首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
About one-third of the total rice is grown under rainfed lowland conditions, mostly m south and south-east Asia. Crop productivity in this ecosystem can be improved by adopting suitable management practices as drainage of excess water is not feasible in the catchment and coastal areas. Field experiments were conducted using a long-duration (165 days), photosensitive, semi-tall (150 cm) rice cultivar Utkalprabha established through direct sowing or transplanting on different dates under 0–50 cm water depth at Cuttack, India, during 1989–91. Direct sowing was done in lines in dry soil from 10 May onward using 400 seeds/m2 and continued at 10 day intervals until June. Transplanting was done after accumulation of water in the field from July until 15 August with seedlings raised in nursery seed-beds with or without fertilizer application (100 kg N and 8.7 kg P and 16.7 kg K/ha) and tillers removed from the direct-sown crop. Seedling emergence varied significantly from 127–212/m, irrespective of sowing date and was dependent on rains received after sowing. However, the early sown crops in spite of poor germination, performed well due to better establishment and tiller production before water rose to higher depths in the field. There was a decreasing trend in grain yield, particularly when the sowing was delayed beyond end of May. The loss in yield with delayed sowing in June was due to poor crop stand which could not be compensated for by applying 50 % more seed (600/m2) and N fertilizer (60 kg N/ha). Removal of some of the tillers (100–130/m2) from crops sown on 30 May with 600 seeds/m2 for planting on an equivalent plot area did not cause any adverse effect on the performance of mother crop. The anticipated shortfall in yield due to lower panicles/m2 with clonal tiller separation was compensated for by the resulting increase in panicle weight. The performance of transplanted crops depended greatly on the water depth at or soon after planting. In 1990, planting on 15 July in 30 cm water depth helped in relatively better establishment and grain yield at par with sowing on 10 May. However, in 1991, when there was a sudden and rapid increase in water level to higher depths (50 cm) immediately after planting, the early planted crops produced only a negligible yield (0–1.2 t/ha). Highest yield was obtained from the crop planted with clonal tillers followed by that raised with fertilized and unfertilized nursery seedlings. Clonal tillers were taller (90 cm) and had more dry weight (1.78 g) compared with nursery seedlings (50–80 cm and 0.25–0.91 g). Therefore, the clonally propagated crop established well and acclimatized faster in the similar flooded environment, resulting in significantly higher grain yield particularly under late planted conditions. The results suggested early sowing by the end of May and transplanting with clonal tillers uprooted from the direct-sown crops for higher productivity of rice under uncontrolled excess water conditions.  相似文献   

2.
The effect of natural air temperature on the vegetative growth and alkaloidal yield of H. muticus L. was studied. The highest number of branches, diameter, fresh and dry weights of stem and roots occurred in September sowing at full-flowering and fruiting stages. Relatively higher temperature in Sept. sowing favoured leaf growth (number, area and dry weight). Hyoscyamine yield in different organs of the plants sown in Sept., excessively exceeded all other sowings during flower budding and full-flowering stages. Hyoscine yield was quantitatively very small as compared with that of hyoscyamine and even could not be detected in the leaves of winter sowings during full-flowering stage.  相似文献   

3.
The important enzyme in nitrogen (N) assimilation, nitrate reductase (NR), is an inducible enzyme influenced by many external (light, temperature, etc.) and internal (genotype) factors. The efficiency of the N assimilation system may vary with genotype and season. In the present study, the effects of season on NR activity in relation to N accumulation in maize plants were investigated. Six different cultivars of maize, namely Ganga-11, Deccan-103, Hi-starch (hybrids), Arun, Manjari and Vijay (composites), were sown during the monsoon (88-day crop duration) and in winter (150-day crop duration). In vivo NR activity in the last fully expanded leaf (LFEL), and the N contents of the whole plant and the LFEL were estimated at seven phenological growth stages. Three different states of N metabolism in maize, namely (i) low NR activity per unit leaf area per unit time coinciding with high accumulation of N, (ii) high NR activity coinciding with low N accumulation, and (iii) low NR activity coinciding with low N accumulation, were noted. These results clearly demonstrate that the relationships between N uptake and accumulation parameters change with the season and crop growth stage and are subject to a genotypic influence. Thus it is necessary to evaluate genotypes under similar environments to select a genotype with high N use efficiency. As these relationships are growth dependent, care must be taken to evaluate them at a particular phenological stage rather than on the basis of days after sowing.  相似文献   

