43 g kg−1 of the diet. Considering the PER, PRE, ERE and RNA/DNA ratio as more reliable indicators, this protein requirement is recommended for developing quality protein commercial feeds for C. punctatus fingerlings.  相似文献   

6.
An 8-week growth study was conducted to determine the effect of ration level, energy, and protein maintenance requirement of catfish, Heteropneustes fossilis–Bloch, fingerling (7.90 ± 0.55 cm; 3.10 ± 0.28 g) by feeding casein–gelatin-based purified diet (40% CP; 3.61 kcal g-1 GE) at six ration levels 1–6% of BW/day, at 0800 and 1700 h, in triplicate, with 20 fish per trough fitted with water flow-through system of volume 55 L. Maximum live weight gain, best feed conversion ratio (FCR), best specific growth rate (SGR), and highest protein efficiency ratio (PER) were evident for ration levels of 4–5% body weight. However, second-degree polynomial regression analysis for weight gain, FCR, PER, protein, and energy retention data indicated that the break-points occurred at 5.08, 4.18, 4.05, 4.16, and 4.17% BW/day, respectively. Significantly (P < 0.05) higher body protein content was recorded at 4 and 5% rations. While a linear increase in body fat content with inverse relationship in moisture content was evident with increasing rations. Ash content remained insignificantly (P > 0.05) low at higher rations. Protein and energy retention values also produced significant (P < 0.05) differences. Based on the results obtained, it is recommended that feeding in the range of 4 to 4.5% BW/day, corresponding to 1.60–1.80 g protein and 14.46–16.27 kcal energy g100 g−1 of the diet/day is optimum for the growth and efficient feed utilization of H. fossilis, while 2–3% ration levels (0.80–1.20 g protein and 7.23–10.84 kcal energy) suggest that these amounts approximate to the maintenance requirement of this fish.  相似文献   

7.
An eight-week feeding trial has been conducted to determine the optimum ration for Indian major carp, Labeo rohita, fingerling (4.10 ± 0.30 cm, 0.55 ± 0.16 g) by feeding a purified diet (40% CP; 3.61 kcal g−1 GE) at six levels, 2, 4, 6, 8, 10, and 12% of body weight per day, at 0800 and 1600 h, in triplicate, to 20 fish per trough fitted with a water flow-through system. Highest weight gain, best feed conversion ratio (FCR), best specific growth rate (SGR%), and highest protein efficiency ratio (PER) were evident for rations of 6–8% body weight. Second-degree polynomial regression analysis for FCR, PER, protein, and energy retention data indicated the break-points occurred at 6.55, 6.75, 6.80, and 6.95% bw per day, respectively. Significant (P < 0.05) differences between body composition were observed for fish fed different rations. Maximum body protein content was recorded for 6% and 8% rations. A linear increase in body fat content was evident with increasing ration. Body moisture and ash content remained non-significantly (P > 0.05) low for higher rations, however. On the basis of these results it is recommended that feeding in the range 6.5–7.0% bw per day corresponding to 2.6–2.8 g protein and 23.49–25.31 kcal energy per 100 g of the diet per day is optimum for growth and efficient feed utilization of Labeo rohita. Results for 2–4% rations (0.8–1.6 g protein and 7.23–14.46 kcal energy) suggest these amounts approximate to the maintenance requirement of this fish.  相似文献   

8.
The weaning phase can be decisive in fish-culture viability. In this work, the relationship between the initial size and weaning success has been studied in wedge sole (Dicologoglossa cuneata). For each age (30, 50, and 70 days after hatching, DAH), two to three sizes were selected, and all were put on the same feeding schedule for 20 days. Each batch (three replicates) was sampled at 1, 10, and 20 days. Specific growth rate (SGR) and survival were compared at the end of the co-feeding period, after 10 days on dry feed only. The best results for survival and growth were found with the smallest larvae, and vice versa. The SGRs and survival rates recorded during the co-feeding period were higher (0.8–15.6 day−1 and 68.3–97.8%) than those from the dry-food phase (0.9–4.7 day−1 and 56.3–66.7%). Successful weaning (survival = 65% and SGR = 9.3 day−1) is possible with 30 DAH larvae (7.6–8.1 mm and 3.9–4.6 mg). In conclusion, the most effective weaning would be possible at 30 DAH, implying significant Artemia savings (25–50%).  相似文献   

