首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has recently been shown that the antibody response to glycoprotein I (gI) of Aujeszky's disease virus can be used to distinguish infected from vaccinated pigs. To examine whether pigs exposed to low doses of a mildly virulent strain of Aujeszky's disease virus produce antibody to gI four groups of four pigs were inoculated intranasally with 10, 10(2), 10(3) or 10(4) plaque forming units (PFU) of the Sterksel strain. Two unvaccinated pigs and two pigs vaccinated intranasally with Bartha's K strain, a gI-negative vaccine, were placed in contact with each group. The pigs given 10 PFU and the in-contact pigs in this group did not become infected. The inoculated and the unvaccinated in-contact pigs in the other groups developed mild signs of illness and produced antibody to gI. Four of six vaccinated in-contact pigs that became infected showed neither clinical signs nor virus shedding and still produced antibody to gI. The other two vaccinated pigs appeared to be resistant to contact-challenge. The antibody response to gI persisted for at least seven months. These results support the idea that Aujeszky's disease virus may be eradicated by a programme based on vaccination with gI-negative vaccines, in conjunction with the detection and subsequent removal of gI-antibody positive, infected, pigs.  相似文献   

2.
Aujeszky's disease virus (ADV) envelope glycoprotein gVI (gp50) was purified from virus-infected Vero cells by ion-exchange and immunoaffinity chromatography and its usefulness as a subunit vaccine was evaluated in active and passive immunization studies. Four-week-old piglets were immunized intramuscularly (IM) with purified gVI twice two weeks apart and challenged intranasally (IN) 10 days after the second immunization with 30 LD50 (10(8)PFU) of a virulent strain of ADV. Pigs, vaccinated with 100 micrograms of purified gVI, produced virus neutralizing antibodies and did not develop clinical signs after challenge exposure. The challenge virus was not isolated from nasal swabs and tonsils of gVI-vaccinated pigs, whereas non-vaccinated control pigs developed illness after challenge exposure with the same virulent ADV strain which was later recovered from their nasal swabs and tonsils. Pregnant sows vaccinated twice with purified gVI (IM) at a three week interval produced virus neutralizing antibodies in colostrum. Four-day-old sucking piglets born of vaccinated sows were passively protected by colostral antibodies against intranasal challenge with a lethal dose of virulent ADV. Sera from gVI-vaccinated pigs were distinguished from experimentally infected swine sera by their differential reactivity in enzyme-linked immunosorbent assay (ELISA) using four major viral glycoproteins (excluding gVI) as antigen purified by the use of lentil-lectin.  相似文献   

3.
An outbreak of Aujeszky's disease occurred in a flock of sheep which had been housed together with pigs. After the death of five sheep with clinical signs of Aujeszky's disease, the remaining sheep were vaccinated with the Bartha vaccine strain, and the pigs were vaccinated with the 783 vaccine strain of Aujeszky's disease virus. Despite vaccination, however, more sheep died. Brain tissues from four sheep were collected for virus isolation and for immunobistological examinations. Only vaccine virus (gE-negative) was detected in the tissue. After DNA restriction enzyme analysis of the isolated virus, DNA of one or both of the vaccine strains was detected in all sheep. In one sheep field virus DNA was also detected. However, when the polymerase chain reaction was performed on samples prepared from paraffin-embedded tissues, DNA of field virus (gE-positive) was detected in all four sheep. It was probable that the sheep had not yet mounted a sufficient immune response to the vaccine virus, or were already infected with field virus at the time of vaccination. We concluded that the sheep died from field virus infection and not from vaccine virus infection and that only the polymerase chain reaction made it possible to specifically detect even very small amounts of field virus DNA among vaccine virus DNA in all investigated sheep.  相似文献   

