首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
饵料、药剂、微生物等精准投喂是水产健康养殖重要环节,智能投饵船因具备自动避障定位、多点精准投放、支持水质和视频监测集成等功能而逐渐受到关注。从投饵机构、路径控制、投饵策略3方面总结国内外智能投饵船研究现状,重点介绍现有下料机构及抛料机构、路径控制方式、航向控制算法、投饵路径策略和智能投饵技术,并针对当前研究不足,总结未来研发趋势:进一步改善抛饵破碎率及抛洒均匀性、融合5G通信和RTK视觉识别的高精度导航定位系统、开发计算简易的航向高精度控制算法、开发基于机器视觉与声学信息分析的智能投饵管控算法、实现智能投饵船的多功能化发展、构建数字孪生的智能投饵船远程监控系统。  相似文献   

2.
明轮驱动虾塘自主导航投饵船设计与可靠性试验   总被引:3,自引:0,他引:3  
基于明轮驱动的虾塘投饵船能够适应养殖池塘复杂的环境、满足全塘抛撒的要求,可靠性是其进行推广的关键。采用滚塑工艺设计了全封闭投饵船体,利用免油脂润滑不锈钢链轮和明轮作为驱动机构,以避免对水体的污染,螺旋输送饵料装置可满足船载投饵过程中重心位置稳定的要求,通过GPS+电子罗盘的方式实现了自主导航定位和姿态控制需求。根据虾塘投饵和控制性能要求,进行投饵船直线运动和转弯运动模型的构建,采用PID航向、航速运动控制算法进行巡航路径控制,池塘测试平均速度为0.72m/s,直行和转弯最大偏航量分别为0.8m和0.5m。40d的养殖塘现场试验结果表明,自主导航投饵船在复杂路径下运行平稳,可满足虾塘饵料投喂要求,同时对强风、大雨等恶劣环境进行了可靠性测试,发现并解决了相关问题。  相似文献   

3.
一、农业航空技术的特点与平台 1.农业航空技术的特点 (1)作业效率高无人机在超低空作业时,飞行速度为3~6 m/s,喷幅可达5~9 m,除去续航加药时间,1 h作业面积可达5~8 hm2,其效率远远高于人工水平。  相似文献   

4.
基于目视遥控的无人机直线飞行与航线作业试验   总被引:5,自引:0,他引:5  
为了得到在无导航目视遥控模式下农用无人机的直线飞行特性、检验农田作业航线的人为即时规划情况和评价实际作业质量及效果,设计了基于GPS的坐标采集无线传输系统,以水稻田边界直线为参照,通过目视和经验遥控无人机分别进行循直线飞行试验和基于作业幅宽的航线规划飞行试验。结果表明目视遥控模式下难以控制无人机沿直线飞行;人为即时规划的航线与理论航线偏离严重;在理想喷雾条件下估算出的作业遗漏率为17.1%,重复作业占8.2%,区域外浪费占0.7%;同时,目视遥控模式下无人机的高度及速度表现出无规律随机性。因此在无导航情况下,仅凭目视和经验遥控无人机难以做到精准作业。以GPS导航为主、能根据田块实际大小智能优化并生成作业航线的自主飞行作业模式是未来农用无人机进行精准作业的发展方向。  相似文献   

