首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A knowledge of food habits is important for evaluating interspecific competition and predation between sympatric species. Data on food availability should be combined with data on food habits in this type of survey. Although food availability differs between habitats or seasons, these differences had never been considered in previous studies. We conducted year-round field surveys throughout a stream to compare the food habits of an introduced salmonid, brown trout Salmo trutta, and a native salmonid, masu salmon Oncorhynchus masou. Masu salmon did not constitute a large proportion of the diet of brown trout and vice versa. Thus, predation will likely not affect the population level of either species. The dietary overlap between brown trout and masu salmon varied depending on the presence of Gammaridae and terrestrial invertebrates; i.e., the intensity of interspecific competition for food resources may differ according to food conditions.  相似文献   

2.
Competitive interactions with non‐native species can have negative impacts on the conservation of native species, resulting in chronic stress and reduced survival. Here, juvenile Atlantic salmon (Salmo salar) from two allopatric populations (Sebago and LaHave) that are being used for reintroduction into Lake Ontario were placed into semi‐natural stream tanks with four non‐native salmonid competitors that are established in Ontario streams: brown trout (S. trutta), rainbow trout (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Brown trout and rainbow trout reduced the survival and fitness‐related traits of Atlantic salmon, whereas Chinook salmon and coho salmon had no impact on these traits. These data support theories on ecological niche overlap and link differences in observed aggression levels with competitive outcomes. Measurements of circulating hormones indicated that the Atlantic salmon were not chronically stressed nor had a change in social status at the 10‐month time point in the semi‐natural stream tanks. Additionally, the Sebago population was better able to coexist with the non‐native salmonids than the LaHave population. Certain populations of Atlantic salmon may thus be more suitable for some environments of the juvenile stream phase for the reintroduction into Lake Ontario.  相似文献   

3.
Although non‐native species can sometimes threaten the value of ecosystem services, their presence can contribute to the benefits derived from the environment. In the Great Lakes, non‐native brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) support substantial recreational fisheries. With current efforts underway to restore once‐native Atlantic salmon (Salmo salar) to Lake Ontario, there is some concern that Atlantic salmon will impede non‐native contributions to the recreational fishery because Atlantic salmon exhibit niche overlap with brown trout and rainbow trout, particularly during the juvenile life stage. We therefore examined competition and growth of juvenile Atlantic salmon, brown trout and rainbow trout in semi‐natural streams. We found that brown trout were the most dominant and had the greatest growth rate regardless of what other species were present. Rainbow trout were more dominant than Atlantic salmon and consumed the most food of the three species. However, in the presence of brown trout, rainbow trout fed less frequently and exhibited negative growth as compared to when the rainbow trout were present with only Atlantic salmon. These data suggest that, outside of density‐dependent effects, Atlantic salmon will not impact stream production of brown trout and rainbow trout.  相似文献   

4.
The non‐native rainbow trout (Oncorhynchus mykiss) has been introduced worldwide for angling purposes and has established self‐reproducing populations in many parts of the world. Introduced rainbow trout often have negative effects on the native salmonid species, ranging from decrease abundance, growth and survival, to their local extinction. Assessing the effects of introduced rainbow trout on the native species is thus crucial to better set up conservation programmes. In this study, we investigated the effects of non‐native rainbow trout on the diet of native marble trout (Salmo marmoratus) living in the Idrijca River (Slovenia). An impassable waterfall separates the stream in two sectors only a few hundred metres apart: a downstream sector (treatment) in which marble trout live in sympatry (MTs) with rainbow trout (RTs) and an upstream sector (control) in which marble trout live in allopatry (MTa). Specifically, we investigated using stable isotopes the effects of rainbow trout on dietary niche, diet composition, body condition, and lipid content of marble trout. We found dietary niche expansion and niche shift in marble trout living in sympatry with rainbow trout. Compared to MTa, MTs had higher piscivory rate and showed higher body condition and prereproduction lipid content. Our results indicate that the presence of rainbow trout did not have negative effects on marble trout diet and condition and that changes in dietary niche of marble trout are likely to be an adaptive response to the presence of rainbow trout, and further research is needed to better understand.  相似文献   