4.
Ten-week-old pigs with high levels of maternally derived antibody (MDA) against Aujeszky's disease virus (ADV) were given either a single intranasal vaccination or one or two doses (with an interval of three weeks) of commercially available attenuated ADV vaccines intramuscularly. The pigs did not produce a clear neutralising antibody response to ADV. However, pigs vaccinated intranasally and pigs given two doses of attenuated ADV vaccines were protected against intranasal challenge with virulent ADV two months after the first vaccination. Pigs given one parenteral dose of attenuated ADV vaccine were insufficiently protected. Protection was shown by shorter periods of growth arrest and fever and a greater reduction of virulent virus shedding after challenge in vaccinated pigs than in unvaccinated control pigs. Although intranasal vaccination conferred protection comparable to two parenteral doses of attenuated vaccines, it reduced shedding of virulent virus much more effectively. These results, together with those of other studies, show that intranasal vaccination confers better protection against Aujeszky's disease in pigs with MDA than parenteral vaccination. However, the efficacy of intranasal vaccination also decreases with increasing levels of MDA at the time of vaccination.  相似文献   

5.
The pathogenicity of a field strain, 417, of bovine ephemeral fever (BEF) virus for newborn and young calves was investigated. Three colostrum-deprived newborn calves inoculated intravenously developed severe clinical disease and viraemia, and produced long-lasting neutralising antibody. The incubation period in these animals was 10 and 11 days, compared with 5 to 7 days for older calves. Two newborn calves which received colostrum from immune dams and 2 which received colostrum from non-immune dams failed to respond clinically to intravenous inoculation with strain 417. The neutralising antibody response of these calves was of short duration. Four calves, 7 to 8 weeks old and lacking detectable neutralising antibody to BEF virus, or having low levels of antibody, did not develop clinical disease when inoculated intravenously. Four calves 12 to 14 weeks of age and free of detectable neutralising antibody to BEF virus developed clinical disease when inoculated with strain 417.  相似文献   

6.
A study was conducted to examine the usefulness of a glycoprotein I (gI)-ELISA to monitor Aujeszky's disease virus infection in two vaccinated pig herds; the gI-ELISA can differentiate between pigs infected with Aujeszky's disease virus and pigs vaccinated against Aujeszky's disease with gI-negative vaccines. The two herds had been vaccinated with gI-negative vaccines for several years. The first survey, in September 1986, revealed that approximately 10 per cent of the breeding pigs in a large multiplier herd were seropositive for antibodies to gI of Aujeszky's disease virus, and it was decided to try to eliminate the virus from the herd by gI-ELISA testing and culling of gI-seropositive pigs. A one month quarantine period for incoming stock was established, and only gI-seronegative pigs were admitted to the herd. After two rounds of testing and culling the herd appeared to be free of wild-type Aujeszky's disease virus, and neither Aujeszky's disease virus nor antibodies could be detected either in 21 sentinel pigs placed on the farm or in 347 stillborn piglets or piglets that died shortly after birth. The herd probably remained free of Aujeszky's disease virus until the end of the 27-month period of monitoring except for two of 639 breeding pigs that were unexpectedly found to be positive in the gI-ELISA in November 1987. These sows were culled. A second breeding herd was monitored for antibodies to gI of Aujeszky's disease virus for two years. The gI-seropositive sows constituted approximately 30 per cent of the herd's breeding pigs, but they were not culled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The temperature-sensitive (ts), thymidine kinase-deficient (TK-) mutant designated ZHtsTK- strain, of Aujeszky's disease virus (ADV) was isolated from a virulent strain with the treatments using 5-bromodeoxyuridine and arabinosylthymine. The ZHtsTK- strain was easily distinguished from the other virulent ADV strains by plaque size on HmLu-1 and chicken embryo fibroblast cells and by restriction endonuclease analyses using Bam HI, Sal I and Kpn I. The ZHtsTK- strain was avirulent for mice, guinea pigs and rabbits, and produced neutralizing antibodies to ADV in these animals. The rabbits inoculated with the ZHtsTK- strain did not shed detectable amounts of virus after dexamethasone treatment. The ZHtsTK- strain was also avirulent for 5-day-old piglets and did not cause disease. No virus was detected from the piglets inoculated intramuscularly in the nasal swabs or the tissues examined on postinoculation day 9. These findings presented here suggested that there is a significant correlation between pathogenicity and properties such as ts and TK-, and the combination of ts and TK- properties plays a much larger role in reducing virulence for animals.  相似文献   

