首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Large scale experiments with inoculated and drill sown Trifolium subterraneum, T. hirtum, and T. cherleri showed that recent isolates of Rhizobium trifolii from healthy plants in problem pastures were superior to the strains used in commercially available inoculants. The new rhizobia are also shown to persist in the soil longer than the commercial strains. Evidence was obtained of different levels of performance by R. trifolii strains on different soils. Following the inclusion of one of the superior isolates in commercial peat inoculants, a number of farmer-sown pastures were examined for strain persistence. The new isolates showed much improved persistence over the older inoculant strains.  相似文献   

2.
We previously reported that commercial Rhizobium leguminosarum bv. trifolii inoculants failed to outcompete naturalized strains for nodule occupation of clover sown into an alkaline soil [Aust. J. Agric. Res. 53 (2002) 1019]. Two field isolates that dominated nodule occupancy at the field site were labeled with a PnifH-gusA marker. Marked strains were chosen on the basis that they were equally competitive and fixed similar amounts of nitrogen in comparison to their parental strain. The minitransposon insertions were cloned and sequence analysis revealed that neither lesion disrupted the integrity of any known gene. The marked strains were then used to follow nodule occupancy of Trifolium alexandrinum in competition against the commercial inoculant TA1 under a range of experimental conditions. In co-inoculation experiments in sand-vermiculite, TA1 outcompeted each marked field isolate for nodule occupancy. However, using TA1-inoculated seed sown into alkaline soil containing a marked field strain, it was demonstrated that by increasing the cell number of marked rhizobia in the soil and reducing the cell number of the commercial inoculant, the proportion of nodules occupied by TA1 was reduced. These studies indicate that the ability of the field isolates to dominate nodule occupancy in the alkaline field soils was most likely caused by poor commercial inoculant survival providing the advantage for naturalized soil rhizobia to initiate nodulation.  相似文献   

3.
Microorganisms (348 fungi, 388 actinomycetes and 319 bacteria) were isolated from a nodulation problem soil, a non-problem virgin soil, a cultivated problem soil and the rhizosphere of clover plants grown in the problem soil. Rhizobium trifolii TA 1 which failed to establish in problem soils was inhibited on laboratory media by a greater number of these soil microorganisms than the better soil colonizing R. trifolii (WU95 and WU290) and R. lupini (WU425). R. lupini was not inhibited or stimulated on agar by many soil or rhizosphere isolates. R. meliloti showed greater stimulation than either R. trifolii or R. lupini and was inhibited by relatively few soil microorganisms so that its poor soil survival was thought to be due to chemical or physical soil conditions rather than to biotic factors. The greatest incidence of rhizobial inhibitors, mainly associated with TA 1, was found among the isolates from the clover rhizosphere. There was a reduction in the relative numbers of rhizobial inhibitors isolated from the cultivated soil compared with the virgin problem soils, a result possibly due to the changed soil environment changing with cultivation, altered vegetation and the addition of superphosphate. Inhibitors of rhizobia were more frequent amongst the bacteria than fungi or actinomycetes. Strong stimulation was more commonly shown by fungi than by actinomycetes or bacteria. The interaction on agar between rhizobia and the soil microflora is related to soil colonization and persistence.  相似文献   

4.
Widespread cultivation of lupin has resulted in the establishment of effective populations of Bradyrhizobium sp. (Lupinus) in the winter rainfall region of the Western Cape, South Africa. To determine whether inoculation increased yields of Lupinus angustifolius L., field trials were carried out at five sites in this region. Populations ranged from 380 rhizobia g-1 in a moderately alkaline (pH 7.6) soil to >5,000 rhizobia g-1 in four moderately acid (pH 5.5-5.8) soils. Soil isolates were generally similar to the inoculant strain WU425 in nitrogen-fixing effectiveness but several were significantly less effective. Average effectiveness of isolates from certain soils differed significantly. Although inoculation failed to appreciably increase nodule occupancy by WU425 in acid soils containing high populations of rhizobia, nodule occupancy was increased to 98% in the low population alkaline soil. The latter site was later abandoned because of disease. At the other sites, analysis of seed dry mass and protein content showed that yields were not significantly increased by either inoculation, nitrogen fertiliser (45 kg N ha-1) or molybdenum applications. Analysis of genomic DNA by PCR fingerprinting showed that WU425 (isolated in Western Australia) and serologically related strains from other cultures clustered separately from the soil isolates. Isolates from the four acid soils were genomically diverse, whereas isolates from the alkaline soil formed a homogeneous cluster. Further investigation is required to determine the benefit of inoculation in alkaline soils of the winter rainfall region of the Western Cape.  相似文献   