9.
South African juvenile dusky kob Argyrosomus japonicus are more abundant in turbid estuaries than in clear marine‐dominated estuaries. Turbidity can reduce light penetration into the water and create an environment different from that experienced by fish under culture conditions in mechanically filtered clear water. In order to optimize rearing conditions of this species, the effects of light intensity (23–315 lx) and feeding method (restricted ration vs. feeding to apparent satiation) on growth and food conversion ratio (FCR) of juvenile A. japonicus were assessed in a 56‐day growth trial. Fish weight increased from 7.2±1.6 to 41.9±10.2 g fish?1 at a growth rate of 3.25% body weight day?1. Light intensity did not significantly affect growth or FCR. Feeding method did not significantly affect growth rate, but average FCR was significantly better in treatments fed a ration of 3.6% body weight day?1 than in treatments fed to apparent satiation. Therefore, a light intensity range of 23–315 lx can be used to culture dusky kob juveniles. The better FCR in fish fed a restricted ration suggests that a ration of 3.6% body mass day?1 allowed good growth of juvenile dusky kob.  相似文献   

10.
This study describes the digestible protein (DP) and digestible energy (DE) utilization in juvenile mulloway, and determined the requirements for maintenance. This was achieved by feeding triplicate groups of fish weighing 40 or 129 g held at two temperatures (20 or 26°C), on a commercial diet (21.4 g DP mJ DE−1) at four different ration levels ranging from 0.25% of its initial body weight to apparent satiation over 8 weeks. Weight gain and protein and energy retention increased linearly with increasing feed intake. However, energy retention efficiency (ERE) and protein retention efficiency (PRE) responses were curvilinear with optimal values, depending on fish size, approaching or occurring at satiated feeding levels. Maximum predicted PRE was affected by body size, but not temperature; PRE values were 0.50 and 0.50 for small mulloway, and 0.41 and 0.43 for large mulloway, at 20 and 26°C respectively. ERE demonstrated a similar response, with values of 0.42 and 0.43 for small, and 0.32 and 0.34 for large mulloway at 20 and 26°C respectively. Utilization efficiencies for growth based on linear regression for DP (0.58) and DE (0.60) were independent of fish size and temperature. The partial utilization efficiencies of DE for protein (k p) and lipid (k l) deposition estimated using a factorial multiple regression approach were 0.49 and 0.75 respectively. Maintenance requirements estimated using linear regression were independent of temperature for DP (0.47 g DP kg−0.7 day−1) while maintenance requirements for DE increased with increasing temperature (44.2–49.6 kJ DE kg−0.8 day−1). Relative feed intake was greatest for small mulloway fed to satiation at 26°C and this corresponded to a greater increase in growth. Large mulloway fed to satiation ate significantly more at 26°C, but did not perform better than the corresponding satiated group held at 20°C. Mulloway should be fed to satiation to maximize growth potential if diets contain 21.4 g DP mJ DE−1.  相似文献   

11.
To quantify dietary L‐tryptophan requirement of fingerling Heteropneustes fossilis (6.66 ± 0.08 g), casein–gelatin‐based isonitrogenous (38% CP) and isoenergetic (14.72 kJ g?1 DE) purified diets with eight levels of L‐tryptophan (0.12%, 0.16%, 0.20%, 0.24%, 0.28%, 0.32%, 0.36%, 0.40% dry diet) were fed to triplicate groups of fish twice daily to apparent satiation for 12 weeks. Incremental levels of dietary tryptophan from 0.12 to 0.28% significantly (P < 0.05) improved absolute weight gain (AWG; 14.3–65.9 g fish?1), feed conversion ratio (FCR; 5.9–1.5), protein retention efficiency (PRE; 6.2–32.2%), haemoglobin (Hb; 6.5 to 11.9 g dL?1) and haematocrit (Hct; 23.5–33.8%). To determine the precise information on tryptophan requirement, data were subjected to broken‐line and second‐degree polynomial regression analysis. Broken‐line regression analysis reflected highest R2 values for AWG g fish?1 (0.999), PRE% (0.993), Hb g dL?1 (0.995) and Hct% (0.993) compared with R2 values obtained using second‐degree polynomial regression analysis of AWG g fish?1(0.949), PRE% (0.890), Hb g dL?1(0.969) and Hct% (0.943), indicating that data were better fit to broken‐line regression analysis. Hence, based on broken‐line regression analysis at 95% maximum response, tryptophan requirement of fingerling H. fossilis is recommended between 0.24% and 0.27% dry diet (0.63–0.71% protein).  相似文献   