5.
为解决现有绿肥播种方式作业时存在的排种器适用性不强、撒播作业质量不高、生产效率低等问题,设计了一种槽穴组合式多品种绿肥定量电动匀播装置,设计了棱锥型种箱、槽穴组合式排种器、定量电动匀播组件等关键部件。试验测量了8种主要绿肥品种滑动摩擦角,设计棱锥型种箱最小倾面角为35.5°;根据所播绿肥种子大小、千粒质量和单位面积用种量等因素选择槽穴组合式排种器的排种通道并设定了通道有效开度;应用EDEM软件构建匀播机构排种仿真模型,验证了匀种圆柱直径在3.2~6.8mm时,种子经匀种圆柱碰撞落地后的概率分布规律较好。以青弋江1号为试验材料,通过多因素试验和回归分析,得出影响出苗率和撒播均匀性变异系数的主次因素均为:排种轮转速、匀种圆柱直径、机具前进速度;影响各行排量一致性变异系数的主次因素依次为:匀种圆柱直径、机具前进速度、排种轮转速;最终确定影响槽穴组合式多品种绿肥定量电动匀播装置播种质量最佳因素参数组合为:机具前进速度3.36km/h,排种轮转速44r/min,匀种圆柱直径6.14mm。通过田间试验验证,最优参数组合条件下紫云英绿肥出苗率为96.49%,各行排量一致性变异系数11.73%,播种均匀性变异系数8.67%,与模型预测优化结果的相对误差均小于6%,验证了所建模型与优化参数的合理性,与已有的绿肥播种方式相比,槽穴组合式多品种绿肥定量电动匀播装置作业效率为0.8~1.0hm2/h,优于人工撒播作业效率0.1~0.125hm2/h、手摇撒播作业效率0.2~0.3hm2/h和电动喷播作业效率0.5~0.8hm2/h,低于无人机飞播作业效率3~4hm2/h。  相似文献   

6.
为了提高无人机撒播种子分布均匀度和撒播质量,研究了搭载撒播系统的无人机作业参数对种子分布的影响。通过设计正交试验研究了无人机撒播系统出料口大小、飞行高度和转盘转速对黄芪种子在田间的分布影响。试验以电动四旋翼无人机为载体、圆形接收盘为种子采集器。结果表明:极差分析法中,R_B(14.9%)﹥R_A(13.4%)﹥R_C(5.4%),说明影响种子分布均匀性的主次因素依次为飞行高度、出料口大小、转盘转速;出料口大小、飞行高度和转盘转速的最小■值分别为36.5%、37.5%和40.6%。因此,最优作业参数为:撒播系统出料口大小为13/30,飞行高度为1.5m,转盘转速为10/30。该研究可为无人机撒播作业提供参考。  相似文献   

7.
植保无人机飞控系统与航线规划研究进展分析   总被引:1,自引:0,他引:1  
应用无人机开展植保作业是有效防治病虫害的重要途径。本文对植保无人机行业发展和相关应用研究进行了综述,分别从植保无人机飞控系统、单机作业航线规划、多机作业调度场景及优化方法 3个角度进行了阐述,以增强植保无人机作业效果与提高作业效率为目标,分析了植保无人机飞行控制系统及航线规划与调度的研究现状。针对植保无人机因作业精度要求高而导致其飞控系统制造成本高的问题,提出应研发低成本、高精度、可适应植保无人机作业需求的测姿器件,开发相应的姿态估计算法;针对植保无人机航线规划、优化调度模型与实际作业需求不匹配的情况,总结了单机作业航线规划与多机调度优化场景、约束条件与优化方法。最后,提出应研发植保无人机自动补给平台,构建基于多机协同的作业管理与调度优化模型,以增强植保无人机在复杂作业环境中的作业效果,提高作业效率。  相似文献   

8.
杜恒 《农机化研究》2019,(10):238-241
无人机具有很高的作业效率,能够推动农业生产的现代化和智能化。由于受各种因素的影响,无人机的实际航线与规划航线之间会出现偏差,因此需要进行定位和导航。足球比赛机器人的控制原理与农用无人机相似,其路径规划方法可以作为无人机定位和导航的参考。为此,将足球比赛路径规划的人工势场模型与农用无人机相结合,设计了一种无人机定位和导航方法。仿真试验结果表明:该方法定位和导航的无人机药液喷洒覆盖率达到98%,飞行的距离和时间相比人工控制减少了20%,路线中的急剧转向次数大幅减少,能够为无人机航线控制提供新的途径。  相似文献   