5.
The ability of 4 strains of Rhizobium trifolii to compete with naturalized strains in nodulating Trifolium subterruneum cv. Mt Barker and cv. Woogenellup was assessed at 5 sites in New South Wales. The populations of naturalized rhizobia at these sites ranged from 4 × 106 rhizobia/g to one where no rhizobia were detected. The introduced strains were inoculated singly or as mixed strain inocula onto seed of the host at 2 × 106 rhizobia/seed. There were marked differences in competitive ability between the strains but these differences were modified by the host cultivar and the site.At the R. trifolii-free site the inoculum strain formed 100% of the nodules in the 1st yr; by the second year serologically unrelated strains had invaded the plots and these formed almost all of the nodules in the 3rd yr. At the site where competition was greatest (4 × 106 naturalized rhizobia/g), there were no differences in the competitive abilities of the strains in the first year but at all other sites WU95 was superior whether used as a single strain or in a mixed strain inoculum. In these sites also the proportion of nodules formed by the inoculum strains declined markedly by the 2nd yr.  相似文献   

6.
Field populations of Rhizobiuin trifollii from eight regions in south-eastern Australia were sampled over a period of 5 years from 1966 to 1970. The R. trifolii isolates were tested under bacteriologically-and environmentally-controlled conditions for effectiveness of nitrogen fixation in combination with Trifalium subterraneum L. cv. Bacchus Marsh; the effective strain TA1 was used as a standard of comparison.Mean effectiveness of the R. trifolii populations for any region at any sampling varied between 62 and 93 percent of the effectiveness of the standard strain. The principal feature was the large variability within sampling sites, between sites within paddocks, and between paddocks within regions. In addition there was some variability with time in the range of effectiveness values of isolates within a site and in the absolute values for both sites and paddocks. Effectiveness values were not related to soil pH, size of population of R. trifolii, inoculation procedure at sowing, age of pasture, annual rate of fertilizer application, or mean annual rainfall.  相似文献   

7.
This study tested the competitive ability of three locally isolated Cyclopia rhizobia and strain PPRICI3, the strain currently recommended for the cultivation of Cyclopia, a tea-producing legume. Under sterile glasshouse conditions, the three locally isolated strains were equally competitive with strain PPRICI3. In field soils, the inoculant strains were largely outcompeted by native rhizobia present in the soil, although nodule occupancy was higher in nodules growing close to the root crown (the original inoculation area). In glasshouse experiments using field soil, the test strains again performed poorly, gaining less than 6% nodule occupancy in the one soil type. The presence of Cyclopia-compatible rhizobia in field soils, together with the poor competitive ability of inoculant strains, resulted in inoculation having no effect on Cyclopia yield, nodule number or nodule mass. The native rhizobial population did not only effectively nodulate uninoculated control plants, they also out-competed introduced strains for nodule occupancy in inoculated plants. Nonetheless, the Cyclopia produced high crop yields, possibly due to an adequate supply of soil N.  相似文献   

8.
Non-protein nitrogen accumulated in nodules formed on Trifolium subterraneum cv. Tallarook by Rhizobium trifolii strain NA30, but not in nodules formed by strain TA1. Studies with six R. trifolii strains and four T. subterraneum cultivars indicated that the accumulation of non-protein nitrogen was a characteristic of certain strains and that it was accompanied by a greater development of nodule tissue. With normal symbiotic associations, approximately 6 per cent of the total plant nitrogen was located in the nodule system whereas nodules accumulating non-protein nitrogen contained, on average, 12 per cent of the total nitrogen in the plant.The principal component of the accumulating non-protein nitrogen was identified as “bound” γ-aminobutyric acid. Moderate to high concentrations of γ-aminobutyric acid (0.3–1.7 mmoles/g nodule dry weight) were found in nodules formed by 10 strains (of 36 examined) on Tallarook. With two “accumulating” strains, higher concentrations of γ-aminobutyric acid were found in nodules formed on the cultivar Clare (2.0 mmoles/g nodule dry weight) than in nodules formed on Tallarook or Yarloop (1 1.4 mmoles). No γ-aminobutyric acid was found in cultured cells of either an accumulating strain (NA30) or a nonaccumulating strain (TA1) of R. trifolii.The accumulation of non-protein nitrogen as γ-aminobutyric acid, and the accompanying increase in nodule tissue, each resulting in the export of a lower proportion of the nitrogen fixed to the host, is considered to be a factor causing a lower degree of symbiotic effectiveness.  相似文献   