12.
《Aquaculture Research》2017,48(4):1759-1766
A shrimp protein hydrolysate (SPH) containing 894.2 g kg−1 crude protein (CP) and 54.3 g kg−1 total lipids was tested as a partial replacement for fish meal (FM) in diets of juvenile cobia. The effects of increasing dietary levels of SPH on the survival, weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), nitrogen retention efficiency (NRE) and daily feed intake (DFI) of cobia with initial body weight of 11.9 g were evaluated. Four isoproteic (from 431.1 to 439.7 g kg−1) and isoenergetic (20 825–21 347 MJ kg−1) diets were formulated to contain 0 (Control), 120, 240 or 360 g kg−1 of dietary CP derived from SPH. Survival, WG, SGR, FCR, NRE and DFI ranged from 90 to 100%, 40.2–56.5 g, 4.7–6.1% day−1, 1.04–1.54, 26.3–44.0% and 4.7–6.0% fish−1 day−1 respectively. Survival and DFI were not affected by the dietary treatments. On the other hand, fish fed the control diet and the one containing 120 g kg−1 SPH had higher WG, SGR and FCR. Nitrogen retention efficiency was significantly higher for fish fed diets 0 and 120. It is concluded that up to 120 g kg−1 of SPH in cobia diets can be used with no significant effects on feed utilization and fish performance.  相似文献   

13.
In experimental culture conditions in tanks, the effect of weight (W: 11–452 g) and temperature (T: 14–29°C) on the growth rate (SGR, % bw day−1) and maximum daily food intake (SFR, % bw day−1) in sharpsnout sea bream (Diplodus puntazzo) was studied. The possible combined effect of both independent variables (W and T) was also analyzed by multiple regression analysis, fitting the data to the equation Ln Y = Ln a + b Ln W + cT + dT 2 + eT Ln W. Both SGR and SFR, and therefore feed efficiency (FE = SGR/SFR), were significantly influenced by the interaction between temperature and weight and may be expressed by means of the following equations: Ln SGR = −6.1705 + 0.5809T − 0.0087T 2 − 0.0249T Ln W ( R\textadj2 R_{\text{adj}}^{2}  = 0.949; ANOVA P < 0.0001); Ln SFR = −4.8257 + 0.4425T − 0.0063T 2 − 0.0163T Ln W ( R\textadj2 R_{\text{adj}}^{2}  = 0.964; ANOVA P < 0.0001).The results suggest that the optimum temperature for SGR and FE (T SGRopt and T FEopt), and the temperature at which the maximum SFR (T SFRmax) is reached, decreases with body weight, in accordance with the equations: T SGRopt = 33.297 − 1.435 Ln W; T FEopt = 29.332 − 1.890 Ln W; and T SFRmax = 34.941 − 1.304 Ln W, respectively. In this way, T SGRopt is 28.4, 26.7, and 24.7°C; T SFRmax is 30.5, 28.9, and 27.1°C and T FEopt is 22.9, 20.6, and 18°C for 30, 100 and 400 g body weight, respectively.  相似文献   

14.
An 8‐week feeding experiment was conducted to quantify the dietary isoleucine requirement of fingerling Indian major carp, Labeo rohita (3.50 ± 0.04 cm; 0.40 ± 0.02 g) using amino acid test diets (400 g kg−1 crude protein; 17.90 kJ g−1 gross energy) containing casein, gelatin and l ‐crystalline amino acids. Six dietary treatments supplemented with graded levels of isoleucine (7.5, 10.0, 12.5, 15.0, 17.5 and 20.0 g kg−1), in gradations of 2.5 g kg−1 diet, were fed to triplicate groups of fingerlings to apparent satiation divided over two feedings at 07:00 and 17:30 h. Performance of the fish was evaluated on the basis of live weight gain, feed conversion ratio (FCR), protein efficiency ratio (PER), specific growth rate (SGR) and protein productive value (PPV). Statistical analysis of live weight gain, FCR, PER, SGR and PPV reflected significant differences among treatments. Live weight gain and conversion efficiencies were best with isoleucine at 15.0 g kg−1 of diet. Live weight gain, FCR, PER, SGR and PPV data were also analysed using second‐degree polynomial regression analysis to obtain more accurate isoleucine requirement estimate which was found to be at 15.9, 15.3, 15.2, 15.8 and 15.7 g kg−1 of dry diet, corresponding to 39.8, 38.3, 38.0, 39.5 and 39.3 g kg−1 of dietary protein respectively. Based on the quadratic regression analysis of the live weight gain, FCR, PER, SGR and PPV, the optimum level of isoleucine for fingerling L. rohita is in the range of 15.2–15.9 g kg−1 of dry diet, corresponding to 38.0–39.8 g kg−1 of dietary protein. Maximum body protein, minimum moisture and fat were noted at 15.0 g kg−1 of dietary isoleucine while the body ash remained constant among all the treatment levels. No mortality was recorded during the duration of the experiment.  相似文献   

