首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The prevalence of resistant bacteria in food products in Iceland is unknown, and little is known of the prevalence in production animals. The aim of this study was to investigate the prevalence and genetic relatedness of antimicrobial‐resistant Escherichia coli from healthy pigs and broiler chicken, pork, broiler meat, slaughterhouse personnel and outpatients in Iceland. A total of 419 E. coli isolates were tested for antimicrobial susceptibility using a microbroth dilution method (VetMIC), and resistant strains were compared using pulsed‐field gel electrophoresis (PFGE). All samples were screened for enrofloxacin‐resistant strains with selective agar plates. The resistance rates among E. coli isolates were moderate to high from caecal and meat samples of pigs (54.1% and 28%), broilers (33.6% and 52%) and slaughterhouse personnel (39.1%), whereas isolates from outpatients showed moderate resistance rates (23.1%). Of notice was resistance to quinolones (minimum inhibitory concentrations: nalidixic acid ≥ 32, ciprofloxacin ≥ 0.12 and enrofloxacin ≥ 0.5), particularly among broiler and broiler meat isolates (18.2% and 36%), as there is no known antimicrobial selection pressure in the broiler production in Iceland. The majority (78.6%) of the resistant E. coli isolates was genotypically different, based on PFGE fingerprint analyses and clustering was limited. However, the same resistance pattern and pulsotype were found among isolates from broiler meat and a slaughterhouse worker, indicating spread of antimicrobial‐resistant E. coli from animals to humans. Diverse resistance patterns and pulsotypes suggest the presence of a large population of resistant E. coli in production animals in Iceland. This study gives baseline information on the prevalence of antimicrobial‐resistant E. coli from production animals, and their food products in Iceland and the moderate to high resistance rates emphasize the need for continuing surveillance. Further studies on the origin of the resistant strains and the genetic relatedness of strains of different origin are needed.  相似文献   

2.
Although the dog breeding industry is common in many countries, the presence of antimicrobial resistant bacteria among pups in kennels has been infrequently investigated. This study was conducted to better understand the epidemiology of antimicrobial-resistant Escherichia coli isolates from kennel pups not treated with antimicrobials. We investigated susceptibilities to 11 antimicrobials, and prevalence of extended-spectrum β-lactamase (ESBL) in 86 faecal E. coli isolates from 43 pups in two kennels. Genetic relatedness among all isolates was assessed using pulsed-field gel electrophoresis (PFGE). Susceptibility tests revealed that 76% of the isolates were resistant to one or more of tested antimicrobials, with resistance to dihydrostreptomycin most frequently encountered (66.3%) followed by ampicillin (60.5%), trimethoprim-sulfamethoxazole (41.9%), oxytetracycline (26.7%), and chloramphenicol (26.7%). Multidrug resistance, defined as resistance against two or more classes of antimicrobials, was observed in 52 (60.5%) isolates. Three pups in one kennel harboured SHV-12 ESBL-producing isolates. A comparison between the two kennels showed that frequencies of resistance against seven antimicrobials and the variation in resistant phenotypes differed significantly. Analysis by PFGE revealed that clone sharing rates among pups of the same litters were not significantly different in both kennels (64.0% vs. 88.9%), whereas the rates among pups from different litters were significantly different between the two kennels (72.0% vs. 33.3%, P < 0.05). The pups in the two kennels had antimicrobial-resistant E. coli clones, including multidrug-resistant and ESBL-producing clones. It is likely that resistant and susceptible bacteria can clonally spread among the same and/or different litters thus affecting the resistance prevalence.  相似文献   