8.
《Veterinary microbiology》1997,54(2):113-122
Pseudorabies virus (PRV) vaccines are often compared for their capacity to reduce virus excretion after a challenge infection. Vaccines, used for the eradication of PRV, however, should reduce transmission of PRV among pigs. The purpose of this study was to investigate whether the amount of virus excreted after a challenge infection is an accurate measure of the capacity of a vaccine to reduce transmission of PRV among pigs. Two experiments were carried out, each using two groups of 10 pigs. The pigs in group one were intramuscularly vaccinated once with the glycoprotein E (gE)-negative vaccine X, the pigs in group two with the gE-negative strain 783. Eight weeks later, 5 pigs in each group were inoculated with wild-type PRV. A gE-ELISA was used to detect PRV infection. The transmission of PRV was estimated from the number of contact infections and expressed as the reproduction ratio R. The inoculated pigs vaccinated with vaccine X shed significantly more virus than the inoculated pigs vaccinated with strain 783. However, despite the difference in virus excretion, the transmission of PRV between the two groups did not differ. We conclude that virus excretion is not an accurate measure for determining vaccine effectiveness. However, R of vaccine X (R = 0.98) was not significantly below one, whereas R of vaccine 783 (R = 0) was significantly below one. Consequently, we cannot exclude the possibility that major outbreaks of PRV occur among pigs vaccinated with vaccine X.  相似文献   

9.
Eight 2-month-old merino lambs were inoculated intranasally with different (10(2.0)-10(5.0)TCID50) amounts of Aujeszky's disease virus (ADV). Electron microscopic studies indicated that ADV replicated in extra-neural sites, in the epithelial cells of the mucosa of the upper and lower respiratory tract. Although the virus was excreted continuously in nasal discharges, horizontal transmission to contact lambs failed. The surviving exposed and contact lambs had no demonstrable antibodies against ADV and they were susceptible when challenged by ADV. However, the virus was transmitted to susceptible pigs in contact with the exposed lambs. One of the five contact pigs showed characteristic clinical signs of Aujeszky's disease, developed a nonsuppurative meningoencephalomyelitis and ADV was recovered from the brain, nasal discharge and other organs. Restriction enzyme analysis of DNA from this virus confirmed the sheep origin of the isolate. The other 4 pigs seroconverted. ADV infection in sheep is therefore a possible source of infection for pigs, but the lack of horizontal transmission in sheep was confirmed.  相似文献   

10.
Hysterectomy-produced colostrum-deprived 5- and 27-day-old pigs were inoculated intramuscularly (IM) or intranasally (IN) with the temperature-sensitive and thymidine kinase-deficient ZHtsTK- strain of Aujeszky's disease virus (ADV), and the nasal swabs and organs of the pigs were periodically collected for virus isolation. No abnormal clinical signs were observed in these pigs, except for a mild febrile response. Viral shedding in the nasal swabs with low titers was detected in the pigs inoculated IN between postinoculation day (PID) 1 and 5, but not in those of the pigs inoculated IM. No contact infection, however, occurred in the cohabiting pigs. Viruses with low titers were isolated only from the muscles and lymph nodes at the site of inoculation in the pigs inoculated IM on PID 2 and 4, but not from any organs of the pigs inoculated IN. To investigate the ability of the ZHtsTK- strain to establish a latent infection in pigs, the pigs inoculated IM or IN with the ZHtsTK- strain were treated with prednisolone. No virus was detected in the trigeminal ganglia or the nasal swabs collected after prednisolone treatment by the cocultivation method. The immunological evaluation demonstrated that immunization of pigs with this strain was effective in preventing clinical signs caused by ADV infection. The duration of virus shedding was markedly shortened in immunized pigs, particularly in those immunized twice and the total quantity of virus recovered from immunized pigs was reduced in comparison with unimmunized pigs.  相似文献   

