首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
OBJECTIVE: To compare the effects of acupuncture (AP), electroacupuncture (EA), and transcutaneous cranial electrical stimulation (TCES) with high-frequency intermittent currents on the minimum alveolar concentration (MAC) of isoflurane and associated cardiovascular variables in dogs. ANIMALS: 8 healthy adult female Beagles. PROCEDURE: Each dog was anesthetized with isoflurane on 4 occasions, allowing a minimum of 10 days between experiments. Isoflurane MAC values were determined for each dog without treatment (controls) and after treatment with AP and EA (AP points included the Large Intestine 4, Lung 7, Governing Vessel 20, Governing Vessel 14, San Tai, and Baihui) and TCES. Isoflurane MAC values were determined by use of noxious electrical buccal stimulation. Heart rate, mean arterial blood pressure (MAP), arterial blood oxygen saturation (Spo2) measured by use of pulse oximetry, esophageal body temperature, inspired and expired end-tidal isoflurane concentrations, end-tidal carbon dioxide concentration, and bispectral index (BIS) were monitored. Blood samples were collected for determination of plasma cortisol concentration. RESULTS: Mean +/- SD baseline MAC of isoflurane was 1.19 +/- 0.1%. Acupuncture did not significantly change MAC of isoflurane. Treatments with EA and TCES significantly lowered the MAC of isoflurane by 10.1% and 13.4%, respectively. The Spo2, heart rate, MAP, BIS, esophageal body temperature, and plasma cortisol concentration were not significantly different after AP, EA, TCES, and control treatments at any time interval. CONCLUSIONS AND CLINICAL RELEVANCE: Use of EA and TCES decreased MAC of isoflurane in dogs without inducing adverse hemodynamic effects. However, the reduction in isoflurane MAC by EA andTCES treatments was not considered clinically relevant.  相似文献   

2.
OBJECTIVE: To determine the relationship between bispectral index (BIS) and minimum alveolar concentration (MAC) multiples of isoflurane after IM injection of medetomidine or saline (0.9% NaCl) solution in anesthetized dogs. ANIMALS: 6 dogs. PROCEDURE: Each dog was anesthetized 3 times with isoflurane. First, the MAC of isoflurane for each dog was determined by use of the tail clamp method. Second, anesthetized dogs were randomly assigned to receive an IM injection of medetomidine (8 microg x kg(-1)) or an equal volume of isotonic saline (0.9% NaCl) solution 30 minutes prior to beginning BIS measurements. Last, anesthetized dogs received the remaining treatment (medetomidine or isotonic saline solution). Dogs were anesthetized at each of 4 MAC multiples of isoflurane. Ventilation was controlled and atracurium (0.2 mg/kg followed by 6 microg/kg/min as a continuous infusion, IV) administered. After a 20-minute equilibration period at each MAC multiple of isoflurane, BIS data were collected for 5 minutes and median values of BIS calculated. RESULTS: BIS significantly decreased with increasing MAC multiples of isoflurane over the range of 0.8 to 2.0 MAC. Mean (+/- SD) MAC of isoflurane was 1.3 +/- 0.2%. During isoflurane-saline anesthesia, mean BIS measurements at 0.8, 1.0, 1.5, and 2.0 MAC were 65 +/- 8, 60 +/- 7 52 +/- 3, and 31 +/- 28, respectively. During isoflurane-medetomidine anesthesia, mean BIS measurements at 0.8, 1.0, 1.5, and 2.0 MAC were 77 +/- 4, 53 +/- 7, 31 +/- 24, and 9 +/- 20, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: BIS monitoring in dogs anesthetized with isoflurane has a predictive value in regard to degree of CNS depression. During isoflurane anesthesia, our results support a MAC-reducing effect of medetomidine.  相似文献   