9.
多作业区域植保无人机航线规划算法   总被引:5,自引:0,他引:5  
针对植保施药多个作业区域的情况,研究了一种植保无人机全局航线规划算法,将整个算法分为单个区域航线规划、区域间作业顺序和区域间调度航线规划3部分。从作业路程、多余覆盖和遗漏覆盖的角度,分析了多种覆盖作业方式的优劣,确定了无人机在单区域内的覆盖方式。基于遗传算法与TSP问题得到区域间的优化作业顺序,并基于改进的二进制编码遗传算法进行区域间调度航线的规划,最终实现无人机多作业区域航线的全局规划。仿真结果表明,规划算法可以有效地实现全局航线的规划,缩短了无人机的作业距离与区域间调度飞行的距离,达到了能耗与工作时间的优化,节省了航线规划所需的人力成本,使作业管理更加便利。  相似文献   

10.
正一、适用区域适用于水稻直播种植区域。二、技术要点1.机型选择。依据地形地貌、田块大小、作业规模等,选择智能化播种程度高、负载量大、续航能力强、安全性高的水稻精量条直播无人机。播种行距20~30 cm,可自由调节;种子行落点最大幅宽不超过8 cm;亩播种量为1.2~6 kg,能够智能化调控,作业速度为2~6 m/s,作业离地高度为0.4~3 m,具备自主避障、漏堵预警、轨迹记录、实时监控、断点续播,  相似文献   

11.
传统池塘河蟹养殖主要依靠渔民根据经验来估算投饵量,通过人工撑船投喂饵料,饵料利用率低且劳动强度大。由于河蟹具有领地意识且移动范围较小,池塘各处河蟹分布不均匀,因此河蟹养殖需要科学精准投饵。现有河蟹养殖投饵作业方式粗放,无法满足河蟹高效生态养殖需求。为了掌握河蟹生长规律,更加科学高效地投饵喂料,本文设计基于河蟹生长模型的精准投饵系统。利用灰色关联度分析法确定对河蟹生长发育影响最大的环境因子。在传统水产生物生长模型基础上,加入环境因子进行改进,从线性和指数两个角度对河蟹生长模型进行优化拟合。利用遗传算法(GA)-反向反馈神经网络(BP神经网络)(GA-BP神经网络)对精准投饵预测模型进行训练,通过输入水温、溶解氧含量、pH值等环境参数,推算出最佳环境影响因子数值。根据河蟹生长模型、养殖密度、养殖面积得出河蟹总质量,结合河蟹生长期存活率与投喂率便可得出总投饵量。根据池塘河蟹实际分布密度和水质参数,确定池塘各区域的饵料分配系数,将总投饵量科学地分配到池塘各个区域。通过仿真得出预测投饵量决定系数R2为0.990,预测模型具有较好的拟合效果。池塘投饵试验结果表明,基于河蟹生长...  相似文献   

12.
针对池塘养殖中投喂作业需要全塘均匀覆盖的应用场景,存在人工投饲强度大、饲料利用率低的问题,设计一种能够适应不同多边形池塘的养殖船自动导航控制系统。控制系统采用低成本北斗定位模块和高精度电子罗盘进行组合导航,获取池塘养殖船的位置和航向信息作为导航控制器的输入,通过构建基于PD算法的导航控制器,实现航行过程中的路径跟踪。设计一种多边形回纹线导航路径规划算法,能够快速实现多边形池塘的导航路径规划。开展池塘导航试验,试验结果表明:采用所设计的自动导航系统,养殖船能够按照规划的路径航行,在水面行驶速度为0.4~0.5 m/s时,稳定跟踪后最大误差小于2.62 m,平均跟踪误差小于1.30 m,导航精度满足池塘养殖自动投饲要求。  相似文献   