5.
Brown trout Salmo trutta were first introduced into Japan in 1892, and they currently naturally reproduce in several rivers in Honshu and Hokkaido, Japan. Although negative impacts of brown trout introductions on native salmonid fishes have been documented in some Hokkaido rivers, studies of ecological interactions between brown trout and native salmonid fishes on Honshu are limited. In this study, we describe the longitudinal distribution patterns of introduced brown trout, white-spotted charr Salvelinus leucomaenis and masu salmon Oncorhynchus masou in a 4 km stretch of a stream in central Honshu. Underwater observations were conducted in all pools within upstream, middle and downstream sections (190–400 m in length) of this stretch in order to estimate the densities of these species. Only white-spotted charr was observed in the upstream section, while brown trout and masu salmon were observed in the middle and downstream sections. Masu salmon densities, however, were much lower than brown trout densities. In the downstream section, white-spotted charr was absent. These results are consistent with results from previous studies of Hokkaido rivers, where it was found that white-spotted charr in low-gradient areas tend to be displaced by brown trout.  相似文献   

6.
Competition with non‐native species may impede the restoration of native species, but differences in competitive abilities among intraspecific native populations may make some populations more suitable for reintroduction than others. Here, juvenile Atlantic salmon (Salmo salar) from two allopatric populations (LaHave and Sebago) being used for reintroduction into Lake Ontario were placed into two natural stream sites differing in the presence of ecologically similar rainbow trout (Oncorhynchus mykiss). We assessed the effects of competition in the natural streams on fitness‐related traits and habitat use of the Atlantic salmon. We then compared these effects to those observed in artificial streams from a previous study. Atlantic salmon in natural streams had reduced fitness‐related traits that were associated with suboptimal microhabitats in the presence of rainbow trout, but utilised optimal microhabitats in their absence. In the presence of rainbow trout, the two Atlantic salmon populations exhibited comparable recapture proportions to each other, but the individuals from the Sebago population had better performance (body size and condition) than those from the LaHave population. Responses of both Atlantic salmon populations to competition with rainbow trout were generally similar in both direction and magnitude when compared to results from the artificial stream study. The combined results suggest that native species restoration efforts should be focused on candidate populations that are ecologically suitable to reintroduction environments, as well as on suitable habitats that do not contain exotic competitors. Moreover, this study highlights the value of controlled experiments in artificial environments for predicting fitness‐related performance in natural environments.  相似文献   

7.
Diet interactions between native and non‐native fishes may influence the establishment of native species within their historical range (i.e., reintroduction). Therefore, we illustrated the food web structure of and followed the transition of the federally endangered humpback chub Gila cypha into a novel food web following translocation and determined the potential for a non‐native species, rainbow trout Oncorhynchus mykiss, to influence translocation success. Humpback chub and rainbow trout used resources high in the food web and assimilated similar proportions of native fishes, suggesting non‐native rainbow trout may occupy an ecological role similar to humpback chub. Subsequently, humpback chub may be well suited to colonise tributaries because of their ability to consume resources high in the food web. Additionally, diet partitioning may occur between all members of the fish community as indicated by separation in trophic niche space and little trophic overlap; although all species, particularly bluehead sucker Catostomus discobolus, used a broad range of food resources. Rainbow trout stomach content analysis corroborated stable isotope analysis and suggested rainbow trout diet consisted of aquatic and terrestrial macroinvertebrates, while larger rainbow trout (>120 mm total length) consumed a greater proportion of fish (incidence of piscivory = 5.3%). Trophic interactions may reveal an underutilized niche space or biotic resistance to the establishment of translocated native fishes. Continued translocation of humpback chub into tributaries appears to be one option for conservation. However, successful establishment of humpback chub may depend on continued removal of non‐native trout, increasing availability of diet sources at higher trophic levels.  相似文献   