3.
OBJECTIVE: To determine induction characteristics and the minimum alveolar concentration (MAC) at which consciousness returned (MACawake) in dogs anesthetized with isoflurane or sevoflurane. ANIMALS: 20 sexually intact male Beagles. PROCEDURES: In experiment 1, 20 dogs were randomly assigned to have anesthesia induced and maintained with isoflurane or sevoflurane. The MAC at which each dog awoke in response to auditory stimulation (MACawake-noise) was determined by decreasing the end-tidal concentration by 0.1 volume (vol %) every 15 minutes and delivering a standard audible stimulus at each concentration until the dog awoke. In experiment 2, 12 dogs received the same anesthetic agent they were administered in experiment 1. After duplicate MAC determination, the end-tidal concentration was continually decreased by 10% every 15 minutes until the dog awoke from anesthesia (MACawake). RESULTS: Mean induction time was significantly greater for isoflurane-anesthetized dogs (212 seconds), compared with the sevoflurane-anesthetized dogs (154 seconds). Mean+/-SD MACawake-noise was 1.1+/-0.1 vol % for isoflurane and 2.0+/-0.2 vol % for sevoflurane. Mean MAC was 1.3+/-0.2 vol % for isoflurane and 2.1+/-0.6 vol % for sevoflurane, and mean MACawake was 1.0+/-0.1 vol % for isoflurane and 1.3+/-0.3 vol % for sevoflurane. CONCLUSIONS AND CLINICAL RELEVANCE: Sevoflurane resulted in a more rapid induction than did isoflurane. The MACawake for dogs was higher than values reported for both agents in humans. Care should be taken to ensure that dogs are at an appropriate anesthetic depth to prevent consciousness, particularly when single-agent inhalant anesthesia is used.  相似文献   

4.
The effects of electroacupuncture (EA) on intraocular pressure (IOP) and hemodynamic parameters were evaluated in isoflurane anesthetized 10 (5 males, 5 females) normal mongrel dogs (8.1-9.8 kg, 6-8 years old). After determination of baseline IOP and hemodynamic parameters (cardiac index, systolic arterial pressure, diastolic arterial pressure, heart rate and systemic vascular resistance index), EA was applied at 3 acupoints (LI-4, LIV-3 and GB-37) for 20 min. After the EA treatment, IOP was significantly decreased in the both eyes (p<0.05). However, there were not significant differences in hemodynamic parameters between those of before and after EA treatment. From these results, the EA treatment at LI-4, LIV-3 and GB-37 would be considered one of the valuable methods for the IOP treatment in dogs.  相似文献   

5.
OBJECTIVE: To determine the effect of a constant-rate infusion of fentanyl on minimum alveolar concentration (MAC) of isoflurane and to determine the interaction between fentanyl and a benzodiazepine agonist (diazepam) and antagonist (flumazenil) in isoflurane-anesthetized dogs. ANIMALS: 8 mixed-breed adult dogs. PROCEDURE: Dogs were anesthetized with isoflurane 3 times during a 6-week period. After a 30-minute equilibration period, each MAC determination was performed in triplicate, using standard techniques. Fentanyl was administered as a bolus (10 microg/kg of body weight, IV) that was followed by a constant infusion (0.3 microg/kg per min, IV) throughout the remainder of the experiment. After determining isoflurane-fentanyl MAC in triplicate, each dog received saline (0.9% NaCl) solution, diazepam, or flumazenil. After 30 minutes, MAC was determined again. RESULTS: Fentanyl significantly decreased isoflurane MAC (corrected to a barometric pressure of 760 mm Hg) from 1.80+/-0.21 to 0.85+/-0.14%, a reduction of 53%. Isoflurane-fentanyl-diazepam MAC (0.48+/-0.29%) was significantly less than isoflurane-fentanyl-saline MAC (0.79+/-0.21%). Percentage reduction in isoflurane MAC was significantly greater for fentanyl-diazepam (74%), compared with fentanyl-saline (54%) or fentanyl-flumazenil (61%). Mean fentanyl concentrations for the entire experiment were increased over time and were higher in the diazepam group than the saline or flumazenil groups. CONCLUSIONS AND CLINICAL RELEVANCE: Fentanyl markedly decreased isoflurane MAC in dogs. Diazepam, but not flumazenil, further decreased isoflurane-fentanyl MAC. Our results indicate that diazepam enhances, whereas flumazenil does not affect, opioid-induced CNS depression and, possibly, analgesia in dogs.  相似文献   