13.
家畜养殖的生产模式已由粗放型向集约型转变,生产水平不断提高,但较低的劳动生产率和劳动力短缺等问题严重制约中国家畜养殖业的快速发展。利用现代信息和人工智能技术,研发家畜饲喂机器人,包括喂料、推料等机器人,实现数字化、智能化的家畜养殖,提高畜牧养殖生产力是解决上述问题的主要途径。为深入分析机器人技术在家畜养殖中的研究现状,本文收集了国内外家畜机器人研究实例和文献资料,从轨道式喂料机器人、自走式喂料机器人和推料机器人3个方面重点介绍家畜饲喂机器人的研究进展,分析了饲喂机器人的技术特点和实际应用情况,从技术和应用两个方面对国内外饲喂机器人进行了比较,并从战略规划制定、核心技术发展和产业发展趋势三个方面进行展望并提出发展建议,为家畜饲喂机器人在中国的进一步发展和应用提供参考。  相似文献   

14.
针对水貂饲喂环节劳动强度大、环境差,水貂饲喂机械化水平不高的问题,设计了一种水貂养殖轨道式双排自动饲喂车,该饲喂车主要包括控制系统、行走系统、输料饲喂系统、饲喂支撑架收展系统。详细分析了饲喂过程中控制系统的控制要求,研究了控制实现方法和动作过程,通过光电传感器与PLC准确控制所有电机的工作状态定位转换,实现饲喂电机工作参数的人机交互调整;设计了导向轮定轨结构,优化缩短了饲料输送管路;模仿人工饲喂时手与手臂的动作形式,设计了自动饲喂投食结构,并进行了机构运动学分析,确定了具体结构及运动参数;设计了饲喂车收展结构,并通过作业条件分析确定了结构参数。样机试验结果表明,自动饲喂车以0.6 m/s速度行进,以预设的200、400、600 g为投喂量,饲喂车实际投喂质量变化范围分别为165~210 g、355~427 g、567~622 g,饲料堆放质量变异系数分别为6.53%、3.78%、2.74%,漏喂率均为0%,满足实际饲喂要求。该自动饲喂车提高了饲喂效率,节约了劳动成本,增加了饲喂车载料量。  相似文献   

15.
家畜智能养殖设备是智能农机装备的组成部分之一,是国际农业装备产业技术竞争的焦点。本文重点围绕家畜智能养殖设备与饲喂技术在实践中的应用,进行了系统的性能特点分析。目前家畜智能养殖设备的开发对象主要针对猪和奶牛,主要研发的系统包括妊娠母猪电子饲喂站、哺乳母猪精准饲喂系统、奶牛精准饲喂系统和挤奶机器人等。家畜智能养殖设备的工业化应用必须与养殖模式、畜舍结构布局结合起来,才能发挥设备的使用效率,同时从满足动物的福利出发,与动物生理、生长及行为结合起来,形成设备与动物的互作和相互适应。最后指出了智能设备的研究必须与畜牧业生产的理论、目标产品的功能驱动及养殖方式的创新协调一致,要不断地更新换代,才能助推畜牧业的转型升级。  相似文献   

16.
油菜生物量是喂入量和作业质量的主要影响因素,高效、快速地检测油菜生物量是实现油菜收获机自动控制的基础和前提。为研究收获期油菜生物量的影响因素和分布规律,首先利用无人机采集联合收获期油菜的田间可见光图像并实测油菜的生物量信息,提取并构建与油菜生物量有关的32个特征参数,通过相关性分析筛选出与油菜生物量相关性较高的10个显著特征;分别建立基于随机森林(Random forest,RF)、主成分分析(Principal component analysis,PCA)和支持向量机(Support vector machine,SVM)的联合收获期油菜生物量估算模型;利用训练集确定模型参数并优化,利用测试集估算油菜生物量,验证估算模型的性能并比较精度。结果表明:3种模型的评价指标均方根误差(RMSE)、相对误差(RE)和决定系数(R2)分别为0.24 kg/m2、0.04%~22.23%、0.87,0.36 kg/m2、0.92%~21.14%、0.71和0.26 kg/m2、0.28%~34.17%、0.84;对比估算结果可知,基于随机森林的估算模型的RMSE小于PCA和SVM模型,决定系数R2最大且相对误差较小,模型精度和稳定性较优,是估算联合收获期油菜生物量一种较优的方法。基于可见光图像特征和随机森林的油菜生物量估算方法可为油菜联合收割机喂入量自动检测提供方法和参考。  相似文献   

