首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
选取250QJ80型深井离心泵作为研究对象,借助数值模拟和试验研究的方法,研究不同级数时深井泵性能的变化规律,并通过分析内部流场探究不同级数深井离心泵性能变化规律的本质原因.采用ANSYS-CFX 17.0软件对该深井离心泵模型在单级、两级以及三级时的性能分别进行了数值预测.对3组模型分别进行计算域建模,结构化网格划分,进而基于标准k-ε湍流模型和标准壁面函数进行多工况数值模拟,获得级数不同时深井离心泵的性能预测值,并将数值预测结果与试验结果进行对比分析.结果表明:深井离心泵级数的变化并不会对某一特定级数的性能造成影响,两级与三级离心泵首级扬程与效率高于其后各级,其后各级的扬程与效率差异不大.造成这些相似性与差异性的主要原因是:深井泵首级叶轮进口处的介质为无预旋入流,而当级数大于等于2级时,其后各级叶轮进口处的介质均存在一定的旋转分量.  相似文献   

2.
为发展具有自主知识产权的高性能多级中开式离心泵,根据已有参数要求,对多级中开式离心泵的结构及水力模型进行了设计.水泵选用两侧吸入中间压出的结构形式,叶轮左右对称分布.首级叶轮为两侧单吸,末级选用双吸叶轮,压出室采用双蜗壳.利用Pro/E软件建立流道模型,借助Fluent软件,基于N—S方程和标准k~ε湍流模型,采用SIMPLE算法,对内部流场进行数值模拟,得到水泵各级叶轮的相对速度及静压分布.并在多工况下对多级中开式离心泵流场进行稳态数值预测,着重选取三种工况(标准工况、小流量工况及大流量工况)对多级泵各级叶轮的静压及相对速度进行对比分析.然后,在标准工况下对泵进行瞬态模拟,分析各级叶轮在不同时刻静压分布.数值模拟结果表明,泵水力模型设计合理,在标准工况下效率达到88%,性能出众.最后经实验验证表明,模拟结果与实验结果相符,水泵达到设计要求.  相似文献   

3.
简述了基于流场计算法预测离心泵能量性能的研究现状。为了详细研究各种基于流场计算进行离心泵性能预测方法的精度,采用RANS定常数值计算、RANS非定常数值计算和大涡模拟分别对2台不同比转速的离心泵设计工况下的内部流场进行了数值模拟。根据数值模拟结果预测了2台离心泵的外特性并将各模型扬程和效率的预测结果与试验结果做了详细比较。同时对非定常流场计算所需要的周期数进行了研究。研究结果表明,离心泵非定常数值计算至少要进行5个周期的计算才能获得稳定的预测结果;离心泵能量性能的脉动周期与叶频相同;RANS非定常数值计算与I.ES模拟的外特性平均预测精度基本相同,都高于RANS定常数值计算的外特性预测精度。  相似文献   

4.
为提高现有超低比转数多级离心泵水力性能,基于ANSYS CFX软件,对多级离心泵内部全流场定常流动进行数值模拟,通过定义叶轮、泵腔、导叶扬程及效率,分别分析叶轮、泵腔、导叶内能量转换与流动损失情况,得到影响多级离心泵性能的主要因素为叶轮与导叶的匹配,次要因素为叶轮内的流动损失.提出取导叶喉部进口绝对速度为叶轮出口绝对速度的1/2计算导叶喉部面积,并逐步优化设计一流道式导叶,通过调整叶片型线消除叶轮流道内旋涡.优化后的叶轮与导叶各处速度变化均匀缓慢,大大降低了流动损失.将性能较优的模型进行制造和测试,测试结果表明,优化后方案的额定工况下扬程提高8.1 m,效率提高3.2%,达到了国家标准,取得了较好的优化效果.将数值模拟结果与试验结果进行对比,分析二者的差异,为进一步优化改进超低比转数多级泵的水力设计方法提供参考.  相似文献   

5.
通过数值模拟和试验,研究了涡动情况下偏心距和涡动频率比对离心泵内外特性的影响。在给定一系列转子动力学参数条件下,采用RNG k-ε湍流模型对包含前后泵腔在内的全流场进行数值模拟,分析了偏心距对离心泵外特性的影响和涡动频率比对离心泵内部流场的影响,研究了离心泵内部流体力的分布情况以及偏心距和涡动频率比对离心泵内部流体力的影响。研究结果表明:随着偏心距的增大,泵高效区范围变窄;流体力的法向分力Fn、切向分力Ft均与涡动频率比ω/Ω近似呈二次函数关系,这种二次函数关系与偏心距大小相关;叶轮受到的流体力主要来源于叶轮内部流体,且叶轮内部流体周向压力分布不均。对于离心泵来说,当ω/Ω>0时,叶轮内的旋涡较少,水力损失较小,对涡动效果有抑制作用;当ω/Ω<0时,叶轮内旋涡较多,水力损失较大,对涡动效果有促进作用。  相似文献   