4.
The relationship between the aerial temperature, distribution pattern during the crop growth period, accumulated heat units and sunshine hours at different growth phases of sorghum (Co 25), and the growth parameters of the crop, sown on weekly intervals from January 29, 1986 to March, 1986 was studied at Coimbatore, India. Number of days for completion of germination, height of plant, leaf area index, grain, straw and total dry matter yield were found to be related to the sunshine hours. Grain and straw yield were negatively related with the heat units accumulated at the seeding stage. Grain yield alone was positively related to accumulated heat untis at flowering stage, while grain and straw yield were not related with heat units at growth, bootleg and maturity stage. Total accumulated heat units during the entire growth period of the crop was positively related to the grain and straw yield. Treatmental variations were significant for grain, straw, total dry matter production and other growth parameters except tiller numbers. An early cooler temperature followed by a warmer temperature during flowering, maturity phases are crucial for higher grain, straw and dry matter production.  相似文献   

5.
播种深度对高粱出苗和幼苗生长的影响   总被引:3,自引:1,他引:2  
为了明确高粱的适宜播种深度,观察不同高粱品种对不同播种深度的耐深播差异,研究了8 种播种深度对3 个高粱品种出苗和幼苗生长的影响,出苗时记载不同播种深度下高粱的出苗速度和出苗率,出苗结束后,调查其地上部分幼苗生长量、胚轴长度和种子根长度。结果表明:随着覆土厚度的增加幼苗出苗速度明显减慢。在播深3 cm、5 cm和7 cm处理下,各品种从播种至出苗需要5 天,在播深8 cm、10 cm、12 cm 和13 cm 处理下,需要5~7 天,在播深17 cm 处理下为7~11 天。在播深12 cm、13 cm 和17 cm处理下‘晋中0822’较其他2 个品种从播种至出苗所需时间早2~4 天。不同播深处理下高粱完成出苗所需要时间也不尽相同。在播深3 cm、5 cm和7 cm处理下,各品种完成出苗所需时间为9 天,在播深8 cm、10 cm、12 cm和13 cm处理下,需要9~13 天,在播深17 cm处理下需13 天。品种‘晋中0822’在播深8 cm、10 cm、12 cm和13 cm处理下9 天完成出苗,较其他2 个品种早。播种深度对3 个高粱品种的出苗率亦有显著影响。随着播种深度的增加,3 个高粱品种的平均出苗率不断降低。3 cm和5 cm为高粱最适播种深度。在播深3 cm、5 cm、7 cm、8c m、10cm和12 cm处理下品种‘晋中0822’出苗率显著高于其他品种。此外,播种深度对幼苗的生长发育也有显著影响。随着播种深度增加,3 个高粱品种的地上部分幼苗生长量和种根长显著降低,而胚轴长度显著增加。在3cm和5 cm播深处理下幼苗生长量、种根长和胚轴长与其他各处理差异显著。在播深7 cm、8 cm、10 cm、12 cm、13 cm和17 cm处理下‘晋中0822’品种各指标与其他品种差异显著。  相似文献   

6.
免耕条件下提高冬小麦播种质量及其产量的研究   总被引:3,自引:2,他引:1  
保护性耕作对冬小麦产量的影响在不同区域差异很大,研究与其相适应的配套栽培方式对提高免耕播种质量及其增产效应具有重要意义。本文研究了在半湿润区免耕秸秆覆盖条件下3种机具播种方式(机具+行距)和3个播量水平对冬小麦播种质量及其产量形成的影响,结果表明:免耕秸秆覆盖条件下机具播种方式对冬小麦生长及产量有显著影响,其中小宽窄行机具播种方式播种质量最优,表现为基本苗、群体数量、叶面积指数、干物质重最高,产量比其它两种机具播种方式(大宽窄行和宽行宽带播种方式)分别增产29.6%和25.8%(2010年~2012年),主要是穗数的提高(30.2%和36.2%)。播量与机具播种方式存在显著交互效应,增加播量是弥补免耕播种出苗率低的重要栽培措施。3年的试验结果表明小宽窄行机具播种方式与增加20%播量组合最优,可作为该区域保护性耕作免耕播种方式。  相似文献   

7.
Pulses such as chickpea, faba bean and lentil have hypogeal emergence and their cotyledons remain where the seed is sown, while only the shoot emerges from the soil surface. The effect of three sowing depths (2.5, 5 and 10 cm) on the growth and yield of these pulses was studied at three locations across three seasons in the cropping regions of south-western Australia, with a Mediterranean-type environment. There was no effect of sowing depth on crop phenology, nodulation or dry matter production for any species. Mean seed yields across sites ranged from 810 to 2073 kg ha−1 for chickpea, 817–3381 kg ha−1 for faba bean, and 1173–2024 kg ha−1 for lentil. In general, deep sowing did not reduce seed yields, and in some instances, seed yield was greater at the deeper sowings for chickpea and faba bean. We conclude that the optimum sowing depth for chickpea and faba bean is 5–8 cm, and for lentil 4–6 cm. Sowing at depth may also improve crop establishment where moisture from summer and autumn rainfall is stored in the subsoil below 5 cm, by reducing damage from herbicides applied immediately before or after sowing, and by improving the survival of Rhizobium inoculated on the seed due to more favourable soil conditions at depth.  相似文献   