9.
Bradyrhizobium strains were isolated from nodules obtained from field-grown soybean plants sampled in 12 soybean production locations in Argentina. These fields had been annually cropped with soybean and did not show decreases in yields even though they had been neither N-fertilized nor inoculated for at least the last 5 years. We hypothesized that the isolated strains maintained high competitiveness and efficiency in fixing adequate N2 levels. A set of strains that showed the highest nodular occupancy in each sampling location were assayed for symbiotic performance under greenhouse and field conditions and comparatively evaluated with Bradyrhizobium japonicum E109, the strain officially recommended for inoculant formulation in Argentina. An inoculant pool, formed by four strains obtained from nodules collected from Cañada Rica, developed higher nodular biomass than B. japonicum E 109 in assays carried out in greenhouses under well irrigated conditions. Additionally, neither nodule production nor specific nitrogenase activity decreased with respect to B. japonicum E 109 when plants were drought stressed during 7 days from sowing. The mean yields obtained under field conditions and plotted against the principal component one (CP1) obtained with an additive main effect and multiplicative interaction (AMMI) model showed that the inoculant pool from Cañada Rica had higher contribution to yield than strain E 109, although with lower environmental stability. The inoculant pool from Cañada Rica could be considered an improved inoculant and be used for preliminary assays, to formulate inoculants in Argentina.  相似文献   

10.
Soil populations of Rhizobium leguminosarum bv. viciae (Rlv) that are infective and symbiotically effective on pea (Pisum sativum L.) have recently been shown to be quite widespread in agricultural soils of the eastern Canadian prairie. Here we report on studies carried out to assess the genetic diversity amongst these endemic Rlv strains and to attempt to determine if the endemic strains arose from previously used commercial rhizobial inoculants. Isolates of Rlv were collected from nodules of uninoculated pea plants from 20 sites across southern Manitoba and analyzed by plasmid profiling and PCR-RFLP of the 16S-23S rDNA internally transcribed spacer (ITS) region. Of 214 field isolates analyzed, 67 different plasmid profiles were identified, indicating a relatively high degree of variability among the isolates. Plasmid profiling of isolates from proximal nodules (near the base of the stem) and distal nodules (on lateral roots further from the root crown) from individual plants from one site suggested that the endemic strains were quite competitive relative to a commercial inoculant, occupying 78% of the proximal nodules and 96% of the distal nodules. PCR-RFLP of the 16S-23S rDNA ITS also suggested a relatively high degree of genetic variability among the field isolates. Analysis of the PCR-RFLP patterns of 15 selected isolates by UPGMA indicated two clusters of three field isolates each, with simple matching coefficients (SMCs) ≥0.95. However, to group all field isolates together, the SMC has to be reduced to 0.70. Regarding the origin of the endemic Rlv strains, there were few occurrences of the plasmid profiles of field isolates being identical to the profiles of inoculant Rlv strains commonly used in the region. Likewise, the plasmid profiles of isolates from nodules of wild Lathyrus plants located near some of the sites were all different from those of the field isolates. However, comparison of PCR-RFLP patterns suggested an influence of some inoculant strains on the chromosomal composition of some of the field isolates with SMCs of ≥0.92. Overall, plasmid profiles and PCR-RFLP patterns of the isolates from endemic Rlv populations from across southern Manitoba indicate a relatively high degree of genetic diversity among both plasmid and chromosomal components of endemic strains, but also suggest some influence of chromosomal information from previously used inoculant strains on the endemic soil strains.  相似文献   

11.
Three methods of strain identification were used to determine the composition of the Rhizobium trifolii population in nodules formed on four cultivars of Trifolium subterraneum L. grown in a soil unamended (pH 4.8) or amended with CaCO3 (pH 6.4). Whole cell somatic tube agglutination placed 68–90% of the nodule occupants from each of the cultivars Mt Barker, Nangeela and Howard into four identifiable serogroups. Only in the case of cultivar Woogeneliup were the majority of the isolates unidentifiable with the antisera at our disposal. In unamended soil different serogroups dominated each cultivar whereas in limed soil serogroup 27 was the dominant identifiable serogroup on all of the cultivars. The latter serogroup was also the most promiscuous nodule occupant being found in seven of eight treatments. Gel-immune-diffusion analysis revealed three serotypes within serogroup 27; serotype 27-A was dominant in the nodules on cultivar Nangeela alone whereas serotype 27-B was dominant on both cultivars Mt Barker and Woogenellup. Separation of cellular proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed four and five different strains within serotypes 27-A and 27-B respectively. Only one strain from serotype 27-B could be considered a common nodule occupant on cultivars Mt Barker and Woogenellup. Two of three strains, representing 82% of the total isolates of serotype 27-B found on cultivar Mt Barker, were nodule occupants of that cultivar in both soil treatments. In contrast, only one of four strains, representing 38.5% of the total isolates of serotype 27-A found on cultivar Nangeela, could be considered a common nodule occupant in both soil treatments.  相似文献   