15.
The effects of feeding three natural frozen diets, grass shrimp (Palaemonetes sp.), crayfish (Procambarus clarkii) and fish (Sardina pilchardus) and two semi-humid artificial diets (based on fish powder) to mature cuttlefish, Sepia officinalis, were analysed. Growth and feeding rates (GR and FR, % BW day−1), food conversions (FC, %), and total protein and lipid composition of the diets were determined. Digestive gland to body weight ratio and absorption efficiency were calculated for each diet. Cuttlefish fed shrimp and crayfish grew larger (1.5 and 1.1% BW day−1, respectively) compared to the other diets. Shrimp promoted the highest FC, followed by crayfish, and sardine. The highest FR was obtained for cuttlefish fed crayfish (8.4% BW day−1). Although both artificial diets were accepted, none produced growth. A positive correlation (r = 0.96) between cuttlefish ingestion rate and digestive gland weight was obtained. Some cannibalism occurred among cuttlefish fed the artificial diets during the last week of the experiment. According to the results obtained, P. clarkii could be used as an alternative prey to shrimp for rearing adult mature (>50 g) S. officinalis.  相似文献   

16.
We investigated the usefulness of acceleration loggers in aquaculture by examining net-cage use and metabolic rates in red sea bream, Pagrus major. First, the fish’s metabolic rate (mg O2 kg−1 min−1) was measured with the logger in a swim tunnel at designated water velocities. We found that metabolic rate could be expressed by using a linear regression model of the activity rate index (unitless min−1) derived from acceleration data. Using this equation, the field metabolic rates of three fish in a net cage were monitored and were estimated at 14.1–15.0 kcal kg−1 day−1. The results suggested that 15–19% of energy from satiation feeding ration was consumed for metabolism and activity in the net cage. The loggers showed orderly net-cage use by the fish. Tagged individuals used the whole cage from surface to bottom, but individual fish that preferred the surface area rarely used the bottom, and vice versa. Metabolic rate increased significantly with distance of the fish from their preferred depths. The logger provided information on the physiological and behavioral responses of fish in a given breeding system, and its use should contribute to the design of practical aquaculture systems.  相似文献   

17.
The effects of feeding rates on growth, feed conversion, protein deposition and carcass quality of fingerling Catla catla (3.61 ± 0.03 cm; 0.71 ± 0.04 g) were worked out by conducting a 16‐week feeding trial. Fingerlings were fed with a casein‐gelatin‐based purified diet (40% crude protein CP; 14.95 MJ kg?1 digestible energy; DE) at 1%, 2%, 3%, 4%, 5%, 6% and 7% body weight per day. The absolute weight gain (AWG; 10.50 g fish?1) and feed conversion ratio (FCR; 1.41) were highest at the feeding rate of 5% body weight per day. However, protein gain (PG; 0.36 g fish?1) and carcass protein content attained the maximum values at 4% BW day?1. Quadratic regression analyses of AWG g fish?1 and PG g fish?1 at 95% maximum response indicated that these parameters attained the best values at 4.19% and 3.81% BW day?1. On the basis of the above results it is recommended that the feeding rate in the range of 3.81–4.19% BW day?1 with a P:E ratio of 26.69–27.74 mg protein MJ?1 DE is optimum for maximum growth, efficient feed conversion and best carcass quality in fingerling C. catla.  相似文献   