11.
The vaccine efficacy of a genetically engineered deletion mutant strain of pseudorabies virus, strain 783, was compared with that of the conventionally attenuated Bartha strain. Strain 783 has deletions in the genes coding for glycoprotein I and thymidine kinase. In experiment 1, which had a 3-month interval between vaccination and challenge exposure, strain 783 protected pigs significantly (P less than 0.05) better against virulent virus challenge exposure than did the Bartha strain. The growth of pigs vaccinated with strain 783 was not arrested, whereas that of pigs vaccinated with the Bartha strain was arrested for 7 days. Of 8 pigs given strain 783, 4 were fully protected against challenge exposure; none of the pigs given strain Bartha was fully protected. In experiment 2, which had a 3-week interval between vaccination and challenge exposure, the growth of pigs vaccinated with strain 783 was arrested for 3.5 days, whereas that of pigs vaccinated with the Bartha strain was arrested for 6 days. In experiment 3, pigs with moderate titer of maternal antibodies were vaccinated twice IM or once intranasally with either strain 783 or Bartha and were challenge-exposed 3 months after vaccination. Pigs given strain 783 twice IM were significantly (P less than 0.05) better protected than were the other pigs. They had growth arrest of only 6 days, compared with 9 days for pigs of other groups, and shed less virus after challenge exposure. Results of this study indicate that the vaccine based on the deletion mutant strain 783 is more efficacious than is the Bartha strain of pseudorabies virus.  相似文献   

12.
Four groups of calves were vaccinated with a glycoprotein E-negative vaccine for infectious bovine rhinotracheitis. Two groups of calves were vaccinated intramuscularly and challenged with a wild-type virus 14 and seven days after being vaccinated. The other two groups were vaccinated intranasally and similarly challenged after four and three days; an unvaccinated control group was also challenged. All four vaccination schedules reduced the incidence of clinical signs and the excretion of wild-type virus, and these reductions occurred as early as three days after the intranasal vaccination even in the absence of neutralising antibodies. Because of its marker characteristics, vaccination with this vaccine would not interfere with the detection of infected cattle during an outbreak, and it should therefore provide a useful tool for emergency vaccination campaigns.  相似文献   

13.
Two commercial Aujeszky's disease vaccines, a modified killed vaccine and a sub-unit vaccine, both carrying a deletion of glycoprotein-I, were evaluated in pigs. Each vaccine was administered to two groups of four pigs, twice at 4-week intervals, with two pigs held as unvaccinated controls. All pigs were challenged with a New Zealand field isolate of Aujeszky's disease virus 3 weeks after the second vaccination. The results indicate that the sub-unit vaccine was able to protect pigs against clinical Aujeszky's disease much better than the pigs vaccinated with the modified killed vaccine when challenged with a virulent virus. However, the amount and the duration of virulent virus excretion following challenge was greater with the sub-unit vaccine than the modified killed vaccine. Pigs vaccinated with the sub-unit vaccine were shown to be latently infected following challenge. Latent infection was demonstrated by excretion of Aujeszky's disease virus from the nasal cavity after dexamethasone treatment and seroconversion of a sentinel in contact pigs to Aujeszky's disease virus.  相似文献   

14.
In this study, an intranasal immunization strategy was set up in maternally immune pigs in order to protect them not only clinically but also virologically. Two genetically engineered Aujeszky's disease virus (ADV) strains, Kaplan gE-gI- and Kaplan gE-gC-, were used for intranasal immunization. Both strains were safe for 4-week-old pigs. A single intranasal inoculation of 10(6.0) TCID50 of Kaplan gE-gI- and Kaplan gE-gC- at 4 weeks of age in the presence of moderate titres of maternally derived antibodies (SN titres: 12-16) reduced the amount of weight loss, fever and virus excretion upon challenge 6 weeks later. In a second experiment, the effect of an additional intramuscular booster with three different commercial vaccines (containing attenuated Bartha or NIA3-783 or inactivated Phylaxia; all suspended in an oil-in-water emulsion) at 10 weeks of age was evaluated. One month after the last intramuscular booster, between five and seven pigs from each group were selected for challenge. All intranasally/intramuscularly immunized pigs showed a significantly better clinical and virological protection after challenge than the single intranasally immunized pigs. In the double immunized group, the protection was better when Kaplan gE-gC- was used for the intranasal priming (only two of 14 pigs excreted virus with a duration of 4 days) than when Kaplan gE-gI- was used (13 of 18 pigs excreted virus with a duration ranging from 1 to 4 days). The virological protection was not influenced by the type of vaccine used for booster vaccination. Because the intranasal/intramuscular immunization approach is very compatible with current pig movements on farms and pigs with moderate levels of maternally derived antibodies can effectively be immunized, it can be considered as a good alternative to intramuscular/intramuscular vaccinations especially in regions with a high ADV prevalence.  相似文献   