6.
离心泵全流场与非全流场数值计算   总被引:3,自引:0,他引:3  
董亮  刘厚林  谈明高  王凯  王勇 《排灌机械》2012,30(3):274-278
为研究不同计算域对离心泵数值计算结果的影响,采用虚拟分块网格划分技术和标准k-ε湍流模型,对5台不同比转数离心泵设计工况下的内部流动进行了三维定常全流场与非全流场数值模拟.基于全流场和非全流场数值计算结果分别进行了性能预测和内流场特征分析,并将性能预测结果与试验结果进行了对比分析.结果表明:不同计算域对数值计算结果影响显著;全流场数值模拟性能预测精度高于非全流场数值模拟,扬程预测精度平均高1.54%,效率预测精度平均高1.67%;流场分析发现两种计算方法得到叶轮内的静压分布基本一致,而蜗壳内静压分布存在着明显差异;全流场数值计算得到的叶轮与蜗壳的间隙速度分布呈现层状分布,而非全流场数值计算得到的结果呈三角形分布;由于全流场计算区域考虑叶轮进口口环、前后盖板间隙流的影响,其数值计算得到的蜗壳断面内二次流分布并不完全对称.  相似文献   

7.
前置导叶预旋调节离心泵性能的数值预测与试验   总被引:3,自引:0,他引:3  
在分析叶轮进口流态的基础上,给出了一种用于调节离心泵工况点的前置导叶水力模型设计方法,目的是通过减小离心泵在变工况条件下叶轮进口的冲击损失和回流损失来改善在非设计工况的水力性能,拓宽高效运行范围.基于SIMPLEC算法,通过数值求解Reynolds平均Navier-Stokes方程和RNG k-ε湍流模型方程,模拟了不同预旋角度下前置导叶离心泵全流道的三维湍流流场,外特性计算结果和试验数据吻合较好.在此基础上,分析了离心泵前置导叶预旋调节的基本规律及调节机理.  相似文献   

8.
运用CFX流动软件的滑移网格和标准的λκ-ε湍流模型对工业中常用的DL型多级冲压离心泵整级进行了全三维瞬态流场的数值模拟,分析泵内叶轮与导叶间的动静干扰问题.滑移网格分别设置在多级离心泵叶轮出口、固定导叶入口与泵内流体之问的交互界面,对每个时间步求解流动方程.在任一个叶轮旋转周期内,分析叶轮入口和出口的总压值出现脉动信号频率与叶轮叶片数的关系.分析了叶轮入口和出口处总压波动的幅度.该三维非稳态模拟结果为多级冲压离心泵的水力优化设计提供了依据.  相似文献   

9.
基于结构化网格的离心泵全流场数值模拟   总被引:7,自引:0,他引:7  
采用计算流体力学(CFD)方法对全流场模型下离心泵的性能进行了分析。阐述了离心泵计算区域的拓扑块生成和结构化网格划分方法;分析了全流场模型和非全流场模型的数值模拟结果,并比较两者产生差异的原因。证实了腔体的存在对模拟结果的影响,得到的全流场数值模拟性能预测精度优于非全流场数值模拟,其流态分布也存在显著的差别,并获得了口环泄漏量与离心泵流量和扬程的关系。将离心泵全流场模型的模拟结果与试验值进行了对比:设计工况点(Qd),离心泵的扬程相对误差为0.79%,效率相对误差为0.9%,模拟结果和试验结果比较接近;在0.2Qd时,扬程相对误差为6.24%,效率相对误差为9.61%,极小流量点的数值模拟精度有待提高。  相似文献   

10.
为了研究叶片厚度对低比转数离心泵性能的影响,选取一比转数为48的离心泵为研究对象.在离心泵其他几何参数给定的条件下,通过改变圆柱形叶片厚度,构造了5种不同叶片厚度的叶轮.基于标准k-ε湍流模型,采用SIMPLE算法,在6种不同工况下分别对其进行全流场数值模拟,对比分析了叶片厚度对泵的外特性及内部流场的影响,得出了叶片厚度对泵水力性能的影响规律.结果表明:叶片厚度在一定范围内,随着叶片厚度的增大,泵的最优工况点向小流量偏移,最高效率略有提高;同时随着叶片厚度的增加,泵在设计工况下运行时的湍动能损失不断增大;在满足叶片结构强度的前提下,选取合理的叶片厚度,可确保离心泵具有较好的水力性能.  相似文献   

