首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
冲沙底孔突跌与突扩+突跌体形掺气效果对比试验研究   总被引:3,自引:0,他引:3  
通过水工模型试验研究,对阿海工程左泄洪冲沙底孔采用跌坎式掺气,从流态、底、侧空腔长度、掺气浓度、压力等方面,比较了突扩、明槽坡度等因素对掺气效果的影响。试验结果表明,采用突扩+突跌式通气减蚀与突跌情况下相比,掺气效果更加明显;随着明槽底坡坡度的增大,掺气底、侧空腔长度、掺气浓度值亦随之增大;采用突扩+突跌式掺气以及适当的明槽底坡,可以有效的增加掺气效果,从而减小发生空化、空蚀破坏的可能性。  相似文献   

2.
为探求高水头、大单宽流量下阶梯坝面坡度对宽尾墩+阶梯溢流坝+消力池一体化联合消能方式的阶梯面掺气特性及负压的影响,以阿海水电站为原型,采用速度比尺和长度比尺分别建立运输方程,引入水气两相流VOF和三维RNG-紊流模型.利用几何重建格式来迭代生成自由水面,对51.34°,53.13°,56.98°这3种阶梯面坡度进行数值模拟研究.研究结果表明,坡度增加,阶梯面掺气空腔长度先增加后减小;当坡度为53.13°时,阶梯面掺气空腔长度最长,为7.5m.阶梯面掺气浓度变化与掺气空腔长度变化规律一致,坡度增加,阶梯面掺气浓度先增加后降低,各方案空腔段后掺气浓度均存在小于阶梯面最低保护掺气浓度3%,此掺气浓度下阶梯面会发生空蚀破坏.阶梯面负压呈双峰分布,最大负压峰值出现在第2峰值处,负压双峰值随坡度增加而增大,当坡度为56.98°时,负压最大,值为-42.34kPa.  相似文献   

3.
合理地选择溢洪道建筑物消能型式,是关系到整个水利工程安全与经济的重要问题.通过溢洪道设计规范进行消能方式水力学计算,结合物理模型试验对传统底流消能与跌坎型底流消能水力特性进行了对比分析,结果表明:传统底流消能在校核洪水下泄流量时,底流消能方水流进入消力池后产生一定程度的远驱式水跃,消力池消能主要位于消力池后部,消力池后部及出口水面壅高较大,且波动剧烈,没有形成相对稳定的消能水体,消力池消能效果不太好,需要增加消力池长度;跌坎型底流消能消力池底板高程降低1 m,但是临底流速较底流消能得到大幅度降低,池内水流扩散充分,剪切明显,消力池后段形成了稳定的水体,消能效果良好,出水渠内水流流态得到改善,不容易对消力池冲刷破坏.跌坎型底流消能空化数增大相对不容易发空蚀,可能避免消力池空蚀破坏,最大水跃位置向前移动7 m,水流不会冲击底板和尾坎,水流垂直溅起,因此消力池内流态稳定,雾化影响较小,具有适应性强,消能效率高、流态稳定等优点.  相似文献   

4.
联合消能工水力特性的研究对改善高速水流冲蚀以及空蚀空化等问题具有实际的指导意义,然而数值模拟比物理模型更省时省费用的同时,对阶梯流流坝面的空化、空蚀问题很难进行模拟。为了进一步完善联合消能工,结合阿海电站水工模型对同比例改变过渡台阶尺寸的Y型宽尾墩+阶梯溢流坝+消力池联合消能工进行了实验研究。实验研究发现,单个台阶长度以及台阶处与空气接触面积不同时,单位空腔面积越大,平均掺气浓度亦逐渐增大,掺气越充分。各实验方案沿程时均压强总体变化基本一致。同比例增大过渡台阶尺寸(方案三、方案四)有利于水流能量的耗散、减小高速水流对反弧段的冲刷。同比例扩大过渡台阶尺寸(方案四)可以有效地进一步降低台阶壁面发生空蚀破坏的风险。在同比例改变过渡台阶尺寸时,也要考虑过渡台阶与WES曲线相衔接处尺寸变化,不宜采用尺寸过小的台阶与之相衔接。控制其他变量相同时,同比例扩大过渡台阶尺寸(方案四)优于其他实验方案,对整体联合消能方式中掺气状况、对减小反弧段的冲刷、降低台阶面空蚀空化影响等方面均有积极作用。  相似文献   