8.
Many species of salmonids have been stocked into waters outside of their native range. The invasiveness and impact of these species on native species varies depending on their biological traits, and on environmental conditions, such as climate. In Japan, rainbow trout and brown trout, both listed in 100 of the world's worst invasive alien species by the International Union for Conservation of Nature, occur as non-native species. The invasiveness of these two species is thought to be related to seasonal flooding, given flood waters can physically damage fry and prevent population establishment. Rainbow trout have successfully invaded waters in Hokkaido, northern Japan, where the likelihood of flooding is low between June and July, when their fry emerge, but successful invasions are rare in regions south of Hokkaido. Brown trout, however, have successfully invaded waters not only in Hokkaido, but also other regions. Since brown trout have a similar life history to the native white-spotted charr and masu salmon, with fry emerging before the flood season, they are more suited to the Japanese climate than Rainbow trout. Rainbow and brown trout interact with native species in various ways, but a common outcome of these interactions is the displacement of native charr species. Legal regulations of non-native salmonids should be based on understandings of the ecological traits of each invasive species and regional impacts on native species. Given the ongoing nature of climate change, the nature and extent of the effects of rainbow and brown trout on native species might also change.  相似文献   

9.
Growth rates of Atlantic salmon, pink salmon, Arctic char, sea trout and rainbow trout were compared under Norwegian farming conditions. During the juvenile, freshwater period, growth was fastest in pink salmon, followed by rainbow trout and Arctic char. Freshwater growth of sea trout and, especially, Atlantic salmon, was slow. After transfer of smolts or fingerling to sea water, Arctic char failed to survive the autumn. Sea water growth of sea trout was slow, but the three species, rainbow trout, Atlantic salmon and pink salmon, all grew rapidly through all seasons. When in sea water, rainbow trout and pink salmon were regularly attacked by vibriosis, while Atlantic salmon were rarely attacked, and sea trout never. It is concluded that, for commercial farming in Norway, rainbow trout are of value for production of fish of any size up to 3–4 kg, and pink salmon for production of small fish of 0.5–1.5 kg. Atlantic salmon is the only species suitable for production of a very large salmonid, i.e., more than 4–5 kg.  相似文献   

10.
Abstract  The diurnal winter habitat of three species of juvenile salmonids was examined in a tributary of Skaneateles Lake, NY to compare habitat differences among species and to determine if species/age classes were selecting specific habitats. A total of 792 observations were made on the depth, velocity, substrate and cover (amount and type) used by sympatric subyearling Atlantic salmon, subyearling brown trout and subyearling and yearling rainbow trout. Subyearling Atlantic salmon occurred in shallower areas with faster velocities and less cover than the other salmonid groups. Subyearling salmon was also the only group associated with substrate of a size larger than the average size substrate in the study reach during both winters. Subyearling brown trout exhibited a preference for vegetative cover. Compared with available habitat, yearling rainbow trout were the most selective in their habitat use. All salmonid groups were associated with more substrate cover in 2002 under high flow conditions. Differences in the winter habitat use of these salmonid groups have important management implications in terms of both habitat protection and habitat enhancement.  相似文献   

11.
Plasma levels of insulin in rainbow trout,Oncorhynchus mykiss, Atlantic salmon,Salmo salar, and Pacific coho salmon,Oncorhynchus kisutch and plasma circulating levels of glucagon and glucagon-like peptide, in rainbow trout and Atlantic salmon, were measured by homologous radioimmunoassays. Hormonal levels were compared against the average body weight of the same group of fish. Plasma insulin levels were significantly correlated (r=0.56, 0.46 and 0.42 respectively) with body weight in all three salmonid species. Moreover, rainbow trout from fast-growing families had significantly higher (p<0.005) plasma insulin levels than did fish from slow-growing families. Plasma titres of glucagon and glucagon-like peptide were always lower than insulin titres and did not correlate with body weight.Reported in part at Satellite Symposium on Applications of Comparative Endocrinology to Fish Culture, Almunecar, Spain (Sundby, 1989).  相似文献   