6.
OBJECTIVE: To determine the effect of 6 plasma ketamine concentrations on the minimum alveolar concentration (MAC) of isoflurane in dogs. ANIMALS: 6 dogs. PROCEDURE: In experiment 1, the MAC of isoflurane was measured in each dog and the pharmacokinetics of ketamine were determined in isoflurane-anesthetized dogs after IV administration of a bolus (3 mg/kg) of ketamine. In experiment 2, the same dogs were anesthetized with isoflurane in oxygen. A target-controlled IV infusion device was used to administer ketamine and to achieve plasma ketamine concentrations of 0.5, 1, 2, 5, 8, and 11 microg/mL by use of parameters obtained from experiment 1. The MAC of isoflurane was determined at each plasma ketamine concentration, and blood samples were collected for ketamine and norketamine concentration determination. RESULTS: Actual mean +/- SD plasma ketamine concentrations were 1.07 +/- 0.42 microg/mL, 1.62 +/- 0.98 microg/mL, 3.32 +/- 0.59 microg/mL, 4.92 +/- 2.64 microg/mL, 13.03 +/- 10.49 microg/mL, and 22.80 +/- 25.56 microg/mL for target plasma concentrations of 0.5, 1, 2, 5, 8, and 11 microg/mL, respectively. At these plasma concentrations, isoflurane MAC was reduced by 10.89% to 39.48%, 26.77% to 43.74%, 25.24% to 84.89%, 44.34% to 78.16%, 69.62% to 92.31%, and 71.97% to 95.42%, respectively. The reduction in isoflurane MAC was significant, and the response had a linear and quadratic component. Salivation, regurgitation, mydriasis, increased body temperature, and spontaneous movements were some of the adverse effects associated with the high plasma ketamine concentrations. CONCLUSIONS AND CLINICAL RELEVANCE: Ketamine appears to have a potential role for balanced anesthesia in dogs.  相似文献   

7.
OBJECTIVE: To determine the effect of hypovolemia on the minimum alveolar concentration (MAC) of isoflurane in the dog. STUDY DESIGN: Randomized, cross-over trial. ANIMAL POPULATION: Six healthy intact mixed breed female dogs weighing 18.2-29.0 kg. METHODS: Dogs were randomly assigned to determine the MAC of isoflurane in a normovolemic or hypovolemic state with a minimum of 18 days between trials. On both occasions, anesthesia was initially induced and maintained for 40 minutes with isoflurane delivered in oxygen while vascular catheters were placed in the cephalic vein and dorsal metatarsal artery. In dogs assigned to the hypovolemic group, 30 mL kg(-1) of blood was removed at 1 mL kg(-1) minute(-1) from the arterial catheter. All dogs were allowed to recover from anesthesia. Thirty minutes after the discontinuation of isoflurane, anesthesia was re-induced with isoflurane in oxygen delivered by face mask. The tracheas were intubated, and connected to an anesthetic machine with a Bain anesthetic circuit. Mechanical ventilation was instituted at a rate of 10 breaths minute(-1) with the tidal volume set to deliver 10-15 mL kg(-1). Airway gases were monitored continuously and tidal volume was adjusted to maintain an end-tidal carbon dioxide level of 35-40 mmHg (4.67-5.33 kPa). Body temperature was maintained at 37-38 degrees C (98.6-100.4 degrees F). The MAC determination was performed using an electrical stimulus applied to the toe web and MAC was defined as the mean value of end-tidal isoflurane between the concentrations at which a purposeful movement did and did not occur in response to the electrical stimulus. The MAC values were compared between groups using a Student's t-test. RESULTS: The MAC of isoflurane was significantly less in hypovolemic dogs (0.97 +/- 0.03%) compared with normovolemic dogs (1.15 +/- 0.02%) (p < 0.0079). CONCLUSIONS AND CLINICAL RELEVANCE: The MAC of isoflurane is reduced in dogs with hypovolemia resulting from hemorrhage. Veterinarians should be prepared to deliver a lower percentage of isoflurane to maintain anesthesia in hypovolemic dogs during diagnostic and therapeutic procedures.  相似文献   