3.
BackgroundThere are only narrow insights regarding the antimicrobial resistance of pathogens in poultry environment in India and its transmission to humans. The use of antimicrobials in food animal production is not properly regulated in India. So, many clinically important antimicrobials are used indiscriminately.ObjectiveOur aim was to do a comparative analysis of antibiotic resistance in Escherichia coli isolates from poultry environment and UTI patients.MethodologyTwo poultry farms each from six areas in Muvattupuzha region of the state of Kerala in India were selected for the study. From each farm, samples of fresh fecal matter, litter from inside the shed, litter from outside the shed, nearby agricultural soil and control soilwere collected. E. coli was isolated from each sample, and antimicrobial susceptibility testing of E. coli was done with fifteen antibiotics. Antibiograms of UTI patients were collected from the tertiary care hospital included in the study and those were compared with the antibiograms of poultrysamples.ResultAll samples were resistant to ampicillin, amoxicillin, meropenem and tetracycline. Similar resistance pattern in poultry environment and UTI patients was seen for antibiotics such as ampicillin, amoxicillin, amikacin, and ofloxacin. A statistically significant difference (p < .00601) was established in the total number of isolates resistant to various antibiotics from areas near to farms compared to those away from farms.ConclusionE. coli were resistant not only to extended spectrum beta lactams but also to carbapenems which might have disseminated to environment where litter was used as manure. This might be due to irrational use of antibiotics in chicken and poultry feed as growth promoter.  相似文献   

4.
We analyzed the correlation between minimum inhibitory concentrations (MICs) of antimicrobials used in humans and those used in animals to enable comparison of antimicrobial susceptibility between Escherichia coli isolated from humans and those from animals. We compared the following pairs of MIC data: piperacillin (PIPC) to ampicillin (ABPC), amikacin (AMK) to kanamycin (KM), minocycline (MINO) to oxytetracycline (OTC), and levofloxacin (LVFX) to enrofloxacin (ERFX) using 103 isolates of E. coli from healthy livestock (cattle, pigs, broiler chickens, and layer chickens). Kappa analysis of the agreement for resistance and susceptibility between PIPC and ABPC, AMK and KM, MINO and OTC, and LVFX and ERFX showed almost perfect (κ = 0.81), slight (κ = 0.12), fair (κ = 0.37), and moderate (κ = 0.46) agreement, respectively. Within the antimicrobial pairs, all isolates resistant to the human antimicrobial were also resistant to the veterinary antimicrobial. However, there was less agreement within the pairs for those isolates that were sensitive to the human antimicrobial. The percentage agreement for susceptibility, defined as the percentage of isolates sensitive to both antimicrobials compared with isolates sensitive to both antimicrobials, as well as those sensitive only to the human antimicrobial, was 89.9%, 87.3%, 64.0%, and 89.9% for PIPC and ABPC, AMK and KM, MINO and OTC, and LVFX and ERFX, respectively. Our results suggest that the possibility of missing the resistance for antimicrobials used in human medicine by examining MICs for the equivalent antimicrobials used in veterinary medicine is low.  相似文献   

5.
This study determined the antimicrobial resistance profiles of Escherichia coli isolates from dogs with a presumptive diagnosis of urinary tract infection (UTI). Urine samples from 201 dogs with UTI diagnosed through clinical examination and urinalysis were processed for isolation of Escherichia coli. Colonies from pure cultures were identified by biochemical reactions (n=114) and were tested for susceptibility to 18 antimicrobials. The two most frequent antimicrobials showing resistance in Urinary E. coli isolates were oxytetracycline and ampicillin. Among the resistant isolates, 17 resistance patterns were observed, with 12 patterns involving multidrug resistance (MDR). Of the 69 tetracycline-resistant E. coli isolates, tet(B) was the predominant resistance determinant and was detected in 50.9% of the isolates, whereas the remaining 25.5% isolates carried the tet(A) determinant. Most ampicillin and/or amoxicillin-resistant E. coli isolates carried blaTEM-1 genes. Class 1 integrons were prevalent (28.9%) and contained previously described gene cassettes that are implicated primarily in resistance to aminoglycosides and trimethoprim (dfrA1, dfrA17-aadA5). Of the 44 quinolone-resistant E. coli isolates, 38 were resistant to nalidixic acid, and 6 were resistant to nalidixic acid, ciprofloxacin and enrofloxacin. Chromosomal point mutations were found in the GyrA (Ser83Leu) and ParC (Ser80Ile) genes. Furthermore, the aminoglycoside resistance gene aacC2, the chloramphenicol resistant gene cmlA and the florfenicol resistant gene floR were also identified. This study revealed an alarming rate of antimicrobial resistance among E. coli isolates from dogs with UTIs.  相似文献   