15.
On three consecutive days, six pigs were exposed for 15 minutes to aerosols of Aujeszky's disease virus. The total estimated dose was 4·5 log10 50. Within each isolation room, a sentinel pig was placed on a deck two feet away from the infected pig. The breath of the pigs that had inhaled the aerosols was collected on days 3, 7 and 13. The respiratory and other clinical signs of the infected pigs resembled those in field cases of Aujeszky's disease. All the pigs infected with Aujeszky's disease virus seroconverted within seven to 10 days after infection. Among the sentinel pigs, clinical signs were minimal and only three seroconverted.  相似文献   

16.
A CELL CULTURE VACCINE AGAINST BOVINE EPHEMERAL FEVER   总被引:1,自引:0,他引:1  
SUMMARY A vaccine was prepared from cell culture fluids harvested from the twelfth passage of the 919 strain of bovine ephemeral fever (BEF) virus in Vero cell cultures. Cattle were vaccinated subcutaneously with various combinations of strain 919 virus and adjuvants. Neutralising antibodies were assayed at various times after vaccination and some cattle were challenged by intravenous inoculation with the virulent 417WBC strain of BEF virus. Strain 919 virus of the third and twelfth passage levels in Vero cells produced neither fever, clinical illness nor detectable viraemia in 5 calves inoculated intravenously. Nor could viraemia be detected in 5 heifers receiving vaccine subcutaneously. When the vaccine was administered mixed with aluminium hydroxide adjuvant, the production of neutralising antibodies increased with an increase in the volume of vaccine from 2.5 ml to 10 ml and the response to 2 injections was significantly better than the response to a single injection. The neutralising antibody response was decreased when vaccine was diluted in phosphate buffered saline. The neutralising antibody response following 2 subcutaneous vaccinations with strain 919 virus mixed with aluminium hydroxide adjuvant was higher than that following intravenous inoculation with virulent virus. The vaccine-induced antibodies persisted for at least 12 months, and revaccination at this time led to an increase in the titre of neutralising antibody. Antibodies induced by a single subcutaneous administration of strain 919 virus mixed with Freund's complete adjuvant persisted for at least 40 weeks; those induced by vaccine containing Freund's incomplete adjuvant had virtually disappeared within 16 weeks. All these calves responded to vaccination with aluminium hydroxide-containing vaccine with increases in levels of neutralising antibodies. Of 26 vaccinated calves challenged with virulent BEF virus, 24 remained clinically normal. Two developed brief periods of pyrexia on the seventh day after challenge, but no other clinical signs. One of these calves had a viraemia that was demonstrated only by intravenous inoculation of a susceptible calf. The remaining calf had no detectable viraemia. All of 7 unvaccinated calves developed severe clinical BEF within 5 days of challenge. No disease attributable to the 919 virus occurred in 24 vaccinated pregnant heifers or their newborn calves.  相似文献   

17.
Eight separate, but related experiments, were carried out in which groups of six calves were vaccinated with one of eight commercial vaccines. In each experiment the vaccinated calves were subsequently exposed to three calves infected with virulent bovine herpesvirus-1 (BHV-1). In each experiment, all infected donor calves developed a typical severe infectious bovine rhinotracheitis (IBR) infection and excreted virus in their nasal secretions of up to 10(8.00) TCID50/0.1 ml. One live BHV-1 gE-negative vaccine (A) and three modified live vaccines (B, C, D), administered intranasally, all protected against clinical disease. The calves vaccinated with one vaccine (C) also did not excrete virus in the nasal secretions, whereas the calves protected by vaccines A, B and D excreted virus in their nasal secretions but at low titres (10(0.66)-10(1.24) TCID50/0.1 ml). A fourth modified live vaccine (E), given intramuscularly, failed to prevent mild clinical disease in the calves which also excreted virus in the nasal secretions at titre of 10(1.00) TCID50/0.1 ml. An analogous result was given by the calves vaccinated with either of the two inactivated vaccines (F and G) or with a BHV-1 subunit vaccine (H). All calves developed mild clinical signs and excreted virus at titres of 10(2.20)-10(3.12) TCID50/0.1 ml. Calves vaccinated with C vaccine were subsequently given dexamethasone, following which virus was recovered from their nasal secretions. The virus isolates did not cause disease when calves were infected and appeared to be closely related to the vaccine strain.  相似文献   

