首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine dietary magnesium (Mg) requirements of juvenile grass carp, Ctenopharyngodon idella, magnesium sulphate was added to the basal diet at 0, 150, 300, 600, 1200, 2400 mg Mg kg−1 diet. Each diet was fed to three replicate groups of juvenile grass carp (initial weight: 7.69 ± 0.13 g) in a closed, recirculating rearing system for 76 days. No mortality or nutritional deficiency signs were observed except the growth depression in fish fed the Mg‐deficient diet. Growth performance and activities of serum superoxide dismutase (SOD), glutathione peroxidase (GPx) and lysozyme (LSZ) were highest (P <0.05) in fish fed the diet supplemented with 600 mg Mg kg−1. The serum malondialdehyde (MDA) content was higher (P <0.05) in fish fed the diets supplemented with 0 and 150 mg Mg kg−1 than that in fish fed the diets with ≥300 mg Mg kg−1. Mg concentrations both in whole‐body and vertebrae increased with the increase in dietary Mg level up to 300 mg kg−1, whereupon the response reached a plateau. Analysis by second‐order polynomial regression of weight gain, by broken‐line regression of vertebrae Mg concentration and by linear regression of whole‐body Mg retention of fish indicated that the adequate dietary Mg concentration for juvenile grass carp was 713.5, 627.7 and 469.8 mg kg−1 diet, respectively.  相似文献   

2.
This experiment was undertaken to establish the magnesium (Mg) requirement in young Atlantic salmon, Salmo salar L., in seawater-treated fresh water. In Norwegian hatcheries it is a common practice to add sodium hydroxide and/or sea water (1–2%) to improve pH and conductivity of the natural fresh water. Parr with initial weight of 8 g, were divided in six triplicate groups in brackish water containing 54 mg Mg L?1 and fed a basal casein-gelatine diet supplemented with minor amounts of krill and fish meal (containing 200 mg Mg kg?1) for an initial period of 3 weeks. Thereafter the fish were fed this diet supplemented with either 0, 100, 200, 300, 400 or 500 mg Mg kg?1 (as MgSO4) for 12 weeks. Growth and feed efficiency were recorded. Concentrations of Mg and other divalent cations (Ca and Zn) were measured in whole fish, serum and vertebrae. Sodium concentration in vertebrae was also measured. Growth and feed efficiency were unaffected by the levels of dietary magnesium used in the experiment. Magnesium concentrations in the whole body, serum and vertebrae Mg appeared to be more sensitive than growth and feed efficiency to differences in dietary Mg intake. The group fed the unsupplemented diet showed significantly lower Mg concentration in these tissues than the other groups. Whole-body calcium concentration was negatively correlated with dietary Mg and Ca:Mg ratios in the vertebrae were significantly affected by the dietary Mg levels. Zinc concentration in whole body, serum and vertebrae was not altered by the dietary Mg levels. Further, vertebral Na concentration did not vary between the dietary treatments. In conclusion, a minimum Mg supplementation level of 100 mg kg?1 dry diet (in total, 326 mg kg?1) was needed to maintain Mg concentration in the whole body and serum and for proper bone mineralization.  相似文献   

3.
An 8‐week feeding experiment was conducted to determine the dietary magnesium (Mg) requirement and physiological responses of Litopenaeus vannamei in low salinity water of 2 g L?1. Casein–gelatin‐based diets supplemented with seven levels of Mg (0, 0.4, 0.8, 1.6, 3.2, 6.4 and 8.0 g kg?1) were fed to juvenile shrimp. Prior to the experiment, the postlarvae were gradually acclimated to the low salinity media and fed with a basal diet (0.5 g Mg kg?1) for 2 weeks. After 8 weeks of feeding, survival ranged from 80.11% to 85.65% with no significant difference among the treatments. Hepatopancreas Mg2+‐ATPase and Na+/K+‐ATPase activities and muscle content of lipid and protein were not significantly affected by graded levels of Mg. The weight gain and mineral (calcium, potassium, sodium and total phosphorus) content of different tissues were significantly affected by dietary Mg levels, while there were no significant differences in ash and zinc content in tissues. The Mg content in tissues except hepatopancreas was maintained relatively constant regardless of dietary treatments. The dietary Mg requirement for optimal growth was 2.60–3.46 g Mg kg?1 by using the polynomial regression analysis based on growth.  相似文献   