8.
OBJECTIVE: To evaluate the influence of epidural administration of xylazine hydrochloride on the minimum alveolar concentration of isoflurane (MAC(ISAO)) and cardiopulmonary system in anesthetized dogs. ANIMALS: 6 clinically normal dogs. PROCEDURE: Dogs were anesthetized with isoflurane in oxygen after randomly being assigned to receive 1 of the following 4 treatments: epidural administration of saline (0.9% NaCl) solution or xylazine at a dose of 0.1, 0.2, or 0.4 mg x kg(-1). Experiments were performed on 5 occasions with at least a 1-week interval between experiments; each dog received all 4 treatments. Following instrumentation, the concentration of isoflurane was maintained constant for 15 minutes at the MAC(ISO) that had been determined for each dog, and data on heart rate, arterial blood pressure, respiratory rate, tidal volume, minute volume, arterial partial pressure of oxygen, arterial partial pressure of carbon dioxide, and arterial pH were collected. The epidural treatment was administered, and 30 minutes later, data were again collected. From this point on, determination of the MAC(ISO) following epidural treatment (ie, MAC(ISO+EPI)) was initiated. Cardiopulmonary data were collected before each electrical supramaximal stimulus during MAC(ISO+EPI) determinations. RESULTS: The mean (+/-SD) MAC(ISO) was 1.29 +/- 0.04%. The epidural administration of xylazine at doses of 0.1, 0.2, and 0.4 mg x kg(-1) decreased the MAC(ISO), respectively, by 8.4 +/- 2.4%, 21.7 +/- 4.9%, and 33.4 +/- 2.64%. Cardiopulmonary effects were limited. CONCLUSIONS AND CLINICAL RELEVANCE: Epidural administration of xylazine decreases the MAC(ISO) in a dose-dependent manner and is associated with few cardiopulmonary effects in anesthetized dogs.  相似文献   

9.
OBJECTIVE: To evaluate the effects of butorphanol and carprofen, alone and in combination, on the minimal alveolar concentration (MAC) of isoflurane in dogs. DESIGN: Randomized complete-block crossover study. ANIMALS: 6 healthy adult dogs. PROCEDURE: Minimal alveolar concentration of isoflurane was determined following administration of carprofen alone, butorphanol alone, carprofen and butorphanol, and neither drug (control). Anesthesia was induced with isoflurane in oxygen, and MAC was determined by use of a tail clamp method. Three hours prior to induction of anesthesia, dogs were fed a small amount of canned food without any drugs (control) or with carprofen (2.2 mg/kg of body weight [1 mg/lb]). Following initial determination of MAC, butorphanol (0.4 mg/kg [0.18 mg/lb], i.v.) was administered, and MAC was determined again. Heart rate, respiratory rate, indirect arterial blood pressure, endtidal partial pressure of CO2, and saturation of hemoglobin with oxygen were recorded at the time MAC was determined. RESULTS: Mean +/- SD MAC of isoflurane following administration of butorphanol alone (1.03 +/- 0.22%) or carprofen and butorphanol (0.90 +/- 0.21%) were significantly less than the control MAC (1.28 +/- 0.14%), but MAC after administration of carprofen alone (1.20 +/- 0.13%) was not significantly different from the control value. The effects of carprofen and butorphanol on the MAC of isoflurane were additive. There were not any significant differences among treatments in regard to cardiorespiratory data. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of butorphanol alone or in combination with carprofen significantly reduces the MAC of isoflurane in dogs; however, the effects of butorphanol and carprofen are additive, not synergistic.  相似文献   

10.
OBJECTIVE: To determine whether the minimum alveolar concentration (MAC) of isoflurane was altered by transdermal administration of fentanyl in normothermic and hypothermic dogs. DESIGN: Randomized complete block crossover design. ANIMALS: 6 mature healthy dogs. PROCEDURE: Dogs received each of 4 treatments in random order. Following induction of anesthesia, normothermia was maintained in dogs that were treated with a fentanyl patch (F-NORM) or sham patch (C-NORM), or hypothermia was maintained in dogs that were treated with a fentanyl patch (F-HYPO) or sham patch (C-HYPO). The appropriate patch was applied 24 hours prior to induction of anesthesia. Anesthesia was induced with isoflurane in oxygen; the dogs were intubated and mechanically ventilated. Target esophageal temperatures were maintained within 1 degrees C of baseline values (normothermia) or at 34.5 degrees C (94.1 degrees F; hypothermia) for 1 hour prior to starting MAC determinations. Supramaximal stimulation was achieved with an electrical stimulator attached to needle electrodes placed in the buccal mucosa of the lower jaw of the dog. RESULTS: Mean MAC +/- SEM of isoflurane during C-NORM, C-HYPO, F-NORM, and F-HYPO treatments were 1.20 +/- 0.17, 0.89 +/- 0.18, 0.76 +/- 0.10, and 0.81 +/- 0.17, respectively. The mean MAC during C-NORM was significantly higher than values for the other treatments. There was no significant difference in mean MAC among the C-HYPO, F-NORM, and F-HYPO treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Data suggest that transdermal administration of fentanyl significantly reduces isoflurane requirements in normothermic dogs. The isoflurane MAC-sparing effects of transdermal fentanyl are not apparent in hypothermic dogs.  相似文献   