18.
Three newborn calves were inoculated intracerebrally with bovine ephemeral fever virus strain 525. The 2 that lacked detectable neutralising antibody to bovine ephemeral fever vaccine developed fatal encephalitis after 4 and 7 days respectively. The third calf which had a low level of maternal antibody remained healthy and developed antibody that became undetectable after 6 months. Bovine ephemeral fever virus strain 525 was reisolated from the brains of both dead calves by intracerebral inoculation of suckling mice. Homogenates that were prepared from the brains of the calves failed to produce disease or to induce antibody formation in susceptible calves when inoculated intravenously. Strain 525 of BEF virus has been shown to possess a degree of neurovirulence for laboratory animals that has not been reported for other strains (Tzipori and Spradbrow 1974). Although this strain is unable to produce viraemia in calves after I/V inoculation, the present study shows that strain 525 can multiply in the brain tissues of calves and cause death after I/C inoculation.  相似文献   

19.
Pseudorabies virus (PRV) has been developed as a vaccine vector for expressing foreign immunogens. Porcine reproductive and respiratory syndrome (PRRS), caused by porcine reproductive and respiratory syndrome virus (PRRSV), continues to be a major problem to the pork industry worldwide. Many vaccine strategies have been developed to control the disease but most of them turn out to be unsuccessful. The objective of this research was to explore the feasibility of PRV-based vector vaccine in protection against PRRSV. A live attenuated vaccine-based PRV recombinant expressing the envelope protein GP5 of PRRSV was generated using recombinant DNA techniques. The Bartha-K61-derived recombinant virus, named rPRV-GP5, was shown to express PRRSV GP5 efficiently. Sixteen healthy piglets were assigned to one of four groups (one to four, four pigs per group). Animals in Groups 1 and 2 were each inoculated intramuscularly and intranasally with 10(7.0) PFU of rPRV-GP5 and its parent Bartha-K61, respectively; Group 3 were vaccinated intramuscularly with one-dose of PRRS inactivated vaccine; Group 4 was served as non-vaccinated control. One month later, all animals were all challenged with 10(6.5) TCID(50) of virulent PRRSV CH-1a. All animals in Groups 1 and 3 remained clinically healthy before and after challenge, with only a short period of fever (no more than 41 degrees C and 3 days), mild and gradually improving lung and kidney lesions, and short-term viremia (2 and 3 week, respectively) in spite of no detectable anti-PRRSV antibody before challenge. On the other hand, all animals in the other two groups showed evident clinical signs with higher temperatures (more than 41 degrees C) after challenge, and severe lung, kidney and spleen lesions and extended viremia (4 weeks). The results indicate that the rPRV-GP5 is safe for vaccinates and able to confer significant protection against clinical disease and reduce pathogenic lesions induced by PRRSV challenge in vaccinated pigs.  相似文献   

20.
在研究猪伪狂犬病基因缺失活疫苗 (SA 2 15 )免疫接种母猪所产仔猪母源抗体消长规律 ,并绘制其消长曲线的基础上 ,确定了仔猪首免日龄。对免疫母猪所产仔猪于不同日龄进行抗体检测结果表明 ,全部仔猪均获得了高水平母源抗体 ,7日龄高达 2 8.56 ,6 0日龄降至 2 2 .56 ;随着日龄增长 ,抗体水平呈逐渐降低趋势 ,2次大幅下降出现在 14~ 2 1日龄、30~ 6 0日龄。对免疫母猪所产仔猪分别于不同日龄免疫接种 1头份剂量疫苗 (SA2 15 ) ,7d后采血进行抗体检测 ,结果表明 ,7日龄、14日龄、2 1日龄免疫接种仔猪均未引起明显抗体水平升高 ,反而较同期仔猪略有降低 ,30日龄和 6 0日龄免疫接种仔猪则出现了抗体水平的升高 ,其中以 6 0日龄仔猪升高幅度为大。结合母源抗体消长规律 ,确定猪伪狂犬病基因缺失活疫苗 (SA2 15 )免疫母猪所产仔猪的首免日龄为 30日龄  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号