4.
A growth study was conducted to determine the dietary niacin requirement of the Indian catfish, Heteropneustes fossilis (Bloch), fingerlings (Mean weight 9.41 ± 0.18 g). Semi‐purified diets with five levels (0, 5, 10, 20 and 40 mg kg?1 diet) of supplemental niacin were fed to H. fossilis for 15 weeks. Each diet was fed to three replicate groups of fish. Results indicated that the highest (P < 0.05) weight gain was for the fish fed the diet supplemented with 20 mg niacin kg?1, followed by fish fed the diets with 40, 10 and 5 mg niacin kg?1, and the lowest in fish fed the unsupplemented control diet. Patterns of specific growth rate (SGR) and protein efficiency ratio (PER) were similar to those of the weight gain. Survival of fish fed the control diet and niacin‐supplemented diet was 58% and 91–100% respectively. Niacin deficiency signs such as anaemia, anorexia, lethargy and skin haemorrhage were observed in fish fed the control diet. The haematocrit values (Ht) were higher (P < 0.05) in fish fed the diets supplemented with niacin than in fish fed the control diet. The hepatosomatic indexes (HSI) of fish fed with or without niacin‐supplemented diets were not significantly (P > 0.05) different from each other. Both body protein and lipid content were higher (P < 0.05) in fish fed the diet supplemented with 20 and 40 mg niacin kg?1, respectively, than those fish fed other diets. The niacin content in liver significantly (P < 0.05) reflected the supplementation level in the diet and ranged from 29.11 to 40.31 mg g?1 tissue. The associated liver niacin content for growth was about 47 μg g?1 tissue. Quadratic regression analysis showed that the dietary niacin requirement for maximal growth of H. fossilis under these experimental conditions was about 25 mg kg?1 diet.  相似文献   

5.
A 12‐wk experiment was conducted to determine the dietary biotin requirement of the fingerling Catla catla (7.9 ± 0.37 cm; 3.5 ± 0.12 g). Eight diets (35% crude protein, 16.72 kJ/g gross energy) with different levels of biotin (0, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, and 2.5 mg/kg diet) were fed to triplicate groups of fish to apparent satiation. Highest percent weight gain, protein retention efficiency, and best feed conversion ratio were observed in fish fed 0.5 mg biotin per kg diet. However, fish fed diets containing dietary biotin of 1.0, 1.5, 2.0, and 2.5 mg/kg did not show significant (P > 0.05) differences compared to those fed on dietary biotin of 0.5 mg/kg. Hematological indices, including hematocrit value, hemoglobin content, and red blood cell counts were found to be directly proportional (P < 0.05) to the dietary biotin levels up to 0.5 mg/kg, beyond which a plateau was recorded. Pyruvate carboxylase activity (PCA) was also found to increase with the incremental levels of dietary biotin up to 0.5 mg/kg and further increasing dietary biotin concentration led to stagnation in PCA of fish. Liver biotin concentrations responded positively (P < 0.05) until saturation, which occurred at 1.0 mg/kg diet. Broken‐line analysis of percent weight gain, protein retention efficiency, PCA, and liver biotin concentrations demonstrated that fingerling C. catla require biotin in the range of 0.41–0.87 mg/kg diet.  相似文献   

6.
Most of magnesium (Mg) in fish is located in the bone. Dietary calcium (Ca) and phosphorous (P) has been reported to affect scales and vertebrae Mg dramatically in juvenile grouper, but the effect of dietary Mg on tissue Ca and P is unknown. This study was conducted to investigate the effect of dietary Mg supplement on growth, feed efficiency, morphometry, and the ash and Ca, P, sodium (Na) content in scales and vertebrae of juvenile grouper. Seven experimental diets were formulated to contain graded levels of Mg by supplementing the basal diet with 0, 200, 400, 600, 800, 1000 and 2000 mg kg?1 Mg in the form of Mg sulphate (MgSO4·7H2O). Juvenile grouper with an initial body weight of 11.8 ± 0.1 g were fed to apparent satiation twice per day for 10 weeks. Dietary Mg supplement had no significant effect on growth, feed efficiency, and Mg concentration in scales and vertebrae of grouper, which indicates the Mg requirement of grouper was met in fish fed the basal diet. Mg supplements had significant effect on morphometry index such as body length, condition factor, viscera somatic index and mesenteric fat index. Extra dietary Mg supplement to the basal diet had no negative effect on ash, Ca and P concentrations in scales and vertebrae.  相似文献   