12.
The aim of this work was to evaluate the competitive ability between Rhizobium leguminosarum bv trifolii strain U204 used as commercial inoculants in Uruguay for Trifolium repens L. and Trifolium pratense L. and two native strains isolated from inoculated pastures of T. pratense. T126 is an efficient nitrogen fixer and a melanin producer strain; T70 is inefficient and a melanin non-producer strain; and U204 is very efficient in both hosts but is a melanin non-producer strain. Competitiveness between the strains was determined in experiments in pots and in growth pouches under controlled conditions. In the last experiment, we evaluated pH of plant nutrient solution and inoculum ratios. Plant dry weight was determined, and the identification of nodule bacteria was done using melanin production and DNA fingerprinting (GTG5-PCR). The U204 symbiotic efficiency was not affected by the co-inoculation with the others two native strains. The T70 strain was a poor competitor when was co-inoculated with one of the effective strains in both experiments. Our results confirmed a “selective nodulation” because an effective symbiosis occurred preferentially over an ineffective one in Trifolium species. The native effective strain competed with U204 for nodule formation in both clovers species, but the nodule occupancy depended on the inoculum ratio. The pH of nutritive solution did not affect competition ability of the studied strains. It may be possible to isolate efficient, competitive, and genetically different native rhizobial strains to be used as inoculant strains for clover pastures in Uruguay. Both (GTG)5-PCR and melanin production were useful methods to identify nodulating bacteria in competition studies.  相似文献   

13.
A mesquite Rhizobium isolated from the Sonoran Desert (strain AZ-M1) and a commercial mesquite Rhizobium obtained from the Nitragin Company (strain 31A5) were chosen as superior strains from among many evaluated in a screening study of the efficiency of mesquite rhizobia. Both strains were fast-growing and acid-producing in denned media. The desert strain AZ-M1 had the shortest mean generation time of 3.5 h. Strain 31A5 grew better in broth amended with various sugars and amino acids, but generally produced less acid. The desert strain showed greater resistance to various antibiotics than did 31A5. In a greenhouse study N applied at high rates inhibited N2 fixation when either strain was used as inoculant for mesquite seed. At low N rates, AZ-M1 fixed more N than 31A5. Total N, nodule weight, C2H2 reduction, mesquite shoot weight and root weight were all significantly increased when AZ-M1 was the applied inoculant. This study shows that the mesquite Rhizobium AZ-M 1 isolated from the Sonoran Desert is infective and effective on mesquite seedlings. Fast growth rate, acid production and high resistance to antibiotics in laboratory media may indicate the adaptation of this organism to its microbial niche in the Sonoran Desert.  相似文献   

14.
Strains of Rhizobium trifolii incorporated into commercial peat inoculants were compared for their effect on the establishment and growth of oversown white clover (Trifolium repens) on soils devoid of infective rhizobia.There were marked differences in numbers of seedlings establishing and clover dry matter production per hectare with the various strains. However, when adjusted to a constant number of established seedlings, dry matter production from all strains, apart from one strain at one site, were similar indicating that the strains did not appear to influence the growth of individual clover plants.The marked differences in establishment of clover inoculated with the various strains could not be accounted for by differences in the number of rhizobia in the peat inoculant.Selecting strains of rhizobia for ability to increase establishment is considered important where clover is oversown onto soils devoid of rhizobia.  相似文献   