11.
为了掌握导叶内部的真实流动形态,完善导叶水力设计方法,设计了一个独特的PIV试验台,对向心径向导叶内部流场进行了PIV试验测量.试验泵段取自多级深井离心泵的一级,通过2个高强度水润滑轴承支撑起整个泵轴,借助45°安放的镜面对流场图像进行折射.通过相平均方法获得了不同工况下导叶中截面的速度场分布.结果表明:在设计流量附近,导叶内部流动较为稳定规整;在大流量下,由于导叶进口过流面积有限,液体流动受阻,产生了较大的冲击损失;在小流量下,流道内产生了流动分离和旋涡,旋涡的强度随着流量的减小而逐渐加强,而且涡核的位置也由靠近导叶叶片吸力面逐渐向导叶流道中部移动;导叶进口处产生较大的水力损失,导叶进口安放角对泵性能影响较大;为改善小流量工况下的流场,导叶流道中部的过流面积需要进一步调整.  相似文献   

12.
为研究2种不同压出室下叶轮切割对离心泵性能的影响,以及单级单个叶轮切割与多级下单个叶轮切割的差异,基于N-S方程、标准k-ε湍流模型和SIMPLE算法对MD-280-43×6型多级离心清水泵进行三维数值模拟.计算结果表明:以单级单个叶轮为切割目标时,随着切割量增大,螺旋形压出室的水力效率变化趋势比径向导叶式压出室的变化趋势更为明显,压水室水力损失每叶轮2%切割量,损失平均增长分别为0.360,0.193 m,2种压出室内部动压分布及对叶轮所产生径向力的变化趋势有明显差异;以多级下单个叶轮切割与单级单个叶轮切割的对比为目标时,对于径向导叶式压出室离心泵和螺旋形压出室离心泵,其水力效率、扬程、内部湍动能分布与各种单级单个模型平均偏差分别为1.644%,0.279%,2.090 m,1.573 m,1.302 J/kg,1.548 J/kg;不同压出室下叶轮切割特性的研究,应考虑压出室所带来的差异;多级泵叶轮切割特性研究时,应尽量回归多级环境进行研究.  相似文献   

13.
基于CFX软件,采用k-ε模型对某一立式三级离心泵全流场进行数值模拟,并进行试验验证,表明在设计工况下数值计算结果与试验结果吻合较好,但泵内流场分析发现,叶轮-导叶间隙及导叶内的流动损失较大.为了减少流动损失,提高多级离心泵叶轮与导叶之间的匹配特性,分别重新设计4种采用不同进口结构形式的导叶.在设计工况下对4种不同进口的导叶模型进行定常数值计算,并对水力性能、内部流动规律及叶片表面压力分布规律进行分析.结果表明:导叶进口采用扩散结构,与叶轮出口边相平行的模型水力性能最好;导叶进口采取扭曲结构时,能够提高叶轮扬程,但也会增大导叶与叶轮间隙的流动损失,并导致导叶进口压力不稳定;当导叶进口与叶轮出口平行时,可以减小导叶内的流动损失,提高导叶的水力性能;当导叶进口与轴线平行时,可以弱化叶轮与导叶之间的干涉作用,提高叶轮的水力性能,但会增大叶轮与导叶间隙处产生的流动损失.  相似文献   

14.
为了研究多级中开式离心泵级间过水流道的流速、静压及湍动能的分布规律,在设计工况下对多级中开式离心泵级间过水流道进行数值模拟计算.针对导流叶片附近产生的回流及旋涡现象,在原始设计的基础上,通过改变导流叶片的形状及位置,提出3种不同的改进方案.分别对改进方案进行数值模拟计算,分析了3种方案流场的变化并通过积分计算出4种不同级间过水流道的能量损失值,对比分析后确定方案二为最佳方案,并通过试验验证数值模拟计算的准确性.研究结果表明,流体沿级间过水流道流动,在过桥末段的导流叶片处产生回流及旋涡,造成一定的能量损失,从而影响离心泵的性能;可以通过改变前端进口角、后端出口角以达到提高多级中开式离心泵整体性能和效率的目的.  相似文献   