7.
A 16‐week feeding trial was conducted to determine the dietary pantothenic acid requirement of fingerling Channa punctatus. Six casein–gelatin‐based diets (450 g/kg CP; 18.39 kJ/g GE) with graded levels of pantothenic acid (0, 10, 20, 30, 40 and 50 mg/kg diet) were fed to triplicate groups of fish (6.2 ± 0.71 cm; 4.26 ± 0.37 g) near to apparent satiation. The growth evaluation in terms of absolute weight gain (AWG), feed conversion ratio (FCR) and protein retention efficiency (PRE) indicated the best performance (p < .05) in fish fed diet containing 30 mg/kg pantothenic acid. Highest haemoglobin, haematocrit and RBCs counts were also obtained in fish fed diet with 30 mg/kg pantothenic acid. Mean cell haemoglobin and mean cell volume were found to be lowest in fish fed pantothenic acid‐free diet indicating the anaemia in this group of fish. Superoxidase dismutase and catalase activities of liver tissue were found to improve (p < .05) with the increasing levels of dietary pantothenic acid from 0 to 30 mg/kg. However, liver pantothenic acid concentration responded positively with the increasing levels of pantothenic acid up to 40 mg/kg diet and then stagnation in liver pantothenic acid concentration with the further inclusion of pantothenic acid was recorded. Second‐degree polynomial regression analysis of AWG, FCR and PRE exhibited the pantothenic acid requirement at 36.4, 32.8 and 34.7 mg/kg diet, respectively. Data generated during this study would be useful in formulating pantothenic acid‐balanced commercial feeds for the intensive culture of this fish.  相似文献   

8.
A feeding trial was conducted to quantify the effects of phytase at levels of 0, 500, 1,000, 2,000, 4,000, and 8,000 units (U) per kg diet on utilization of dietary protein and minerals by fingerling (12 g) channel catfish Ictalurus punctatus fed an all‐plant‐protein diet composed of soybean meal, corn, and wheat middlings. The effects of phytase on dephosphorylation of phytic acid (phytate) in the alimentary tract of catfish also were determined. After 14 wk, mean weight gains (30.2–43.9 g/fish), feed conversion ratios (2.27–2.40 g feed consumed/g weight gain), protein efficiency ratios (1.47–1.61 g weight gaid/g protein consumed), and dietary protein retentions (23.8–26.7%) did not differ significantly (P > 0.05) among treatment groups. A digestibility trial conducted after the feeding trial showed no difference (P > 0.05) in mean digestibility of diet dry matter (49.0–58.3%) or crude protein (85.4‐88.5%) among treatment groups. Concentrations of ash (46.7–48.6%), calcium (Ca, 17.9–18.5%), phosphorus (P, 9.1–9.5%), and manganese (Mn, 65.5–74.1 mg/kg) were significantly higher (P ≤ 0.05) in bone of fish fed ≥ 500 U/kg than in bone of fish fed 0 U/kg (ash, 43.5%; Ca, 16.4%; P, 8.4%; and Mn, 49.0 ma/kg), but concentrations of these minerals did not differ (P > 0.05) in bone of fish fed ≥ 500 Uk/g. The magnesium (Mg) content of bone did not differ (P > 0.05) between fish fed 0 U/kg (0.29%) or 500 U/kg (0.34%), but was significantly lower in fish fed 0 U/kg than in fish fed ≥ 1,000 U/kg (0.35–37%). Bone Mg levels did not differ (P > 0.05) among fish fed ≥ 500 U/kg. The amount of zinc (Zn) in bone of fish fed 8,000 U/kg (153.3 mg/kg) was significantly higher than that in fish fed 0 U/kg (115.7 mg/kg) or 500 U/kg (130.3 mg/ kg), but did not differ from Zn levels in bone of fish fed 1,000–4,000 U/kg (134.5–135.8 mg/ kg). Dephosphorylation of phytate occurred primarily in the stomach within 2–8 h after diet ingestion, depending on the level of phytase supplementation. Initial levels of total phytate in the diet decreased 32–94% in stomach contents of fish fed l,000–8,000 U/kg within 2 h after feeding. Eight hours after feeding, stomach contents of fish fed ≥ 1,000 U/kg contained less than 6% of initial total dietary phytate. Stomach contents of fish fed 500 U/kg retained 92% of initial total dietary phytate 2 h after feeding and 15% of total dietary phytate 8 h after feeding. Results of this study indicate that phytase supplementation at levels up to 8,000 U/kg diet did not increase weight gain or improve dietary protein utilization of channel catfish fed an all‐plant‐protein diet. Addition of phytase at a level of 1,000 U/kg diet was sufficient to significantly increase the Ca, P, Mg, and Mn content of bone, relative to fish fed an unsupplemented diet, and significantly decrease the quantity of total phytate in feces. A phytase level of 8,000 U/kg diet significantly increased the bioavailability of naturally occurring Zn in feed ingredients and increased the rate of phytate dephosphorylation in the stomach, compared with a diet containing no added phytase. Increased utilization of naturally occurring minerals in feed ingredients reduces the need for mineral supplements in diets and results in decreased elimination of minerals in feces. Thus, use of phytase in catfish feeds can be expected to provide both economic and environmental benefits.  相似文献   