17.
为满足育肥猪获得正常生长所需采食量并达到精准饲喂控制等需求,以育肥猪为试验对象,设计一种育肥猪精准下料控制系统。研究通过使用双侧下料器,实现对称式双边下料,提高猪群的采食效率;增设触碰开关,猪只触动后执行预设料下料,避免饲料浪费;食槽内增设料位感应探针,猪只触碰感应开关时,若探针感应不到食槽内水料,系统自动补充水料到探针处,既保证猪只正常采食,又避免饲料浪费;增设防结拱装置,通过震动电机实现破拱,防止料粉受潮影响下料。试验结果表明,与理论采食量比较,智能饲喂方式下采食量低于理论采食量;饲喂采食量比例分别为10%,30%,30%,20%及10%时,获得较佳的采食量变化曲线。综上,所设计的双侧下料的育肥猪精准下料控制系统,采用拨轮下料的控制机构与嵌入式系统的协同工作,设备控制简单,下料稳定,计量准确,与进口设备比较,成本优势明显,适合在我国大、中、小型育肥猪场推广应用。  相似文献   

18.
随着精细农业的发展,无人机在农业生产中的应用越来越广泛,无人机定位系统是无人机航线路径规划的关键环节。由于缺乏智能算法的应用,传统的无人机航线路径规划始终无法保证处于最优路径,经常发生误撞现象,严重影响无人机在农业生产中的持续作业,降低无人机作业效率。为此,深入研究了遗传算法工作原理、进化周期模型以及算法运算流程等理论,将遗传算法应用在无人机定位系统中,用于无人机航线路径的规划。通过确定无人机定位约束条件,按照遗传算法运算流程,定位无人机下一时刻最优运动节点,从而计算分析无人机最优航行轨迹,使无人机定位系统具有较强的定位功能,保证无人机航线路径处于最优路线,避免无人机碰撞到其他物体,使其能够在任何复杂的环境下完成飞行任务。  相似文献   

19.
锤片式饲料粉碎机的作业效率和饲料粉碎质量受到诸多因素的影响,饲料的喂入量和粉碎室的工作效率是主要影响因素之一。为此,提出了一种带加肋板的饲料粉碎机结构,并将PID控制器引入到喂入量控制系统中,提高了饲料粉碎机的自适应智能化调节功能。为了提高粉碎室的工作效率和粉碎质量,将转子设计成了双圆盘形式,并在锤片上添加了肋板结构,在喂入装置中设计了PID调节器,可以根据锤片的阻力和粉碎质量来自适应的调节喂入量。最后,通过测试样机对饲料粉碎机的粉碎性能进行了测试,结果表明:通过测试发现:使用肋板结构可有效地缩短饲料粉碎工作时间,提高工作效率,利用PID调节器可以增强喂入系统的自适应性,提高响应速度,降低超调量,提高饲料的粉碎质量。  相似文献   

20.
槽轮式补饲机颗粒动力学数值模拟与试验   总被引:2,自引:0,他引:2  
为研究槽轮式补饲机颗粒饲料的排料特性,采用Hertz-Mindlin 无滑动接触模型,分析颗粒的碰撞接触力和阻尼力,建立颗粒饲料的平动运动和滚动运动方程,并采用离散元方法,数值模拟槽轮转动时颗粒群的速度分布、运动规律及单个颗粒与槽轮中心轴的距离,定性描述槽轮转速对颗粒速度分布、带动层厚度、槽轮充满系数的影响。采用临沂永澳700和永澳997颗粒饲料对四槽轮式补饲机的排料特性进行试验,得到槽轮充满系数随着槽轮转速的增加而减小,并且槽轮转速对充满系数有显著影响。同时,进行四槽轮补饲机的定比例和定量投料试验,经检测,投料计量误差最大值为1.13%,最小值为0.56%,平均计量误差为0.83%,颗粒饲料的掺混质量良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号