12.
Pilger TJ, Gido KB, Propst DL. Diet and trophic niche overlap of native and nonnative fishes in the Gila River, USA: implications for native fish conservation. Ecology of Freshwater Fish 2010: 19: 300–321. © 2010 John Wiley & Sons A/S Abstract –  The upper Gila River basin is one of the few unimpounded drainage basins west of the Continental Divide, and as such is a stronghold for endemic fishes in the region. Nevertheless, multiple nonindigenous fishes potentially threaten the persistence of native fishes, and little is known of the trophic ecology of either native or nonnative fishes in this system. Gut contents and stable isotopes (13C and 15N) were used to identify trophic relationships, trophic niche overlap and evaluate potential interactions among native and nonnative fishes. Both native and nonnative fishes fed across multiple trophic levels. In general, adult native suckers had lower 15N signatures and consumed more algae and detritus than smaller native fish, including juvenile suckers. Adult nonnative smallmouth bass (Micropterus dolomieu), yellow bullhead (Ameiurus natalis) and two species of trout preyed on small‐bodied fishes and predaceous aquatic invertebrates leading to significantly higher trophic positions than small and large‐bodied native fishes. Thus, the presence of these nonnative fishes extended community food‐chain lengths by foraging at higher trophic levels. Although predation on juvenile native fishes might threaten persistence of native fishes, the high degree of omnivory suggests that impacts of nonnative predators may be lessened and dependent on environmental variability.  相似文献   

13.
Abstract –  We studied the impact of two exotic salmonid species (brook trout, Salvelinus fontinalis and rainbow trout, Oncorhynchus mykiss ) on native brown trout ( Salmo trutta fario ) habitat, growth and survival. Habitat selection and vertical distribution between young-of-the-year of the three species were examined in a stream aquarium under different sympatric and allopatric combinations. In addition, similar species combinations were introduced in a Pyrenean mountain stream (southwest France) in order to extend laboratory results to growth and apparent survival. Both laboratory and field results indicated that rainbow trout significantly affected native brown trout habitat selection and apparent survival. On the contrary, brown trout habitat, growth and apparent survival were hardly affected by brook trout. These results support the idea that rainbow trout negatively influence native brown trout, and that competition could influence the outcome of fish biological invasions in freshwater ecosystems.  相似文献   

14.
Ceratomyxa shasta is a myxozoan parasite of salmonid fish. In natural communities, distinct genotypes of the parasite are associated with different salmonid hosts. To test the hypothesis that genotypes of C. shasta cause differential mortality, the polychaete host was experimentally infected with different parasite genotypes. Genotype I was obtained from Chinook salmon, Oncorhynchus tshawytscha, and genotype II from either coho salmon, O. kisutch, or rainbow trout, O. mykiss, We then challenged four salmonid strains: Chinook and coho salmon that occur in sympatry with the parasite and allopatric Chinook salmon and rainbow trout. Parasite genotype I caused mortality only in Chinook strains, although mortality in the allopatric strain also occurred from exposure to genotype II. A second experiment demonstrated that genotype II could be separated into two biotypes based on differential mortality in rainbow trout and coho salmon. These differential patterns of mortality as a result of infection by certain genotypes of C. shasta support field observations and suggest a co‐evolutionary relationship between these parasites and their hosts.  相似文献   

15.
MORTADA M A  HUSSEIN  KISHIO  HATAI 《Fisheries Science》2002,68(5):1067-1072
The present study was conducted to evaluate the pathogenicity and pathology of Saprolegnia salmonis NJM 9851 and Saprolegnia parasitica NJM 9868, isolated from outbreaks of saprolegniosis, against the immature stages of five species of salmonids. The cumulative mortalities of the tested fish groups that were exposed to 2 × 10 5  spore/L concentrations of S. salmonis NJM 9851 were 90% for brown trout, 93.3% for sockeye salmon and 100% for rainbow tout, masu salmon, and Japanese char. In contrast, all salmonid species exposed to 2 × 10 5  spore/L concentrations of S. parasitica NJM 9868 experienced cumulative mortalities of 100%. The histopathological changes of the saprolegniosis lesions found in all sites of infection were loss of the epidermis, edema of the hypodermis and different degrees of degenerative changes in the underlying musculature. It is clear from our results that S. salmonis NJM 9851 and S. parasitica NJM 9868 are highly pathogenic species to five species of salmonid fishes  相似文献   

16.
Abstract– The eight papers resulting from the Ecological Genetics session of the symposium Ecology of Stream Fish: State of the Art and Future Prospects (Luarca, Spain, April 1998) describe the use of molecular genetic markers to investigate questions of population distinctness, interbreeding, and adaptation in five salmonid species. Widely contrasting ecological distinctions described in four species indigenous to western North America [steelhead (rainbow) trout, sockeye salmon, pink salmon and bull trout] reflect past natural and human-induced activities, serving to guide future management and conservation actions through optimizing adaptive opportunities, and preventing genetic losses through localized extinctions. Studies of brown trout contrast widespread introgressions from exogenous hatchery introductions that threaten the integrity of native Spanish populations with a reduced threat based on use of indigenous fish in Portuguese hatcheries. A 9-year study of natural progeny of two genetically distinct Swedish brown trout populations introduced to a previously trout-free area identifies apparent local adaptations as a model to guide other translocations.  相似文献   