9.
A feeding trial was conducted to evaluate the effects of dietary magnesium on the growth, carapace strength, tissue and serum Mg concentration of soft‐shelled turtles, Pelodiscus sinensis (Wiegmann). Juvenile soft‐shelled turtles of approximate 5.4 g body weight were fed diets with seven levels of Mg (48, 206, 369, 670, 955, 1195 and 1500 mg Mg kg?1) for eight weeks. No significant difference (P ≥ 0.05) was found in weight gain (WG), feed conversion ratio or protein efficiency ratio among treatments. However, the WG of turtles continued to increase with increasing dietary Mg levels up to 670 mg kg?1, beyond which the WG levelled off. The plasma alkaline phosphatase activity and the muscle, bone Mg concentrations of the turtles increased with the increasing dietary Mg levels between 48 and 955 mg kg?1, beyond which the tissue Mg concentrations remained relatively constant. Furthermore, the carapace strengths of turtles fed with the control diet of 48 mg Mg kg?1 were significantly weaker (P < 0.05) than that of turtles fed with diets containing higher Mg levels. Based on a broken‐line modelling analysis, the required dietary Mg level for the optimal WG of juvenile soft‐shelled turtles was estimated to be approximately 650 mg kg?1. By contrast, the required dietary Mg levels for turtles to reach the optimal muscle and bone Mg concentrations were 1050 and 1000 mg kg?1 respectively. The required dietary Mg level for maximal alkaline phosphatase activity was approximately 980 mg kg?1.  相似文献   

10.
A feeding experiment was conducted to determine the dietary calcium (Ca) requirement for juvenile hybrid tilapia, Oreochromis niloticus × O. aureus reared in nature water. Purified diet supplemented with 0, 1, 2, 3, 4, 5, 7 and 10 g Ca kg−1 diet providing of 0.6, 1.6, 2.6, 3.7, 4.7, 5.5, 7.5 and 10.7 g Ca kg−1 diet, respectively, were fed to tilapia (mean initial weight: 0.52 ± 0.01 g, n = 3) for 8 weeks. Each diet was fed to three replicate groups of fish in a closed, recirculating fresh water rearing system. The rearing water contained 27.1–33.3 mg L−1 Ca. The tilapia fed the diets supplemented with ≥3.7 g Ca kg−1 had significantly (P < 0.05) higher weight gain, when compared with fish fed the diet with ≤1.6 g Ca kg−1. Fish fed the unsupplemented control showed significantly lower weight gain when compared with the other groups (P < 0.05). Bone Ca concentration was highest in fish fed the diets with ≥4.7 g Ca kg−1, intermediate in fish fed the diet with 2.6 g Ca kg−1 and lowest in fish fed the control diet. Scale Ca concentration was higher in fish fed the diets with ≥3.7 g Ca kg−1 than in fish fed the diets with ≤2.6 g Ca kg−1. Serum alkaline phosphatase activity was 36% increased in fish fed the diets with ≥2.6 g Ca kg−1 than fish fed the diets with <1.6 g Ca kg−1. Analysis by broken‐line regression of weight gain, bone and scale Ca concentrations indicated that the adequate dietary Ca concentration for tilapia in water containing 27.1–33.3 mg Ca L−1 was 3.5, 4.3 and 4.2 g Ca kg−1 diet, respectively, supplied as Ca‐lactate.  相似文献   