11.
OBJECTIVE: To compare 3 types of noxious stimuli applied to various anatomic areas of anesthetized dogs and rabbits for determination of the minimum alveolar concentration (MAC). ANIMALS: 10 dogs and 10 rabbits. PROCEDURE: Dogs were anesthetized with isoflurane and halothane in a randomized order. Rabbits were anesthetized with isoflurane. The MAC was determined by skin incision on the lateral aspect of the chest; clamping of the tail, paw of the forelimb, and paw of the hind limb; and application of electrical current to the oral mucosa (dogs only), forelimb, and hind limb. The MAC was the end-tidal concentration midway between the value permitting and preventing purposeful movement in response to noxious stimuli. RESULTS: In dogs, mean +/- SEM MAC for isoflurane was 1.27 +/- 0.05% for clamping stimuli, 1.36 +/- 0.04% for oral electrical stimulation, 1.35 +/- 0.04% for electrical stimulation to the limbs, and 1.01 +/- 0.07% for surgical incision. The MAC for halothane was 0.97 +/- 0.03% for tail clamping, 0.96 +/- 0.03% for clamping of the limbs, 1.04 +/- 0.03% for electrical stimulation, and 0.75 +/- 0.06% for surgical incision. In rabbits, MAC for isoflurane was 2.08 +/- 0.02% for clamping stimuli, 2.04 +/- 0.02% for electrical stimulation, and 0.90 +/- 0.02% for surgical incision. The MAC for surgical incision was significantly lower than values for the other methods in both species. CONCLUSIONS AND CLINICAL RELEVANCE: Use of electrical current and clamping techniques resulted in similar MAC values. Surgical incision underestimated MAC values in dogs and rabbits.  相似文献   

12.
OBJECTIVE: To characterize the shape of the relationship between plasma ketamine concentration and minimum alveolar concentration (MAC) of isoflurane in dogs. STUDY DESIGN: Retrospective analysis of previous data. ANIMALS: Four healthy adult dogs. METHODS: The MAC of isoflurane was determined at five to six different plasma ketamine concentrations. Arterial blood samples were collected at the time of MAC determination for measurement of plasma ketamine concentration. Plasma concentration/effect data from each dog were fitted to a sigmoid inhibitory maximum effect model in which MAC(c)= MAC(0) - (MAC(0)-MAC(min)) x C(gamma)/EC(50)(gamma)+C(gamma), where C is the plasma ketamine concentration, MAC(c) is the MAC of isoflurane at plasma ketamine concentration C, MAC(0) is the MAC of isoflurane without ketamine, MAC(min) is the lowest MAC predicted during ketamine administration, EC(50) is the plasma ketamine concentration producing 50% of the maximal MAC reduction, and gamma is a sigmoidicity factor. Nonlinear regression was used to estimate MAC(min), EC(50), and gamma. RESULTS: Mean +/- SEM MAC(min), EC(50) and gamma were estimated to be 0.11 +/- 0.01%, 2945 +/- 710 ng mL(-1) and 3.01 +/- 0.84, respectively. Mean +/- SEM maximal MAC reduction predicted by the model was 92.20 +/- 1.05%. CONCLUSIONS: The relationship between plasma ketamine concentration and its effect on isoflurane MAC has a classical sigmoid shape. Maximal MAC reduction predicted by the model is less than 100%, implying that high plasma ketamine concentrations may not totally abolish gross purposeful movement in response to noxious stimulation in the absence of inhalant anesthetics. CLINICAL RELEVANCE: The parameter estimates reported in this study will allow clinicians to predict the expected isoflurane MAC reduction from various plasma ketamine concentrations in an average dog.  相似文献   