6.
Escherichia coli is a major pathogen of worldwide importance in commercially produced poultry, contributing significantly to economic losses in chickens and turkeys. One hundred thirty-five cases in broilers were examined and cultured for isolation and antimicrobial sensitivity evaluation of E. coli between January 2005 and December 2006. In 103 cases (76.3%) E. coli were isolated and in 32 cases (23.7%) no E. coli growth was observed. Multiple resistances were seen in all isolates. All isolates were uniformly resistant to Tiamuline, Tylosin, and Bacitracin. We observed low levels of resistance to Gentamicin (12%), Kanamycin (0%), and Florfenicol (39%). Percentages of resistance to Tiamuline, Bacitracin, Tylosin, Colistin, and Erythromycin (≥99%); Tetracycline (96%); Oxytetracycline (93%); Flomequine (87%); Neomycine (87%); Lincospectin (79%); Difloxacin (78%); Enrofloxacin (76%); Cotrimoxazole (72%); Chloramphenicol (52%); and Ampicillin (49%) were determined. Our data show high levels of multiresistance among Iranian E. coli isolates. It seems that the pattern of antibiotic resistance of bacteria that are clinically important for the poultry industry should be monitored.  相似文献   

7.
Limited information is available regarding horse-associated antimicrobial resistant (AR) Escherichia (E.) coli. This study was designed to evaluate the frequency and characterize the pattern of AR E. coli from healthy horse-associated samples. A total of 143 E. coli (4.6%) were isolated from 3,078 samples collected from three national racetracks and 14 private horse-riding courses in Korea. Thirty of the E. coli isolates (21%) showed antimicrobial resistance to at least one antimicrobial agent, and four of the AR E. coli (13.3%) were defined as multi-drug resistance. Most of the AR E. coli harbored AR genes corresponding to their antimicrobial resistance phenotypes. Four of the AR E. coli carried class 1 integrase gene (intI1), a gene associated with multi-drug resistance. Pulsed-field gel electrophoretic analysis showed no genetic relatedness among AR E. coli isolated from different facilities; however, cross-transmissions between horses or horses and environments were detected in two facilities. Although cross-transmission of AR E. coli in horses and their environments was generally low, our study suggests a risk of transmission of AR bacteria between horses and humans. Further studies are needed to evaluate the risk of possible transmission of horse-associated AR bacteria to human communities through horse riders and horse-care workers.  相似文献   

8.
We examined the antimicrobial susceptibility of 848 Escherichia coli isolates from 237 feces samples of wild sika deer (Cervus nippon) captured between 2016 and 2019 in 39 of the 47 prefectures of Japan. Five of the 237 wild sika deer (2.1%) carried E. coli with resistance to at least one antimicrobial, and all the resistant isolates showed resistance to tetracycline. The resistant isolates contained antimicrobial resistance genes that were similar to those in E. coli derived from humans and farm animals. Although wild sika deer are not currently likely to be a source for the transmission of antimicrobial resistance in Japan, they can potentially mediate antimicrobial resistance spread by coming into contact with humans, animals, and their surroundings.  相似文献   

9.
Pathogenic Escherichia coli is an important cause of diarrhea, edema disease, and septicemia in swine. In Japan, the volume of antimicrobial drugs used for animals is highest in swine, but information about the prevalence of antimicrobial-resistant bacteria is confined to apparently healthy animals. In the present study, we determined the O serogroups, virulence factors, and antimicrobial resistance of 360 E. coli isolates from swine that died of disease in Kagoshima Prefecture, Japan, between 1999 and 2017. The isolates of the predominant serogroups O139, OSB9, O149, O8, and O116 possessed virulence factor genes typically found in diarrheagenic E. coli. We further found five strains of third-generation cephalosporin-resistant E. coli that each produced an extended-spectrum β-lactamase encoded by blaCTX-M-14, blaCTX-M-15, blaCTX-M-24, blaCTX-M-61, or blaSHV-12. In 218 swine with a clear history of antimicrobial drug use, we further analyzed associations between the use of antimicrobials for the treatment of diseased swine and the isolation of resistant E. coli. We found significant associations between antimicrobial use and selection of resistance to the same class of antimicrobials, such as the use of ceftiofur and resistance to cefotaxime, cefazolin, or ampicillin, the use of aminoglycosides and resistance to streptomycin, and the use of phenicols and resistance to chloramphenicol. A significant association between antimicrobial use and the resistance of E. coli isolates to structurally unrelated antimicrobials, such as the use of ceftiofur and resistance to chloramphenicol, was also observed.  相似文献   