18.
An 15 week two set of feeding experiments were conducted to determine the dietary niacin requirement of Indian major carp fingerlings Labeo rohita and Cirrhinus mrigala, using casein gelatin–based diet. In both experiments, six isonitrogenous (40%) and isoenergetic (15.35 kJ g−1) test diet, with graded levels of niacin (0–50 mg kg−1 dry diet) in gradation of 10 mg kg−1 dry diet, were formulated. In first experiment, fingerling of L. rohita (4.20 ± 1.22 cm; 0.632 ± 0.67 gm) were randomly stocked, in triplicate groups, in 55-L indoor polyvinyl flow-through system (1.5 L min−1) and fed experimental diet at 0800 and 1600 h. Maximum live weight gain (1214%), feed conversion ratio (1.55) and protein efficiency ratio (1.60) were recorded at 30 mg dietary niacin diet. In second experiment, C. mrigala (4.50 ± 1.25 cm, 0.665 ± 0.88) were stocked in same setup. At the end of experiments, maximum live weight gain (1248%), FCR (1.47) and PER (1.70) occurred at 30 mg dietary niacin diet. However, the weight gain, FCR and PER data were analyzed by polynomial regression analysis indicating the requirement of niacin for L. rohita at 36.69, 33.06 and 32.0 mg kg−1, respectively, and for C. mrigala at 35.19, 28.69 and 27.70 mg kg−1 of dry diet, respectively. Whole body composition also showed significant (P < 0.05) differences among each other. On the basis of regression analysis of growth data, it is recommended that the diet for fingerlings should contain niacin at 33 and 30 mg kg−1 dry diet for L. rohita and C. mrigala, respectively.  相似文献   

19.
Abstract. Carp feeding trials were conducted to assess dietary effectiveness in relation to growth rate, cost, conversion ratio, logistics and the contribution of natural pond foods. Overall, trout pellets containing 40% protein were found to be the most effective. In laboratory trials this diet fed at 5% bwd?1 produced a food conversion ratio (FCR) of 1·99. Another trout food containing 47% protein, fed at the same ration, had a superior FCR and specific growth rate (SGR) but proved more costly because of a poorer protein efficiency ratio (PER). Optimum ration size declined with increasing body size. The mammalian herbivore diets, with higher carbohydrate but low lipid levels, were cheaper to purchase but had poorer SGRs and FCRs. Some evidence of protein sparing occurred with low levels of activated sludge substitution but condition and growth rate declined above the 20% substitution level probably due to increasing heavy metal concentrations. In the pond trials extensive production levels of 300–350 kg ha?1year?1 arose from zooplankton consumption. The associated SGR was around 1·70 and the FCR was calculated at 1·64 (dw) assuming 47% utilization of the zooplankton. Higher levels of production (1400–2200 kg ha?1year?1) occurred with supplementary feeding with SGRs at 1·78–2·35. The contribution of natural food was slight in intensive rearing. An FCR of 2·01 was found with trout pellets and an estimated 6·3 with barley.  相似文献   

20.
Two feeding experiments were conducted to quantify the total sulphur amino acid (TSAA) requirement and replacement value of cystine for methionine for fingerling Labeo rohita. In Experiment I, isonitrogenous (380 g kg?1 CP) and isocaloric (17.90 kJ g?1 GE) amino acid test diets with graded levels of methionine (4, 6, 8, 10, 12, 14 g kg?1 dry diet) and 0.4 g kg?1 cystine were fed to fish (4.62 ± 0.2 cm; 0.66 ± 0.1 g) and methionine requirement determined by analysing absolute weight gain (AWG) (5.48), feed conversion ratio (FCR) (1.26), protein retention efficiency (PRE%) (39%) and energy retention efficiency (ERE%) (85%) data which were best at 10 g kg?1 methionine of dry diet. In Experiment II, six diets with different ratios of L‐cystine and L‐methionine on equimolar sulphur basis were fed to fish (4.71 ± 0.1 cm; 0.69 ± 0.2 g) under identical conditions. Maximum AWG (5.58), best FCR (1.24), PRE (41%) and ERE (86%) in fish fed Diet IV indicated cystine replacement value to be 40%. On the basis of the broken‐line and second‐degree polynomial regression analyses of results obtained in Experiments I and II, it is concluded that inclusion of TSAA in the range of 25.2–31.31 g kg?1 of protein is optimum of which 33–39% could be spared by cystine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号