13.
OBJECTIVE: To determine the effects of constant rate infusion of morphine, lidocaine, ketamine, and morphine-lidocaine-ketamine (MLK) combination on end-tidal isoflurane concentration (ET-Iso) and minimum alveolar concentration (MAC) in dogs anesthetized with isoflurane and monitor depth of anesthesia by use of the bispectral index (BIS). ANIMALS: 6 adult dogs. PROCEDURE: Each dog was anesthetized with isoflurane on 5 occasions, separated by a minimum of 7 to 10 days. Individual isoflurane MAC values were determined for each dog. Reduction in isoflurane MAC, induced by administration of morphine (3.3 microg/kg/min), lidocaine (50 microg/kg/min), ketamine (10 microg/kg/min), and MLK, was determined. Heart rate, mean arterial blood pressure, oxygen saturation as measured by pulse oximetry (Spo2), core body temperature, and BIS were monitored. RESULTS: Mean +/- SD isoflurane MAC was 1.38 +/- 0.08%. Morphine, lidocaine, ketamine, and MLK significantly lowered isoflurane MAC by 48, 29, 25, and 45%, respectively. The percentage reductions in isoflurane MAC for morphine and MLK were not significantly different but were significantly greater than for lidocaine and ketamine. The Spo2, mean arterial pressure, and core body temperature were not different among groups. Heart rate was significantly decreased at isoflurane MAC during infusion of morphine and MLK. The BIS was inversely related to the ET-Iso and was significantly increased at isoflurane MAC during infusions of morphine and ketamine, compared with isoflurane alone. CONCLUSIONS AND CLINICAL RELEVANCE: Low infusion doses of morphine, lidocaine, ketamine, and MLK decreased isoflurane MAC in dogs and were not associated with adverse hemodynamic effects. The BIS can be used to monitor depth of anesthesia.  相似文献   

14.
Objective-To evaluate the effects of epidural administration of 3 doses of dexmedetomidine on isoflurane minimum alveolar concentration (MAC) and characterize changes in bispectral index (BIS) induced by nociceptive stimulation used for MAC determination in dogs. Animals-6 adult dogs. Procedures-Isoflurane-anesthetized dogs received physiologic saline (0.9% NaCl) solution (control treatment) or dexmedetomidine (1.5 [DEX1.5], 3.0 [DEX3], or 6.0 [DEX6] mug/kg) epidurally in a crossover study. Isoflurane MAC (determined by use of electrical nociceptive stimulation of the hind limb) was targeted to be accomplished at 2 and 4.5 hours. Changes in BIS attributable to nociceptive stimulation and cardiopulmonary data were recorded at each MAC determination. Results-With the control treatment, mean +/- SD MAC values did not change over time (1.57 +/- 0.23% and 1.55 +/- 0.25% at 2 and 4.5 hours, respectively). Compared with the control treatment, MAC was significantly lower at 2 hours (13% reduction) but not at 4.5 hours (7% reduction) in DEX1.5-treated dogs and significantly lower at 2 hours (29% reduction) and 4.5 hours (13% reduction) in DEX3-treated dogs. The DEX6 treatment yielded the greatest MAC reduction (31% and 22% at 2 and 4.5 hours, respectively). During all treatments, noxious stimulation increased BIS; but changes in BIS were correlated with increases in electromyographic activity. Conclusions and Clinical Relevance-In dogs, epidural administration of dexmedetomidine resulted in dose-dependent decreases in isoflurane MAC and that effect decreased over time. Changes in BIS during MAC determinations may not represent increased awareness because of the possible interference of electromyographic activity.  相似文献   

15.
OBJECTIVES: To quantify the change in the minimum alveolar concentration (MAC) of isoflurane (ISO) associated with oxymorphone (OXY) or hydromorphone (HYDRO) in dogs. DESIGN: Randomized crossover study with at least 1 week between assessments. ANIMALS: Six young, healthy, mixed-breed dogs (1-3 years old), weighing 24.7 +/- 4.70 kg. METHODS: Following mask induction, anesthesia was maintained with ISO in 100% O(2) using mechanical ventilation. The dogs received 0.05 mg kg(-1) OXY, 0.1 mg kg(-1) HYDRO, or 1 mL saline (control) IV. Following equilibration (15 minutes) at each percentage ISO tested, a supramaximal electrical stimulus was applied to the toe web and the response was assessed. Two separate MAC determinations were carried out during 4.5 hours of anesthesia, with completion of the evaluations at 1.5-2 and 4-4.5 hours after drug administration. A two-factor anova was used to determine whether there was a time or treatment effect on MAC and a Tukey test compared the drug effects at each time. Significance is reported at p < 0.05. RESULTS: The mean MAC values (+/-SD) were 1.2 +/- 0.18 and 1.2 +/- 0.16% for control, 0.7 +/-0.15 and 1.0 +/- 0.15% for OXY, and 0.6 +/- 0.14 and 0.8 +/- 0.17% for HYDRO. The initial MAC with OXY and the MAC determined at both times with HYDRO were significantly different from the control MAC values. CONCLUSIONS: Both OXY and HYDRO significantly reduced the MAC of ISO in dogs at 2 hours. At approximately 4.5 hours, HYDRO had a significant MAC-sparing effect, whereas OXY did not. CLINICAL RELEVANCE: Although both OXY and HYDRO resulted in a significant reduction in the MAC of ISO at approximately 2 hours, HYDRO may be preferred for procedures of long duration and rarely needs repeated dosing before 4.5 hours.  相似文献   