10.
Pulsed field gel electrophoresis (PFGE) patterns, susceptibility to 26 antimicrobial agents used in veterinary and human medicine, and prevalence of antimicrobial resistance genes of Escherichia coli isolated from cows with mastitis were evaluated. Among 135 E. coli isolates, PFGE analysis revealed 85 different genetic patterns. All E. coli were resistant to two or more antimicrobials in different combinations. Most E. coli were resistant to antimicrobials used in veterinary medicine including ampicillin (98.4%, >or=32 microg/ml) and many E. coli were resistant to streptomycin (40.3%, >or=64 microg/ml), sulfisoxazole (34.1%, >or=512 microg/ml), and tetracycline (24.8%, >or=16 microg/ml). Most E. coli were resistant to antimicrobials used in human medicine including aztreonam (97.7%, >or=32 microg/ml) and cefaclor (89.9%, >or=32 microg/ml). Some E. coli were resistant to nitrofurantoin (38%, >or=128 microg/ml), cefuroxime (22.5%, >or=32 microg/ml), fosfomycin (17.8%, >or=256 microg/ml). All E. coli were susceptible to ciprofloxacin and cinoxacin. Almost 97% (123 of 127) of ampicillin-resistant isolates carried ampC. Eleven of 52 (21.2%) streptomycin-resistant isolates carried strA, strB and aadA together and 29 streptomycin-resistant isolates (55.8%) carried aadA alone. Among 44 sulfisoxazole-resistant E. coli, 1 isolate (2.3%) carried both sulI and sulII, 12 (27.3%) carried sulI and 10 (22.7%) isolates carried sulII. Among 32 tetracycline-resistant isolates, 14 (43.8%) carried both tetA and tetC and 14 (43.8%) carried tetC. Results of this study demonstrated that E. coli from cows with mastitis were genotypically different, multidrug resistant and carried multiple resistance genes. These bacteria can be a reservoir for antimicrobial resistance genes and can play a role in the dissemination of antimicrobial resistance genes to other pathogenic and commensal bacteria in the dairy farm environment.  相似文献   

11.
本试验旨在了解屠宰前鸡、猪源食品动物体内大肠杆菌耐药情况,分析潜在的食品安全问题。从广州市畜禽交易市场随机采集待屠宰鸡和猪的粪便样品,分离鉴定大肠杆菌,并采用琼脂稀释法检测大肠杆菌对15种抗菌药物的敏感性。结果显示,从658份猪源样品和133份鸡源样品中共分离鉴定出731株大肠杆菌,其中猪源606株,鸡源125株。药敏试验结果显示,731株大肠杆菌均表现出不同程度的耐药,耐药谱广且多重耐药现象严重。对复方新诺明和四环素的耐药率为90.0%以上,仅对头孢西丁、黏菌素和阿米卡星较敏感(耐药率均低于3%)。鸡源大肠杆菌对头孢噻肟、头孢曲松、新霉素、阿米卡星、萘啶酸和环丙沙星的耐药率显著高于猪源大肠杆菌(P<0.05)。鸡源大肠杆菌中3耐及3耐以上的菌株占97.60%,猪源大肠杆菌占94.72%。结果表明,屠宰前畜禽体内大肠杆菌对临床常用抗菌药物的耐药性非常严重,以多重耐药为主,且耐药谱丰富多样。提示屠宰前畜禽携带的耐药菌对食品安全和人类健康存在较大的安全隐患。  相似文献   