11.
An 8‐week feeding trial was conducted to evaluate the effects of dietary tryptophan concentration on weight gain and feed efficiencies of fingerling Indian major carp, Cirrhinus mrigala. Six isonitrogenous (40% crude protein) and isocaloric (17.90 kJ g?1) amino acid test diets containing casein, gelatin and l ‐crystalline amino acids with graded levels of l ‐tryptophan (0.06, 0.16, 0.26, 0.36, 0.46 and 0.56 g 100 g?1 dry diet) were formulated. Fish (4.25±0.30 cm, 0.62±0.02 g) were randomly stocked in triplicate groups in 70 L (water volume 55 L) flow‐through (1–1.5 L min?1) indoor circular tanks and fed experimental diets at 5% of their body weight/day in two feedings at 08:00 and 16:00 hours. Maximum live weight gain (277%), lowest feed conversion ratio (FCR) (1.50) and highest protein efficiency ratio (PER) (1.66) were measured at 0.36% dietary tryptophan. The relationship between dietary tryptophan levels and weight gain, FCR and PER data were described using second‐degree polynomial regression analysis indicating the tryptophan requirement at 0.42, 0.39 and 0.38 g 100 g?1 of dry diet respectively. Whole body moisture decreased with increasing tryptophan up to 0.36%. Significantly (P<0.05) higher protein content was evident in fish fed diet containing 0.36% tryptophan. Body fat increased significantly (P<0.05) in fish fed with different tryptophan concentrations except those fed 0.36% tryptophan where a significantly lower fat content was noted. Significantly (P<0.05) higher ash content was reported at 0.06% and 0.16% tryptophan levels. Survival was 100% in fish fed all the diets except those fed 0.06% tryptophan. Based on the results, diets for fingerling C. mrigala should contain tryptophan at 0.38 g 100 g?1 dry diet, corresponding to 0.95 g 100 g?1 dietary protein for optimum growth and efficient feed utilization.  相似文献   

12.
A growth trial was conducted to estimate the optimum concentration of dietary magnesium (Mg) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (5.56 ± 0.02 g) were fed diets containing graded levels (187, 331, 473, 637, 779 and 937 mg kg?1) of Mg for 8 weeks. Weight gain, specific growth rate and feed efficiency were linearly increased up to 637 mg kg?1 dietary Mg and then levelled off beyond this level. For body composition, dietary Mg levels higher than 473 mg kg?1 significantly decreased the moisture content but increased the lipid content of whole body, muscle and liver. Dietary Mg levels higher than 473 mg kg?1 significantly decreased the ash contents of vertebrae, scales and muscle. Mg contents in whole body, vertebrae, scales and plasma were increased up to 637 mg kg?1 dietary Mg and then levelled off beyond this level. However, Ca and P contents seem to be inversely related to dietary Mg. Dietary Mg levels higher than 473 mg kg?1 significantly decreased Zn and Fe contents in whole body and vertebrae. Broken‐line analysis indicated that 687 mg kg?1 dietary Mg was required for maximal tissue Mg storage, as well as satisfied for the optimal growth.  相似文献   