16.
The minimal anesthetic concentration (MAC) for isoflurane was determined during spontaneous ventilation in nine male Peking ducks (7 to 12 weeks of age; 3.0 +/- 0.4 kg). While each bird was awake, arterial blood was collected for analysis of pH, PaCO2, and PaO2. After anesthesia was induced with isoflurane in oxygen, MAC was determined for isoflurane in each bird during spontaneous ventilation in a manner similar to MAC determinations in mammals. Pulmonary dose-response data were collected at 1 MAC and 1.5 MAC. Anesthetic index (Al; an index of anesthetic-induced apnea) was calculated from ducks that became apneic. The MAC for isoflurane was 1.30 +/- 0.23% (mean +/- SD). There was a dose-dependent decrease in ventilation as evidenced by a statistically significant increase in PaCO2. Apnea or unacceptable hypercarbia (PaCO2 greater than 110 mm Hg), or both, were common occurrences at end-tidal isoflurane concentrations greater than 1.5 MAC. Anesthetic index calculated from four ducks was 1.65 +/- 0.13 (mean +/- SEM). There was no significant difference between the means of either heart rate or mean arterial blood pressure in birds at 1.0 and 1.5 MAC.  相似文献   

17.
OBJECTIVE: To determine the pharmacokinetics of ketamine and norketamine in isoflurane-anesthetized dogs. Animals-6 dogs. PROCEDURE: The minimum alveolar concentration (MAC) of isoflurane was determined in each dog. Isoflurane concentration was then set at 0.75 times the individual's MAC, and ketamine (3 mg/kg) was administered IV. Blood samples were collected at various times following ketamine administration. Blood was immediately centrifuged, and the plasma separated and frozen until analyzed. Ketamine and norketamine concentrations were measured in the plasma samples by use of liquid chromatography-mass spectrometry. Ketamine concentration-time data were fitted to compartment models. Norketamine concentration-time data were examined by use of noncompartmental analysis. RESULTS: The MAC of isoflurane was 1.43 +/- 0.18% (mean +/- SD). A 2-compartment model best described the disposition of ketamine. The apparent volume of distribution of the central compartment, the apparent volume of distribution at steady state, and the clearance were 371.3 +/- 162 mL/kg, 4,060.3 +/- 2,405.7 mL/kg, and 58.2 +/- 17.3 mL/min/kg, respectively. Norketamine rapidly appeared in plasma following ketamine administration and had a terminal half-life of 63.6 +/- 23.9 minutes. A large variability in plasma concentrations, and therefore pharmacokinetic parameters, was observed among dogs for ketamine and norketamine. CONCLUSIONS AND CLINICAL RELEVANCE: In isofluraneanesthetized dogs, a high variability in the disposition of ketamine appears to exist among individuals. The disposition of ketamine may be difficult to predict in clinical patients.  相似文献   