5.
为了避免阶梯溢洪道中前几级阶梯表面发生空蚀破坏,在对阶梯溢洪道的设计中加入掺气坎,形成前置掺气坎式阶梯溢洪道.通过对Y型宽尾墩+阶梯溢流坝+消力池的联合消能工过渡阶梯首级台阶台面取4个角度、前置掺气坎取2个角度共8种组合工况分别进行水工模型试验,改变水库流量,从空腔长度、水面线、负压、底板时均压力、消能率等方面,寻找改善水力特性的过渡台阶衔接体型.结果表明:掺气空腔随着首级阶梯台面角和掺气坎增大,与阶梯坝面分离空间更大,水流挑射更高,空腔更长且工况2的空腔长度均大于工况1的空腔长度;随着掺气坎和首级阶梯台面角增大,溢流坝阶梯面最大负压绝对值减小;消力池底板压力和水面线变化不大,消能率增大.在8个方案中,前置掺气坎角度为10°、首级阶梯台面角度0°时的方案5最优.  相似文献   

6.
基于阿海水电站5孔溢流表孔,在掺气坎高度1 m、角度10°的条件下,对Y型宽尾墩+阶梯溢流坝+消力池一体化消能工进行阶梯凸起数量分别为0,1,2,3的4种过渡阶梯进行水工模型试验,分别从水流流态、消力池水面线、近底流速、负压、时均压强以及消能率等多个水力特性进行研究.研究结果表明,近底流速随着可掺气空腔体积的增大而减小,随着阶梯凸起数量的减少而增大,在二者相互作用下,各方案流速在消力池末端达到最小,其中方案2流速最小,为22.23 m/s;由于可掺气空腔体积和凸起型阶梯的数量的共同影响,方案2的负压最小,达-33.66kPa;方案1,2,3,4的消能率依次为59.56%,61.06%,60.37%,59.99%.方案2的消能率最高.  相似文献   

7.
基于矩形泄槽物理模型试验,研究了泄槽底部设置较为特殊的曲线型边界的三维凸型和凹型掺气坎的掺气水流特性,并将同种条件下传统直线型连续掺气坎的掺气水流特性与之做比较。结果表明:不同体型的掺气坎水力特性及流态有明显的差异。3种体型的掺气坎中,直线型坎掺气空腔长度最大,凸型和凹型掺气坎对增大掺气空腔长度不利;空腔回水深度随着单宽流量的增大而增大,凸型坎有利于减小掺气空腔回水,特别是在较大流量时效果更明显;3种掺气坎掺气空腔后近壁水流掺气浓度沿程均迅速衰减,泄槽底板和边墙的近壁水流掺气浓度分布有所不同,导致泄槽底板的掺气保护长度,直线型掺气坎的最大,凸型坎的次之,凹型坎的最短,但泄槽边墙的掺气保护长度则是凹型坎的最长。凹型掺气坎对保护边墙免遭空蚀破坏、增大边墙的保护范围更有利。研究成果可为应用异型掺气坎的采用提供更多的参考和实验依据。  相似文献   

8.
掺气减蚀是在高速水流情况下减免泄水建筑物空蚀破坏的一项重要措施,而挟气量是衡量掺气设施效果的指标之一。在某电站泄洪洞原型观测试验的基础上,进行三维数值模拟,将原型观测与数值模型数据相结合,进而建立更加完备的试验数据体系,通过数据分析,并综合利用其他原型观测资料进行规律性探索,得出掺气设施后水流的挟气量与空腔长度、腔内负压以及来流紊动强度等因素的经验公式。  相似文献   

9.
溪洛渡泄洪洞掺气减蚀设施及体型优化的试验研究   总被引:2,自引:0,他引:2  
结合溪洛渡水电站3号泄洪洞,在大比尺水工模型试验的基础上,对目前高水头明流泄洪洞掺气减蚀设施和体型的典型设计方案进行修正和优化研究。试验表明:通过采用掺气跌坎和挑坎相结合的组合形式、在反弧段前增设一道掺气坎、缩短渥奇曲线段的长度和减小反弧段的圆心角等措施,可明显改善掺气效果,增大反弧段前掺气坎的掺气能力,从而有效减小和消除反弧段末端掺气盲区。该研究对于高水头、大流量明流泄洪洞掺气设施和体型的合理设计具有十分重要的价值。  相似文献   