13.
Juvenile channel catfish were fed purified diets supplemented with magnesium (Mg) from Mg sulfate at levels of 0, 200, 400, 600, 800, and 1,000 mg/kg and 0, 200, 400, 600, and 800 mg/kg in two separate feeding studies. In study I, the effect of dietary levels of Mg on growth response, vertebral mineral content, and macrophage chemotaxis were evaluated. Study II had similar objectives except that whole body mineral content was measured, and resistance of channel catfish to Edwardsiella ictaluri challenge was also determined. Fish with an average weight of 10.89 g were stocked at a rate of 50 fish/110‐L aquarium (study I). In study II, fish with an average weight of 4.14 g were stocked at rates of 40 fish/110‐L aquarium. Prior to stocking, each batch of fish was acclimated to laboratory conditions and fed the basal diet for 2 wk. The concentration of Mg in rearing water was 1.8 mg/L. Each diet was fed to fish in quadruplicate and triplicate aquaria to apparent satiation for 10 wk for studies I and II, respectively. Fish fed the basal diet started to die as early as 3 d after the study began (17 d of feeding the diet without Mg supplementation). In both studies, weight gain, survival, and feed efficiency were lowest for fish fed the basal diet but increased with increasing dietary levels of Mg. However, the differences between the values of each of these parameters for fish fed diets containing supplemental Mg were not always significant. Magnesium‐deficiency signs observed were anorexia, sluggishness, convulsions, deformed snout, vertebral curvature, muscle flaccidity, and high mortality. Vertebral and whole body ash concentrations were high, but Mg content was low for fish fed the basal and the 200‐mg Mg diets. Bone Ca content did not differ among fish fed different diets (study I), but whole body Ca tended to increase for fish fed the basal diet, suggesting the possibility of calcification of soft tissues. Macrophage chemotaxis in the presence of exoantigen was highest for fish fed diets supplemented with Mg at 400 and 200 mgkg for studies I and II, respectively. When expressed in terms of chemotaxis index, however, maximum or near maximum value was observed at a dietary Mg level of 400 mg/kg. Thus, a dietary level of Mg of 400 mg/kg from Mg sulfate was required for optimum growth and survival, maintaining high tissue levels of Mg, prevention of muscle flaccidity and skeletal deformity, and stimulating macrophage chemotaxis. Dietary levels of Mg had no effect on the resistance of juvenile channel catfish to Edwarsiella. ictaluri challenge.  相似文献   

14.
A 10‐week feeding trial was conducted to determine the optimal requirement of cobia (Rachycentron canadum Linneaus) for dietary ascorbic acid (AA). Graded levels of L‐ascorbyl‐2‐polyphosphate (LAPP) were supplemented in basal diet to formulate six semi‐purified diets containing 2.70 (the control diet), 8.47, 28.3, 80.6, 241 and 733 mg AA equivalent kg?1 diet, respectively. Each diet was randomly fed to triplicate groups of fish in flow‐through plastic tanks (300 L), and each tank was stocked with 25 fish with average initial weight of 4.59 ± 0.36 g. Observed deficiency signs included poor growth, higher mortality and lower feeding rate (FR) in the fish of the control group. Fish fed the control diet had significantly lower weight gain (WG), lower feed efficiency ratio (FER) and lower tissue AA concentrations in fish liver and muscle. With the increase of dietary AA, the survival, WG, FER, hepatic and muscular AA concentrations of cobia significantly increased and then levelled off. The dietary AA requirement of cobia was estimated to be 44.7 mg kg?1 based on WG, 53.9 mg kg?1 or 104 mg kg?1 based on either hepatic or muscular AA concentration, respectively.  相似文献   

15.
A two‐factor orthogonal test was conducted to determine the dietary vitamin E (VE, dl ‐α‐tocopheryl acetate) requirement for sub‐adult GIFT strain of Nile tilapia (Oreochromis niloticus) at two lipid levels, and evaluate its effect on antioxidant responses. A basal diet containing 60 or 130 g/kg of soybean oil was supplemented with 0, 20, 40, 60, 120 and 240 mg VE/kg, respectively. Each diet was fed to three replicate groups of tilapia with initial weight (80.3 ± 0.7) g for 10 weeks. Results showed that the weight gain, feed efficiency and hepatic VE retention of fish were significantly increased by the increased VE in diets. In groups with 60 and 130 g/kg lipid, fish fed diets supplemented with VE had higher serum superoxide dismutase (SOD) and catalase activity, and lower malondialdehyde content than fish fed the VE un‐supplemented diet (p < .05). The proximate composition of fish had no significant difference in the group with 130 g/kg lipid, whereas crude lipid and ash content were significantly affected by dietary VE in the group with 60 g/kg lipid. Based on broken‐line regression analysis, dietary VE requirement to support the maximum weight gain and serum SOD were 43.2–45.8 and 66.0–76.1 mg/kg in diets with 60 and 130 g/kg lipid, respectively.  相似文献   