18.
OBJECTIVE: To determine the effect of two doses of fentanyl, administered transdermally, on the minimum alveolar concentration (MAC) of isoflurane in cats. STUDY DESIGN: Prospective, randomized study. ANIMALS: Five healthy, spayed, female cats. METHODS: Each cat was studied thrice with at least 2 weeks between each study. In study 1, the baseline isoflurane MAC was determined in triplicate for each cat. In studies 2 and 3, isoflurane MAC was determined 24 hours after placement of either a 25 or 50 microg hour(-1) fentanyl patch. In each MAC study, cats were instrumented to allow collection of arterial blood and measurement of arterial blood pressure. Twenty-four hours prior to studies 2 and 3, a catheter was placed and secured in the jugular vein and either a 25 or 50 microg hour(-1) fentanyl patch was placed in random order on the left thorax. Blood samples for plasma fentanyl determination were collected prior to patch placement and at regular intervals up to 144 hours. After determination of MAC in studies 2 and 3, naloxone was administered as a bolus dose (0.1 mg kg(-1)) followed by an infusion (1 mg kg(-1) hour(-1)) and MAC redetermined. RESULTS: The baseline isoflurane MAC was 1.51 +/- 0.21% (mean +/- SD). Fentanyl (25 and 50 micro g hour(-1)) administered transdermally significantly reduced MAC to 1.25 +/- 0.26 and 1.22 +/- 0.16%, respectively. These MAC reductions were not significantly different from each other. Isoflurane MAC determined during administration of fentanyl 25 micro g hour(-1) and naloxone (1.44 +/- 0.16%) and fentanyl 50 micro g hour(-1) and naloxone (1.51 +/- 0.19%) was not significantly different from baseline MAC (1.51 +/- 0.21%). CONCLUSIONS AND CLINICAL RELEVANCE: Fentanyl patches are placed to provide long-lasting analgesia. In order to be effective postoperatively, fentanyl patches must be placed prior to surgery. Plasma fentanyl concentrations achieved intraoperatively decrease the need for potent inhalant anesthetics in cats.  相似文献   

19.
OBJECTIVE: To compare the anesthetic index of sevoflurane with that of isoflurane in unpremedicated dogs. DESIGN: Randomized complete-block crossover design. ANIMALS: 8 healthy adult dogs. PROCEDURE: Anesthesia was induced by administering sevoflurane or isoflurane through a face mask. Time to intubation was recorded. After induction of anesthesia, minimal alveolar concentration (MAC) was determined with a tail clamp method while dogs were mechanically ventilated. Apneic concentration was determined while dogs were breathing spontaneously by increasing the anesthetic concentration until dogs became apneic. Anesthetic index was calculated as apneic concentration divided by MAC. RESULTS: Anesthetic index of sevoflurane (mean +/- SEM, 3.45 +/- 0.22) was significantly higher than that of isoflurane (2.61 +/- 0.14). No clinically important differences in heart rate; systolic, mean, and diastolic blood pressures; oxygen saturation; and respiratory rate were detected when dogs were anesthetized with sevoflurane versus isoflurane. There was a significant linear trend toward lower values for end-tidal partial pressure of carbon dioxide during anesthesia with sevoflurane, compared with isoflurane, at increasing equipotent anesthetic doses. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that sevoflurane has a higher anesthetic index in dogs than isoflurane. Sevoflurane and isoflurane caused similar dose-related cardiovascular depression, but although both agents caused dose-related respiratory depression, sevoflurane caused less respiratory depression at higher equipotent anesthetic doses.  相似文献   

20.
OBJECTIVE: To determine the effect of inhalation of isoflurane at end-tidal concentrations greater than, equal to, and less than the minimum anesthetic concentration (MAC) on bispectral index (BIS) in chickens. Animals-10 chickens. PROCEDURES: For each chicken, the individual MAC of isoflurane was determined by use of the toe-pinch method. After a 1-week interval, chickens were anesthetized with isoflurane at concentrations 1.75, 1.50, 1.25, 1.00, and 0.75 times their individual MAC (administered from higher to lower concentrations). At each MAC multiple, a toe pinch was performed and BIS was assessed and correlated with heart rate, blood pressure, and an awareness score (derived by use of a visual analogue scale). RESULTS: Among the chickens, mean +/- SD MAC of isoflurane was 1.15 +/- 0.20%. Burst suppression was detected at every MAC multiple. The BIS and awareness score were correlated directly with each other and changed inversely with increasing isoflurane concentration. Median (range) BIS values during anesthesia at 1.75, 1.50, 1.25, 1.00, and 0.75 MAC of isoflurane were 25 (15 to 35), 35 (25 to 45), 35 (20 to 50), 40 (25 to 55), and 50 (35 to 65), respectively. Median BIS value at extubation was 70 +/- 9. Values of BIS correlated with blood pressure, but not with heart rate. Blood pressure changed with end-tidal isoflurane concentrations, whereas heart rate did not. CONCLUSIONS AND CLINICAL RELEVANCE: Assessment of BIS can be used to monitor the electrical activity of the brain and the degree of unconsciousness in chickens during isoflurane anesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号