12.
Tetracycline- resistant bacteria have emerged due to the selective pressure of antimicrobial use. The aim of this study was to determine the prevalence of oxytetracycline resistance of Escherichia coli from pigeon faecal samples. All strains were examined for the presence and types of oxytetracycline resistance determinants using disc diffusion and polymerase chain reaction methods. Of 50 faecal E. coli isolates, 30 (60%) were resistant to oxytetracycline. Polymerase chain reaction analyses indicated that the most common genes found in these isolates were tetB (43.3%) and tetA (30%). Only 10% and 3.3% of the isolates contained otrA and otrB, respectively. In conclusion, our findings suggest that oxytetracycline-resistant strains of E. coli are disseminated in pigeons.  相似文献   

13.
The purpose of this study was to examine the prevalence and patterns of antimicrobial resistance (AMR) in enteric bacteria obtained from Ontario sheep flocks, and associations between antimicrobial use (AMU) and AMR. Forty-nine sheep producers participated for a 1-year interval between 2006 and 2008. Two-hundred and eighty-three pooled fecal samples were collected from the flocks during initial and final visits. Up to 3 isolates of Salmonella spp. and generic E. coli per pooled fecal sample were tested for susceptibility to 15 antimicrobials. Resistance was infrequent among Salmonella (0%, n = 7 isolates) and low among E. coli (13.1%; n = 849) isolates. A small number of isolates were resistant to antimicrobials classified as being of very high importance to human health. Tetracycline resistance was most frequently observed (12.0%). Logistic regression was used to model potential AMU (qualitative and quantitative) risk factors for tetracycline resistance in generic E. coli from final visits. Qualitative analysis indicated that the use of injectable sulfonamides [including trimethoprim-sulfonamide combinations (TMS)] and tetracycline in the feed and water were significantly associated with tetracycline resistance (OR = 2.6, P = 0.01; and OR = 4.8, P ≤ 0.01, respectively). Quantitative analysis also indicated that TMS exposure rate was significantly associated with tetracycline resistance, which varied depending on the exposure rate. The exposure rate of tetracycline in the feed and water was only significant after the removal of one influential flock, warranting further research examining flocks with higher tetracycline exposure rates. Although the prevalence of AMR in participating flocks was relatively low, risk factors for resistance were identified.  相似文献   

14.
An observational study was conducted of chicken and turkey flocks slaughtered at federal processing plants in the province of Quebec, Canada. The objectives were to estimate prevalence of drug use at hatchery and on farm and to identify antimicrobial resistance (AMR) in cecal Escherichia coli and Enterococcus spp. isolates and factors associated with AMR. Eighty-two chicken flocks and 59 turkey flocks were sampled. At the hatchery, the most used antimicrobial was ceftiofur in chickens (76% of flocks) and spectinomycin in turkeys (42% of flocks). Virginiamycin was the antimicrobial most frequently added to the feed in both chicken and turkey flocks. At least 1 E. coli isolate resistant to third-generation cephalosporins was present in all chicken flocks and in a third of turkey flocks. Resistance to tetracycline, streptomycin, and sulfisoxazole was detected in > 90% of flocks for E. coli isolates. Antimicrobial resistance (AMR) was observed to bacitracin, erythromycin, lincomycin, quinupristin-dalfopristin, and tetracycline in both chicken and turkey flocks for Enterococcus spp. isolates. No resistance to vancomycin was observed. The use of ceftiofur at hatchery was significantly associated with the proportion of ceftiofur-resistant E. coli isolates in chicken flocks. In turkey flocks, ceftiofur resistance was more frequent when turkeys were placed on litter previously used by chickens. Associations between drug use and resistance were observed with tetracycline (turkey) in E. coli isolates and with bacitracin (chicken and turkey), gentamicin (turkey), and tylosin (chicken) in Enterococcus spp. isolates. Further studies are needed to provide producers and veterinarians with alternative management practices and tools in order to reduce the use of antimicrobial feed additives in poultry.  相似文献   