10.
溢洪道陡槽段设置不连续的外凸型阶梯之后,可明显降低陡槽段流速,增大泄流的消能率,简化其下游消能设施。在水力模型试验的基础上,对陡坡段坡度1∶1和1∶1.5的外凸型阶梯陡槽段泄流流态进行观察和测试,对这两种坡度的外凸型阶梯陡槽段应用条件进行分析,提出了坡度为1∶1.5的外凸型阶梯陡槽段泄流水面掺气断面位置和水深的计算方法。应用本文成果和结合前期的研究成果,可将外凸型阶梯陡槽段泄流水面掺气断面位置和水深计算的坡度范围由1∶2~1∶6扩展为1∶1.5~1∶6,并可进一步计算出相应坡度水面掺气断面下游掺气水流区段的沿程水深和消能率。  相似文献   

11.
为改善液体射流泵性能,提出了在喉管处环对称掺气的方法.通过射流泵水力试验,研究了不同掺气条件下各流量比工况的基本性能及空化特征.试验表明:喉管适量掺气后,未达到极限流量比工况时压力比总体略有提升,效率变化率增值为0.3%~4.9%,接近极限流量比时增效最为明显;极限工况时掺气可以改善空化性能,实测喉管及扩散管的压力脉动明显减弱,且射流泵极限流量比有所增加、正常工作范围变大;较优的掺气率(空气与混合液的体积流量比)约为2%~3%.研究表明:与水相比,空气的黏度系数很小,少量空气被液体携带着贴管壁流动,可降低近壁面水流阻力、减小沿程水头损失,有利于提高射流泵传能效率.在极限工况时空气自然吸入可提升喉管内压力,减免射流泵空化、改善运行性能.环对称掺气的研究成果,可为液体射流泵的性能优化提供参考依据.  相似文献   

12.
在均相流假设下,考虑流体压力和速度湍流脉动、不可凝结性气体的影响,采用完全空化模型计算空化流场的相变,引入密度函数对RNG k-ε湍流模型的湍流粘性系数进行修正,提出了一种空化流动的数值模型和计算方法。根据试验条件给定的参数,采用提出的数值模型和计算方法,数值模拟了空化数为2.3时ALE15翼型定常空化流动。计算得到的不同剖面速度分布与试验数据吻合较好,验证了该数值模型和计算方法的一致性。不同剖面上,远离翼型表面的速度与主流区速度接近,沿着流动方向,远离翼型表面的速度逐渐减小,这与空泡形成的阻碍有关。空泡尾部出现较大的漩涡区,靠近翼型表面的速度为负值,这与反向射流的作用有关。  相似文献   

13.
采用RNG k-ε紊流数值模型对具有不同坡度的胸墙压坡段的泄洪闸出口水流进行了三维数值模拟.通过数值模拟计算得到了具有4种不同坡度的泄洪闸胸墙压坡段的流线、流速和压力,并对比分析了胸墙压坡段坡度变化对泄洪闸泄流能力、水流脱壁情况、负压分布区域的影响情况.研究结果表明:随着胸墙压坡段坡度的增大,虽然闸口的泄流能力减弱,但是出口水流的脱空长度和脱空高度变小,也即增大胸墙压坡段的坡度使得出口水流的脱壁现象减弱直至消失;胸墙压坡段内的负压最值及负压的分布区域均随着坡度的增大而变小.在泄洪闸胸墙底缘压坡段的设计过程中要避免平坡式链接,可通过合理的方式比选出适用于自身工程的压坡坡度,有利于提高消力池的消能效率,避免压坡段的空化空蚀,从而增强了工程的安全性.研究方法和结果对类似工程的优化设计及安全运行具有一定的指导意义.  相似文献   