16.
The present experiment was conducted to quantify dietary copper (Cu) requirement for juvenile yellow catfish Pelteobagrus fulvidraco. The six experimental diets were formulated to contain the graded levels of CuSO4·5H2O (0, 0.005, 0.01, 0.02, 0.04 and 0.08 g kg?1 diet respectively) providing the actual dietary copper values of 2.14 (control), 3.24, 4.57, 7.06, 12.22 and 22.25 mg Cu kg?1 diet respectively. Each diet was fed to triplicate groups of yellow catfish (initial body weight: 3.13 ± 0.09 g, means ± SD) in an indoor static rearing system for 7 weeks. Fish fed the diet containing 3.24 mg Cu kg?1 diet had the highest weight gain and specific growth rate, but they were not significantly different from that of fish fed the 4.57 and 7.06 mg Cu kg?1 diets (P > 0.05). The poorest feed conversion rate, the lowest protein efficiency ratio, the lowest hepatosomatic index and viscerosomatic index were observed in fish fed the diet containing the highest Cu content diet (P < 0.05). Condition factor showed no significant differences among the treatments (P > 0.05). Proximate composition of fish body was significantly affected by dietary copper level (P < 0.05). Cu contents of whole body and liver increased with dietary Cu levels (P < 0.05), but muscle Cu content remained relatively stable (P > 0.05). Analysis by the second‐order regression of SGR and linear regression of whole‐body Cu retention of the fish indicated that dietary Cu requirements in juvenile yellow catfish were 3.13–4.24 mg Cu kg?1 diet.  相似文献   

17.
ABSTRACT

Dietary biotin requirement of fingerling Channa punctatus (4.52 ± 0.46 g) was estimated by conducting a 16-week growth trial. Fish were fed casein gelatin-based purified diets (450 g/kg crude protein, 18.39 kJ/g gross energy) with seven levels of dietary biotin (0, 0.04, 0.09, 0.47, 1.02, 1.43, and 1.96 mg/kg diet) to triplicate groups near to satiation. Significantly higher absolute weight gain (P = 0.0018), specific growth rate (P = 0.0027), protein gain (P = 0.0016), protein deposition (P = 0.0038), and lower feed conversion ratio (P = 0.0003) were shown in fish fed diet containing 0.47 mg/kg biotin, whereas liver biotin concentration showed a significant improvement (P = 0.0021) with increasing levels of dietary biotin up to 1.02 mg/kg. Broken-line analysis of absolute weight gain, protein gain, and liver biotin concentrations indicated that fingerling C. punctatus require biotin at 0.46, 0.44, and 0.97 mg/kg diet. Based on protein gain, optimum pyridoxine requirement for fingerling C. punctatus is recommended at 0.44 mg/kg diet.  相似文献   

18.
Quantitative l-lysine requirement of juvenile grouper Epinephelus coioides   总被引:3,自引:0,他引:3  
An 8‐week feeding trial was conducted to determine the quantitative lysine requirement of juvenile grouper Epinephelus coioides (initial mean weight: 15.84 ± 0.23 g, mean ± SD) in eighteen 500‐L indoors flow‐through circular fibreglass tanks provided with sand‐filtered aerated seawater by feeding diets containing six levels of l ‐lysine ranging from 19.2 to 39.5 g kg?1 dry diet in 4 g kg?1 increments. The diets, in which 250 g crude protein kg?1 diet came from fish meal and soybean protein concentrate, and 230 g kg?1 from crystalline amino acids, were formulated to simulate the amino acid profile of 480 g kg?1 whole chicken egg protein except for lysine. Each diet was assigned to three tanks in a completely randomized design. Grouper were fed to apparent satiation twice daily during the week and once daily on weekends. Weight gain and specific growth rate increased with increasing levels of dietary lysine up to 27.2 g kg?1 (P < 0.05) and remained nearly the same thereafter (P > 0.05). Feed efficiency was the poorest for fish fed the lowest lysine diet (P < 0.05) and showed no significant differences among other treatments (P > 0.05). Survival could not be related to dietary treatments. Body composition remained relatively constant except for lipid contents in muscle and liver. Total essential amino acid contents in liver increased with dietary lysine level although there was a slight decline for fish fed the highest lysine level of diet. Plasma protein content increased with increasing dietary lysine level (P < 0.05), but cholesterol, triacylglycerol and glucose contents were more variable and could not be related to dietary treatments. Dietary lysine level significantly influenced morphometrical parameters (condition factor, hepatosomatic index and intraperitoneal fat ratio) of juvenile grouper (P > 0.05). Broken‐line analysis of weight gain indicated the dietary lysine requirement of juvenile grouper to be 28.3 g kg?1 diet or 55.6 g kg?1 dietary protein.  相似文献   