15.
基于CFD技术的核电站上充泵全流场数值模拟   总被引:2,自引:0,他引:2  
为研究核电站上充泵内部流动规律,基于计算流体动力学(CFD)技术,采用Reynolds时均N-S方程和标准k-ε湍流模型,压力、速度耦合使用SIMPLEC算法,对1 000 MW核电站离心式上充泵全流场的三维定常湍流进行数值模拟,得到上充泵各级叶轮-导叶内部的速度、静压以及湍动能分布图,并对其内部流动状态进行分析.在数值模拟的基础之上,对4级上充泵样机进行了性能试验,并且换算成12级实型泵的性能,将性能试验结果和模拟性能预测结果进行对比.数值模拟结果表明:在叶轮、导叶间隙处出现局部低压区;叶轮出口和导叶进口交界区域速度分布不均匀,局部区域有逆流和旋涡,造成部分水力损失;叶轮出口和导叶进口处的湍动能较大,且分布极不规律,有较大的能量损失.从数值模拟的结果可以得到上充泵内部流动水力损失严重的区域,为进一步优化上充泵的设计提供参考.数值模拟和试验两者的结果吻合较好,验证了计算模型和换算结果的正确性.  相似文献   

16.
无堵塞泵水力设计及试验研究   总被引:5,自引:1,他引:4  
叶片式无堵塞泵主要有离心式与旋流式两种泵型。利用泵能量方程和相似律推导出无堵塞泵叶轮水力设计统一计算公式,在分析、归纳14种离心式渣浆泵和12种旋流泵优秀水力模型的基础上,分别应用最小二乘法数值拟合出经验系数方程式。通过设计实例和样机型式试验与真浆试验,验证了设计方法的准确性和实用性,并揭示了离心式渣浆泵和旋流泵性能上的一些特点。  相似文献   

17.
为提高多级离心泵性能设计了一种新型导叶,借鉴扭曲离心叶轮和流道式导叶的设计方法,通过固定内缘型线和外缘型线生成导叶三维扭曲导流叶片.该导叶正、反导叶光滑连接形成新的空间扭曲叶片,把导叶分割成几个独立的连续变化的流道,有助于减小导叶水力损失.针对一种海水淡化高压多级离心泵,设计了多组新型导叶方案,利用CFD 软件计算分析,探究了新型空间导叶的设计规律.通过对不同方案性能对比分析,获得了优化的导叶模型,并做了样机试验,该模型具有较好的水力性能,在设计工况点效率达到85.68%,满足设计要求,验证了该设计方法的可行性.该设计方法将有利于多级离心泵的节能,同时也为导叶开发提供了有益的参考.  相似文献   

18.
离心泵作透平多工况内流与能量转换特性   总被引:1,自引:0,他引:1  
为揭示不同流量下离心泵作透平的能量转换特性,基于1台比转数为90的单级悬臂式离心泵,在透平工况下对其进行数值模拟,并结合试验验证了数值模拟的准确性.结果表明:叶轮是透平内水力损失的主要部件,叶轮内水力损失占比随流量的增大呈现出先减小后增大的变化趋势.设计工况(Q=80m3/h)下,蜗壳、叶轮、腔体的水力损失占比分别为33.0%,35.1%,22.3%.通过对内流场中的流线分布和叶片进口速度三角形进行分析,揭示了不同工况下透平内流特性与水力损失之间的关系.设计工况下叶轮内流动均匀,无明显旋涡存在,在小流量工况下叶轮进口端面存在回流现象,旋涡出现在大流量工况叶片的吸力面.最后,采用拟涡能系数从能量的角度分析了不同工况内部流动的损失情况,进一步揭示了透平的能量转换机理.研究结果可为离心泵作透平的高效设计及实际现场运行调控提供参考.  相似文献   

19.
为揭示单叶片离心泵效率偏低的主要原因,采用数值模拟的方法对单叶片泵的能量损失进行了详细分析,建立了单叶片离心泵水力损失模型.基于SIMPLEC算法和标准k-ε湍流模型,利用ANSYS CFX软件求解三维N-S方程,分析单叶片离心泵在不同流量工况下的湍流耗散损失和壁面摩擦损失,并搭建单叶片离心泵的外性能试验台,验证了数值模拟的准确性.结果表明:单叶片离心泵的能量损失形式主要为耗散损失和摩擦损失,并且泵内的耗散损失明显大于叶片摩擦损失;效率偏低的主要原因是耗散损失较大,具体表现为单叶片离心泵叶轮流道内存在明显的低速区及流动分离区,且压力呈圆周非对称分布;单叶片离心泵从其叶片进口处到出口处的耗散损失、摩擦损失均不断增大;耗散功率、摩擦功率占总功率百分比及叶轮水力效率呈抛物线分布.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号