8.
Effect of sowing dates (temperature regimes) on growth, yield oil content and quality in sunflower ( Helianthus annuus L. ) was studied. Plants of early sowings which had received low temperature during 0–45 days of growth grew very poorly in height. Plant height significantly correlated with temperature at all the three growth stages. Plants sown in March produced highest yield and January sown plants recorded lowest yield. Protein content of seeds decreased where as the oil content increased with delay in sowing dates. Oil content in the seeds collected from different sowing dates showed significant differences. However, oil content was not significantly correlated with temperatures at any growth stages. Incorporation of 14C-acetate into lipids of developing seeds was increased as the sowing was delayed. Early sown plants had higher percentage of oleic acid and late sown plants had higher percentage of linoleic acid. Effect sowing dates on oil content and oil quality were discussed on the basis of temperature variation during different growth stages.  相似文献   

9.
针对西北黄土高原旱作区年降水量不足、水资源分布不均及春季大风干旱等造成的谷子产量不高、水分利用率低等生产问题,设置裸地平作种植(CK)、PE膜全覆膜起垄穴播(T1)、渗水地膜半覆膜起垄穴播(T2)和PE膜半覆膜起垄穴播(T3)4个处理,研究不同地膜覆盖种植模式对谷田播种前和收获后0~100cm土壤含水量、不同生育期0~40cm土壤含水量、0~30cm土壤温度、谷子农艺性状、产量和水分利用效率的影响。结果表明,3种地膜覆盖模式均不同程度地改善了谷子生育期内土壤的水温状况,提高了谷子的群体水分利用率、产量及相关农艺性状。4种处理播种前和收获后0~100cm土壤含水量、不同生育期0~40cm土壤含水量、0~30cm土壤温度均为T1>T2>T3>CK。3种覆膜处理的单穗重、单穗粒重、千粒重和产量均显著高于CK处理,T1和T2处理与T3处理差异显著。T1、T3和T2处理的群体水分利用率分别较CK处理提高了7.55、1.05和1.65kg/(mm·hm2)。PE膜全覆膜起垄穴播模式可作为西北黄土高原区谷子生产的高产高效栽培技术模式。  相似文献   

10.
内陆河流域不同播期对春玉米土壤温度及生物量的影响   总被引:4,自引:2,他引:2  
土壤温度是限制玉米高产的主要环境因子,为了寻求合理的播种时间,使玉米生长发育处于适宜的土壤温度环境中,从而保证干物质的积累和产量的形成。通过在内陆河流域代表区域武威开展不同播期对大田地膜春玉米进行试验,采用全生育期连续定点观测春玉米发育期、产量结构和20 cm、40 cm两个深度的土壤温度变化,分析了不同播期对春玉米生物量和土壤温度的影响。结果表明:营养生长期不同播期处理各层次地温均随生育进程的推进呈逐渐升高的趋势,拔节之后即进入生殖生长期,地温呈降低趋势。第二播期(4月20日)生长状况好,干物质累积量高,尤其是乳熟期和成熟期差异明显(P<0.05)。第二期产量构成优于第三期(4月30日)和第一期(4月10日)。第二播期处理,可以在苗期获得较高的地温,土壤增温明显,而在拔节期以后可保证适当较低的温度,从而保证干物质积累时间和产量结构的形成,是当地最适宜的地膜春玉米播种期。第一播期生物量则表现最差,说明正常情况下作物适当提前播期,延长生长期的做法在玉米的生产上是有一定风险的。  相似文献   

11.
明确适应本地区气候变化和节水需要的小麦晚播适期范围,了解不同品种特性并确定其合理的播种期和种植密度,对充分挖掘小麦品种的产量潜力是非常重要的。利用随机区组试验研究‘泰山23’和‘泰山9818’在只浇底墒水和灌浆水的情况下,在4个播期、密度组合时的产量构成变化及群体发育动态变化。结果表明:适宜的晚播期限内通过增加播量来达到高产的同时,重要的是稳定其较高的千粒重。花期、灌浆期叶面积指数和产量存在正相关关系。‘泰山23’各播期的产量顺序为B1>B2>B3>B4,第四播期产量最低,且与其他播期产量有显著差异,在当前设计密度下,宜适期早播。‘泰山9818’产量顺序为B2>B1>B3>B4,且各播期产量无显著差异,各播期均可播种。  相似文献   