15.
Lime pelleting of the inoculated seed is recommended for most pasture legume species to improve survival of the rhizobia on the seed and to counter deleterious effects of soil or fertiliser acidity on rhizobial numbers. Except for New South Wales, lime pelleting is specifically not recommended for serradella (Ornithopus spp.). Our objectives were to evaluate effects of lime pelleting on bradyrhizobial numbers on seed, and nodulation and growth of the serradella plants. Three experiments are reported at two acid-soil sites in northern New South Wales involving four cultivars of yellow serradella (Ornithopus compressus) and Bradyrhizobium sp. (Lupinus) strains WSM471 (current inoculant strain) and WU425 and WSM480. Lime pelleting increased bradyrhizobial numbers on seed, 24 h after inoculation, by an average of 90%. Similarly, lime pelleting increased nodulation and shoot dry matter of the inoculated plants by an average of 57 and 28%, respectively. The three strains were similar in effects on plant growth. Relative values for shoot dry weight, averaged over sites, were 100 for WSM471 and 98 for both WU425 and WSM480. Our results confirmed previous research that lime pelleting inoculated serradella seed was not deleterious to survival of the bradyrhizobial inoculum, and showed that it could result in enhanced symbiotic activity of the inoculum in some instances. We recommend lime pelleting of serradella and that WSM471 remain the inoculant strain.  相似文献   

16.
The competitiveness of a mesquite Rhizobium (AZ-M1) and its ability to survive in desert soils was compared to a selected commercial strain (31A5). In a greenhouse study, the native isolate out-competed strain 31A5 in nodule occupancy, when applied as a mixed inoculant to seed germinated and grown in sand culture, and irrigated with N-free nutrients. A high incidence of nodule double occupancy was found when double strain inoculants were used. The survival rate of the two strains was tested in three desert soils in a controlled laboratory study. The desert strain AZ-M1 grew and survived in all the soils for 1 month. The commercial strain 31A5, did not grow, and the population decreased in 14 days from 108 cells g?1 dry soil to below 104 cells g?1. Both strains survived to a lesser extent in a saline-sodic soil. A significant morphological change from a rod to a coccus was observed 2 days after strain 31A5 had been introduced into the desert soils.  相似文献   

17.
Four strains of Rhizobium phaseoli were examined for N2 fixation effectiveness and for competitiveness for nodule occupancy by utilizing strain-specific fluorescent antibodies. Competition studies in Leonard jars held in a growth chamber showed strain KIM-5 (a cool season isolate from Kimberly, Idaho) consistently occupied the majority of nodules on bean plants (Phaseolus vulgaris L.) cv. Kentucky Wonder, when applied as a mixed inoculant with desert strains (K-1, 36 or 90). Competitiveness of KIM-5 was relatively independent of cell numbers as shown by the high recovery of KIM-5 from nodules, even when extensively outnumbered in the inoculant. KIM-5 out-competed the desert strains regardless of whether they were ineffective (strains 36 and 90) or highly effective (K-1). Although KIM-5 was more competitive than K-l, no difference in infectiveness (as shown by nodule mass) or effectiveness (as shown by % N, total plant N, C2H2 reduction and total plant weight) was observed.In YEM broth, strain K-l showed increasing growth rates when the temperature was increased from 27° to 35°C, and was viable at 40°C. These data indicate K-1 to be an unusually heat-tolerant strain. Growth rates of KIM-5 were constant from 27° to 35°C and the organism was not viable at 40°C. Both strains produced acid in a defined broth medium.The effectiveness of KIM-5 and K-l was also evaluated under field conditions using single strain inoculants with two cultivars of pinto beans (P. vulgaris L.) ev. Mexicali 80 and Delicias 71. Inoculation with K-1 resulted in yield increases with both cultivars over uninoculated plants, whereas there was little difference between KIM-5 inoculated and uninoculated plants.  相似文献   

18.
Bradyrhizobium japonicum strain CB 1809 was recently chosen to replace strain WB 1 in commercial soybean [Glycine max (L.) Merr.] inoculants in South Africa, the selection criterion being N2-fixing effectiveness. Nodulation competitiveness is an additional characteristic required of inoculants and was determined for CB 1809 and WB 1 as well as two other strains, USDA 110 and a Brazilian strain 965, using the gusA marker gene to identify strains. Initial experiments with plants grown in sterile sand showed that the competitive index of strain WB 1 was less than that of the other strains. Further comparisons used plants grown in five soils containing established populations of B. japonicum. When strains were applied in peat inoculum to seed at a rate of 1,000 cells per seed in a soil containing 300 rhizobia g–1, significant differences in nodule occupancy were detected and strains ranked in the order 965>CB 1809>USDA 110>WB 1. The remaining four soils each contained about 106 rhizobia g–1 and 5×106 cells were applied per seed. Nodule occupancy by inoculant strains ranged from 22% to 81% between soils. In this experiment, WB 1 was consistently the poorest performer and its competitiveness was significantly less than CB 1809. The competition results supported the recent decision to replace WB 1 with CB 1809 in commercial inoculants. Although WB 1 had been used in inoculants over a period of 19 years, this strain was detected in only one soil, where it comprised 8% of isolates. In contrast, a substantial proportion (32–78%) of isolates from the soils corresponded serologically to a former inoculant strain WB 66, which had been discontinued in 1966. This illustrates the difficulty of replacing a resident population with an introduced strain. The effect of naturalized populations on the establishment of CB 1809 in South African soils will need monitoring Received: 23 November 1999  相似文献   