14.
增大跌扩型底流消力池的突扩宽度和跌坎深度,可以有效降低消力池内临底流速和改善出池水流流态,一定程度上减小消力池长度。基于试验研究结果,应用BP神经网络理论,以突扩宽度、跌坎深度及测点距离作为模型输入参数,临底流速作为输出参数,建立BP神经网络预测模型。结果表明,所预测的临底流速模型参数试验值与预测值之间的平均相对误差<10%,决定系数R2达到0.977 6,亦即基于智能算法的预测模型能够对水工模型试验研究形成很好补充。在此基础上,进一步给出了突扩宽度、跌坎深度变化和不同跌扩组合变化对消力池池长的影响。相对而言,增加突扩宽度对消力池长度减小的影响小于增加跌坎深度;同时增加突扩宽度和跌坎深度,能够更有效地降低消力池所需要的长度。   相似文献   

15.
为了研究梭式止回阀在高压差条件下启闭时阀瓣的运动特性以及阀内可能出现的气穴现象,采用计算流体力学(CFD)方法,建立梭式止回阀阀瓣运动方程和流场气穴模型,并通过动网格技术和用户自定义程序,对梭式止回阀开启过程中阀内速度场、压力场、气穴分布和阀瓣运动特性进行了数值仿真,仿真结果以可视的图形图像形式给出.数值模拟研究表明:梭式止回阀在开启过程中,流体主要沿阀壁流动,阀体中间部位则出现回流;在阀内有涡流存在,在涡流的涡心位置流体流速小、压力低,易产生气穴;气穴的产生和发展与进出口压力大小和阀瓣开度等密切相关,气穴易引起阀内流场的不稳定.阀瓣在压差作用下的运动特性为阀瓣首先开启到一极大开度,并逐渐以波动的形式回归到一稳定的开度,阀瓣在运动到稳定开度附近时速度最大.模拟研究结果可以为梭式止回阀结构参数的设计和优化等提供参考.  相似文献   

16.
立式多级筒袋泵吸入装置的优化设计   总被引:1,自引:0,他引:1  
通过试验和数值计算,研究了立式多级筒袋泵的空化性能及泵内空化流场.为改善立式多级筒袋泵的吸入性能,分析了几种叶轮几何参数对泵空化的影响。研究结果表明:采用叶片进口断面面积较大的双吸式首级叶轮,且在首级叶轮的两侧进口加设诱导轮,大幅提高了立式多级筒袋泵的空化性能,使泵的空化比转速达1479;基于均衡混合流假设的空化模型,可合理预测泵的平均空化性能,模拟的空化流场有助于了解水力设计诸因素对泵内空化发展的影响;在设计诱导轮及首级叶轮时,选取较大的叶片进口安放角有利于改善泵装置的吸入性能,同时有利于发挥诱导轮的功效.  相似文献   

17.
由于在一些中小型水电站中,其水轮发电机组的转轮叶片表面常常会发生空化现象,较大程度地影响了机组的安全可靠运行。从某水电站的转轮叶片空化问题出发,首先对该混流式水轮机进行三维建模,然后进行全流道数值模拟,分别对不同导叶开度下转轮叶片表面压力、空泡体积分布规律进行分析。研究发现:随着水头的增加,吸力面低压区面积进一步扩大。特别是40%开度时叶片吸力面低压区面积增大最多,且随着水头的继续增加,低压区有向叶片中部移动的趋势;同时在40%开度下叶片表面空化受水头影响较大,而在100%开度下叶片表面空化受水头影响并不大,但随着导叶开度的增大,叶片表面越容易发生空化,特别是叶片吸力面出水边靠近下环处空化更明显。研究结果可为该水轮发电机组的安全稳定运行提供理论参考依据。  相似文献   

18.
针对CAP1400核主泵事故下的空化问题,在对核主泵进行水力设计及三维造型的基础上,采用CFD技术对核主泵的空化问题进行定常数值模拟,并分析了正常工况、空化初生、临界空化、严重空化和断裂空化等5个阶段核主泵叶片背面气相体积分数、叶片间气相体积分数及叶片间介质温度的分布特性.计算结果表明:核主泵空化首先发生于叶片背面靠近前盖板一侧并向叶片工作面、后盖板方向发展;临界空化与严重空化阶段气相体积分数在叶轮流道相对位置S=0.35~0.45时增长趋势相同,S=0.45~0.50时相对平缓;叶片间由于相变导致的两相之间的热传导在两相界面附近的液相中形成温度梯度,空泡内气相介质的温度低于附近液相介质的温度,两者温差随空化的发展而增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号