19.
An 8‐week feeding trial was conducted to estimate the optimum dietary manganese (Mn) requirement for juvenile hybrid grouper, Epinephelus lanceolatus × E. fuscoguttatus. The basal diet was formulated to contain 520 g/kg crude protein from casein and fishmeal. Manganese methionine was added to the basal diet at 0 (control group), 2.5, 5, 10, 20 and 40 mg Mn/kg diet providing 7.48, 10.34, 13.76, 19.72, 31.00 and 53.91 mg Mn/kg diet, respectively. Each diet was randomly fed to triplicate groups of juveniles, and each tank was stocked with 20 fish (initial weight, 60.06 ± 0.68 g). The manganese content in rearing water was monitored and kept below 0.01 mg/L. Results showed that the weight gain ratio (WGR), protein efficiency ratio (PER), specific growth rate (SGR), Mn contents in whole body, liver and vertebra, and activities of hepatic Mn superoxide dismutase (Mn‐SOD), total SOD (T‐SOD) and glutathione peroxidase (GSH‐PX) were significantly improved by dietary Mn supplementation (< .05). However, dietary Mn did not affect arginase (DArg) activity. The highest feed conversion ratio (FCR) was observed in fish fed the basal diet (< .05). No significant differences were found on the Cu and Zn contents in whole body by supplementing dietary Mn. Supplemented Mn in diets had significantly effect on liver and vertebral trace element deposition (< .05). Fish fed the basal diet had the highest Fe and Zn contents in vertebra (< .05). There were no significant differences on hepatic pyruvate decarboxylase (PDC) activity with supplemented Mn levels below 13.76 mg/kg. As biomarker of oxidative stress, malondialdehyde (MDA) content in liver was significantly higher in fish fed the basal diet (< .05). Using the broken‐line models based on SGR, dietary Mn requirement of the juvenile hybrid grouper was estimated to be 12.70 mg/kg diet.  相似文献   

20.
An 8‐week feeding trial was conducted to evaluate two vitamin C derivatives, L‐ascorbyl‐2‐monophosphate‐Mg (C2MP‐Mg) and L‐ascorbyl‐2‐monophosphate‐Na (C2MP‐Na), to satisfy the vitamin C requirement and to test their effects on the immune responses of juvenile grouper, Epinephelus malabaricus. C2MP‐Mg and C2MP‐Na were each supplemented at 20, 50, 80, 150, 250, and 400 mg kg?1 diet in the basal diet providing of 7, 18, 31, 51, 93, 145 mg ascorbic acid (AA) equivalent of C2MP‐Mg kg?1 diet and 4, 10, 17, 31, 47, 77 mg ascorbic acid (AA) equivalent of C2MP‐Na kg?1 diet, respectively. Basal diet without AA supplementation was included as control. Each diet was fed to triplicate groups of grouper (mean initial weight 3.20 ± 0.05 g). Fish fed diets supplemented with either C2MP‐Mg or C2MP‐Na had significantly (P < 0.05) greater weight gain (WG), feed efficiency and survival than those fed the unsupplemented control diet. Liver ascorbate concentrations in fish generally increased as dietary C2MP‐Mg or C2MP‐Na supplementation level increased. Haemolytic complement activity was higher in fish fed diets supplemented with 92 mg AA equivalent of C2MP‐Mg kg?1 or 10–17 mg AA equivalent of C2MP‐Na kg?1 than fish fed the unsupplemented control diet. Lysozyme activity was higher in fish fed ≥51 mg AA equivalent of C2MP‐Mg kg?1 or ≥47 mg AA equivalent of C2MP‐Na kg?1 than fish fed the unsupplemented control diet. Analysis by broken‐line regression of WG indicated that the adequate dietary vitamin C concentration from each vitamin C derivative in growing grouper is 17.9 mg AA equivalent of 2MP‐Mg kg?1 and 8.3 mg AA equivalent of C2MP‐Na kg?1, and it also indicated that C2MP‐Mg is about 46% as effective as C2MP‐Na in meeting the vitamin C requirement of grouper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号