19.
Field pea (Pisum sativum L.) is widely grown in South Australia (SA), often without inoculation with commercial rhizobia. To establish if symbiotic factors are limiting the growth of field pea we examined the size, symbiotic effectiveness and diversity of populations of field pea rhizobia (Rhizobium leguminosarum bv. viciae) that have become naturalised in South Australian soils and nodulate many pea crops. Most probable number plant infection tests on 33 soils showed that R. l. bv. viciae populations ranged from undetectable (six soils) to 32×103 rhizobia g−1 of dry soil. Twenty-four of the 33 soils contained more than 100 rhizobia g−1 soil. Three of the six soils in which no R. l. bv. viciae were detected had not grown a host legume (field pea, faba bean, vetch or lentil). For soils that had grown a host legume, there was no correlation between the size of R. l. bv. viciae populations and either the time since a host legume had been grown or any measured soil factor (pH, inorganic N and organic C). In glasshouse experiments, inoculation of the field pea cultivar Parafield with the commercial Rhizobium strain SU303 resulted in a highly effective symbiosis. The SU303 treatment produced as much shoot dry weight as the mineral N treatment and more than 2.9 times the shoot dry weight of the uninoculated treatment. Twenty-two of the 33 naturalised populations of rhizobia (applied to pea plants as soil suspensions) produced prompt and abundant nodulation. These symbioses were generally effective at N2 fixation, with shoot dry weight ranging from 98% (soil 21) down to 61% (soil 30) of the SU303 treatment, the least effective population of rhizobia still producing nearly double the growth of the uninoculated treatment. Low shoot dry weights resulting from most of the remaining soil treatments were associated with delayed or erratic nodulation caused by low numbers of rhizobia. Random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) fingerprinting of 70 rhizobial isolates recovered from five of the 33 soils (14 isolates from each soil) showed that naturalised populations were composed of multiple (5-9) strain types. There was little evidence of strain dominance, with a single strain type occupying more than 30% of trap host nodules in only two of the five populations. Cluster analysis of RAPD PCR banding patterns showed that strain types in naturalised populations were not closely related to the current commercial inoculant strain for field pea (SU303, ≥75% dissimilarity), six previous field pea inoculant strains (≥55% dissimilarity) or a former commercial inoculant strain for faba bean (WSM1274, ≥66% dissimilarity). Two of the most closely related strain types (≤15% dissimilarity) were found at widely separate locations in SA and may have potential as commercial inoculant strains. Given the size and diversity of the naturalised pea rhizobia populations in SA soils and their relative effectiveness, it is unlikely that inoculation with a commercial strain of rhizobia will improve N2 fixation in field pea crops, unless the number of rhizobia in the soil is very low or absent (e.g. where a legume host has not been previously grown and for three soils from western Eyre Peninsula). The general effectiveness of the pea rhizobia populations also indicates that reduced N2 fixation is unlikely to be the major cause of the declining field pea yields observed in recent times.  相似文献   

20.
Marked strains of Rhizobium trifolii, distinguishable from other strains antigenically and by streptomycin resistance, were introduced by seed inoculation of subterranean clover (Trifolium subterraneum L.) into a field environment having a natural population of R. trifolii. Isolates from nodules obtained periodically during the following 41 months were classified using both methods of identification in parallel. This procedure made it possible to determine the reliability of each method independently.There was a gradual disappearance of the inoculum strains which occurred more rapidly in plots of cv. Woogenellup than in plots seeded with cv. Mount Barker. At five harvests, there was 95% (or greater) correspondence between inoculum survival using either method of identification. There was evidence that a small proportion of the progeny of the inocula sustained independent loss of antigenic character and/or streptomycin resistance in the field or, alternatively, that strains occurring naturally acquired these characteristics. A few nodules contained more than one strain of rhizobia. These exceptions occurred at low frequency and did not interfere substantially with identification results. It is concluded that gel immune diffusion serology and the use of streptomycin-resistant mutants are both reliable methods for identifying strains of rhizobia reisolated from field environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号