15.
The prevalence and patterns of antimicrobial susceptibility of fecal Escherichia coli, Salmonella spp., extended β-lactamase producing E. coli (ESBL-E. coli), methicillin-resistant Staphylococcus aureus (MRSA), and methicillin-resistant Staphylococcus pseudintermedius (MRSP) were determined for healthy dogs (n = 188) and cats (n = 39) from veterinary hospitals in southern Ontario that had not had recent exposure to antimicrobials. The prevalence of antimicrobial resistance in E. coli was as follows: streptomycin (dogs — 17%, cats — 2%), ampicillin (dogs — 13%, cats — 4%), cephalothin (dogs — 13%, cats — < 1%), and tetracycline (dogs — 11%, cats — 2%). Eleven percent of dogs and 15% of cats had isolates that were resistant to at least 2 antimicrobials. Cephamycinase (CMY)-2 producing E. coli was cultured from 2 dogs. No Salmonella spp., ESBL-E. coli, MRSA, or MRSP isolates were recovered. The observed prevalence of resistance in commensal E. coli from this population was lower than that previously reported in companion animals, but a small percentage of dogs may be a reservoir for CMY-2 E. coli.  相似文献   

16.
This study aimed at evaluate the presence and to study characteristics of Escherichia coli in the respiratory system microbiota of healthy broilers. Trachea, air sacs, and lungs of 20 broilers were analyzed at 21 days of age, reared in experimental conditions, without receiving antimicrobials. E. coli strains were isolated and identified using conventional bacteriology through morphological and biochemical characterization. The production of bacteriocin-like substances, the presence of virulence-associated genes (VAGs) of APEC (Avian Pathogenic Escherichia coli) predictors, and the antimicrobial susceptibility were evaluated. E. coli was found in 85 % of the animals (17/20), in the trachea, air sacs or lungs; and it was not found in 15 % of the animals (3/20). A total of 34 isolates were recovered, 13 from the air sacs, 13 from the lungs, and 8 from the trachea, which showed no production of bacteriocin-like substances nor virulence genes associated with APEC. Most isolates, 59 % (20/34), showed resistance to at least one of the tested antimicrobials, and six multiresistant strains were identified. The results demonstrated that strains of E. coli were commensal of the respiratory microbiota, and that they did not present pathogenicity to the host, since there were no clinical signs of disease, macroscopic lesions in the organs of the evaluated broilers, production of bacteriocin-like substances, nor virulence-associated genes considered as predictors of APEC in bacteria. These strains of E. coli were mostly susceptible to antimicrobials. However, the occurrence of multidrug-resistant strains suggests that these animals can act as reservoirs of resistant to antimicrobials E. coli.  相似文献   

17.
The presence of ESBL/AmpC-producing Escherichia coli in livestock such as pigs has been known for some time. However, to date there is little information about the transmission of these resistant bacteria between pig farms and their surroundings. Thus, the aim of this study was to explore this topic by investigating seven German pig fattening farms. Samples from outside (including ground surfaces, ambient air, slurry and digestate from biogas plants) and, in parallel, from inside the pig barns (including pig feces, dust, barn air, flies and mice feces) were examined for ESBL/AmpC-producing E. coli and selected isolates were compared by pulsed-field gel electrophoresis (PFGE) analysis. 14/17 (82.4%) slurry samples and three of four samples of digestate from biogas plants tested positive for ESBL/AmpC-producing E. coli. In the vicinity of the pig barns these resistant bacteria were detected in 14/87 (16.1%) boot swabs taken from various ground surfaces and in 2/36 (6%) ambient air samples. Inside the pig barns, 6/63 (9.5%) barn air samples and a small proportion of flies and mice feces samples were ESBL/AmpC-positive. PFGE analysis proved fecal emission as well as a possible spread via flies, as identical ESBL-E. coli isolates were detected in slurry and on fertilized fields, as well as in flies and pooled feces from inside the barn and slurry. Contaminated slurry presented the major emission source for ESBL/AmpC-producing E. coli in the pig fattening farms, but a spread via the airborne route or via different vectors also seems possible.  相似文献   