17.
18.
Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea) is the causative agent of proliferative kidney disease (PKD), which affects both wild and farmed salmonid fish. The objective of this study was to outline differences in susceptibility to PKD in different salmonid species, hybrids and breeding lineages. Susceptibility to T. bryosalmonae infection was established based on cumulative mortality, pathological findings and detection of T. bryosalmonae in the kidney using immunohistochemistry and molecular methods. Determination of pure and hybrid individuals of different species in the genus Salvelinus, and dissimilarity of rainbow trout lineages, was performed using traditional polymerase chain reaction (PCR) and microsatellite analyses. Rainbow trout displayed higher disease severity compared with brook trout and Alsatian charr. Moreover, the results indicated differences in infection susceptibility, not only among different salmonid species but also among different lineages of charr and rainbow trout. Our study indicated that some salmonid species and even different lineages of the same species are more suitable for farming under PKD pressure.  相似文献   

19.
A highly specific radioimmunoassay was developed for N-terminal peptide of salmonid proopiocortin using a guinea pig antiserum to the chum salmon peptide (sNPP 1). Since sNPP I has no tyrosine residue nor free N-terminal amino group, a mixture of minor components of sNPP 1, which have extensions of H-Val-LysGly- and H-Lys-Gly- at the N-terminus, were iodinated by the lactoperoxidase method after incorporation of 3-(phydroxyphenyl)-propionate to the terminal amino groups. Plasma and pituitary extracts of several salmonid species showed parallel displacement to the standard hormone. Samples from carp, goldfish, tilapia, and eel, as well as the plasma of hypophysectomized rainbow trout, showed no crossreactivity. Proopiocortin-related hormones isolated from the chum salmon pituitary, including melanotropins, endorphins, corticotropin-like intermediate lobe peptides, and gonadotropin and prolactin showed negligible cross-reactivity. NPP contents in the pars intermedia of rainbow trout and chum salmon were 10 to 15 times greater than those in the pars distalis. Plasma levels of NPP in the mature chum salmon caught in the bay were about 50ng/ml. Plasma NPP levels in the mature chum salmon of both sexes decreased after transfer from seawater to fresh water. Plasma cortisol showed a concomitant change with NPP, thus supporting previous findings that NPP modulates corticotropin action on the trout interrenal.  相似文献   

20.
Pacific salmon and trout (Oncorhynchus spp., Salmonidae) of the Puget Sound region of Washington State, USA, have experienced recent and longer‐term (multidecadal) variability in abundance while supporting robust fisheries. As part of the post‐season salmon management process, population‐specific estimates of total adult abundance to Puget Sound (Strait of Juan de Fuca) for pink (O. gorbuscha), chum (O. keta), coho (O. kisutch), sockeye (O. nerka), and Chinook (O. tshawytscha) salmon and steelhead trout (O. mykiss) are calculated annually. We compiled annual estimates of body mass, abundance and survival of hatchery‐ and naturally produced salmon from 1970 to 2015 to compare spatial and temporal patterns across species. Average weights of adult salmon and steelhead returning to Puget Sound, with the exception of coho salmon, have decreased since the 1970s. Temporal trends in abundance, survival and productivity varied by species and origin (hatchery vs. naturally produced). Generally, abundance and survival rates of natural‐origin species decreased whereas those of hatchery‐produced species did not, which is in contrast with other studies' general conclusions of decreasing survival among Puget Sound salmonids. Species diversity has decreased in recent years, with salmonids that rely on a short freshwater rearing phase in the natural environment (hatchery‐produced fish and naturally produced pink and chum) representing >90% of total returns in most years. This new information reveals patterns of body size, abundance, survival and productivity across species, life history and rearing type over the past 45 years and, in doing so, demonstrates the strength in multidecadal, multifactor time series to critically evaluate salmonid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号