18.
Background: Antimicrobial resistance is increasing among Escherichia coli isolates associated with spontaneous infection in dogs and cats. Objectives: To describe E. coli resistance phenotypes and clonal relatedness and their regional prevalence. Animals: Isolates of E. coli (n = 376) collected from dogs and cats in the United States between May and September 2005. Methods: Isolates submitted from the South, West, Northeast, and Midwest regions of the United States were prospectively studied. Phenotype was based on E‐test susceptibility to 7 antimicrobials. Isolates were classified as no (NDR), single (SDR), or multidrug resistance (MDR). Clonal relatedness was determined by pulsed‐field gel electrophoresis (PFGE). Results: One hundred and ninety‐three (51%) isolates expressed resistance to at least 1 drug, yielding 42 phenotypes. SDR isolates (n = 84; 44%, 8 phenotypes), expressed resistance most commonly to amoxicillin (30%, n = 25) and least commonly to cefpodoxime (1%, n = 1). MDR isolates (n = 109; 56%, 31 phenotypes) were resistant to amoxicillin (96%, n = 105), amoxicillin‐clavulanate (85%, n = 93), and enrofloxacin (64%, n = 70); 18% (n = 20) were resistant to all drugs tested. The frequency of MDR did not differ regionally (P= .066). MDR minimum inhibitory concentrations (MICs) were 6‐fold higher than SDR MICs (P < .0001). Dendrograms of 91 isolates representing 25 phenotypes revealed 62 different PFGE profiles. Conclusions and Clinical Importance: E. coli strains spontaneously infecting dogs and cats are genetically and phenotypically diverse. Given the current prevalence of MDR among clinical isolates of E. coli in United States, implementation of a robust surveillance program is warranted.  相似文献   

19.
Antimicrobial resistance (AMR) in the aquatic environment represents an important means of introduction and dissemination of resistance genes, and presence of resistant pathogens in surface waters may pose a public health concern to recreational and drinking water users. The purpose of this study was to explore antimicrobial resistance patterns in water samples collected from the Grand River watershed (southwestern Ontario, Canada) to describe the composition, trends and potential risks of AMR in the aquatic environment. As part of FoodNet Canada and the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS), stream water samples were collected bi‐weekly from sampling sites within the Grand River watershed in the Waterloo, Ontario sentinel site and tested for the presence and antimicrobial susceptibility of Salmonella spp. (2005–2013) and generic Escherichia coli (2012–2013). Of all samples tested, 16% of Salmonella and 22% of E. coli isolates were resistant to at least one antimicrobial, including three Salmonella isolates and two E. coli isolates that were resistant to Category I antimicrobials, which are classified as very high importance for the treatment of serious bacterial infections in humans. The greatest proportion of resistant E. coli isolates were observed from the river site upstream of the drinking water intake, while the greatest proportion of resistant Salmonella isolates were from sites upstream in the watershed, and at one recreational water site. Salmonella resistance trends remained fairly stable between 2007 and 2013, with the exception of streptomycin and tetracycline which increased in 2010 and 2013. Continued surveillance of antimicrobial resistance patterns and exploration of risk factor data will allow for a better understanding of resistance transmission in the aquatic environment.  相似文献   

20.
This paper identifies common poultry diseases requiring antimicrobial therapy, antimicrobials deemed efficacious to treat these diseases, and antimicrobial resistance (AMR) in these commodity-pathogen combinations, and describes current residue issues and minor use minor species (MUMS) guidelines. Veterinarians with turkey/layer expertise and diagnosticians were surveyed to determine the bacterial and protozoal diseases diagnosed in the last 5 years. Avian pathogenic Escherichia coli, Staphylococcus aureus, and Ornithobacterium rhinotracheale were the 3 most frequently diagnosed pathogens of turkeys. In layers, E. coli-peritonitis, and Clostridium perfringens/Eimeria spp. infections were the most common diagnoses. A literature review identified 32 antimicrobials as efficacious and/or recommended for treating these diseases. Surveillance and monitoring indicate the presence of enteric resistant organisms from some of these avian species (including resistance to antimicrobials of very high importance to human medicine). This paper highlights the need for surveillance of pathogen frequency, antimicrobial use (AMU), and AMR particularly in turkeys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号