12.
辽宁地区玉米生长发育及产量对温度和降水的响应   总被引:1,自引:0,他引:1  
为了研究温度和降水对玉米生长发育及产量的影响,为合理利用不同气候条件保证玉米生长提供依据,采用大田试验数据和气候资料,分析了辽宁地区玉米生长发育及产量特征对温度、降水和热量条件的响应。结果表明:玉米各生育期生长天数,七叶—拔节期受平均温度影响,三叶—七叶期受降水量影响,播种—三叶期和乳熟—成熟期受前期积温影响;降水量与播种—三叶期的玉米地上干重相关显著,平均气温与三叶—七叶期的叶面积指数相关显著,前期积温对玉米生物量增长影响最大;在同等积温增加条件下,辽东地区地上生物量增加最多,辽西地区最少。不同生育期玉米受到播期和气候条件的影响程度不同,不同地区间的果实性状及产量差异较大。  相似文献   

13.
Growth and yield of wheat are affected by environmental conditions and can be regulated by sowing time and seeding rate. In this study, three sowing times [winter sowing (first week of September), freezing sowing (last week of October) and spring sowing (last week of April)] at seven seeding rates (325, 375, 425, 475, 525, 575 and 625 seeds m?2) were investigated during the 2002–03 and 2003–04 seasons, in Erzurum (Turkey) dryland conditions, using Kirik facultative wheat. A split‐plot design was used, with sowing times as main plots and seeding rates randomized as subplots. There was a significant year × sowing time interaction for grain yield and kernels per spike. Winter‐sown wheat produced a significantly higher leaf area index, leaf area duration, spikes per square metre, kernel weight and grain yield than freezing‐ and spring‐sown wheat. The optimum time of sowing was winter for the facultative cv. Kirik. Grain yields at freezing and spring sowing were low, which was largely the result of hastened crop development and high temperatures during and after anthesis. Increasing seeding rate up to 525 seeds m?2 increased the spikes per square metre at harvest, resulting in increased grain yield. Seeding rate, however, was not as important as sowing time in maximizing grain yield. Changes in spikes per square metre were the major contributors to the grain‐yield differences observed among sowing times and seeding rates. Yield increases from higher seeding rates were greater at freezing and spring sowing. We recommended that a seeding rate of 525 seeds m?2 be chosen for winter sowing, and 575 seeds m?2 for freezing and spring sowing.  相似文献   

14.
黑龙港流域玉米不同生育阶段气象因子对产量性状的影响   总被引:6,自引:0,他引:6  
明确玉米生长发育不同阶段气象因子与产量的关系,有助于确定区域最适播期。通过调整播期来改变玉米生育期内气候条件,对于抵御阶段性不良气象因子的胁迫并最终实现高产目标有重要意义。本研究以郑单958为试验材料,于2009年至2010年在黑龙港地区中国农业大学吴桥试验站进行分期播种试验,分析产量及产量构成因素与不同阶段气象因子的关系。结果显示: (1)由于年际间气象条件的差异,产量及其构成因素并非简单地随播期变化而变化。(2)在试验设定的高密度条件下,产量提升主要受千粒重的制约,穗粒数次之。(3)产量性状与不同生育阶段的多个气象因子显著相关。穗期、抽雄吐丝阶段的光照条件对穗粒数以及产量有影响;苗期、营养生长阶段气温日较差与产量显著正相关;抽雄吐丝前后的温度条件影响穗粒数;生育期总降水量影响穗粒数和千粒重的提升。该地区在调整播种时间、改进栽培措施时,上述关系应是考虑的重点。生产中可适当早播晚收,选用适宜的中晚熟品种,既可避开生育前期及籽粒形成阶段不利气象因子的影响,又可延长籽粒灌浆时间,充分利用该地区生育后期丰富的光热资源。  相似文献   

15.
Improved planting methods and foliar application of glycinebetaine (GB) and salicylic acid (SA) can improve the water productivity in field crops under limited water supply conditions. A 2‐year field study was conducted to evaluate the possible role of different planting methods and foliar applications of GB and SA in improving the yield, quality and water productivity of hybrid sunflower (Helianthus annuus L.). The crop was planted by flat sowing (75 cm spaced rows) and ridge sowing (75 cm spaced ridges), with GB and SA applied exogenously at 100 and 0.724 mm , respectively, at both budding and flowering stages, while control plots received distilled water. Ridge sowing, rather than flat sowing, improved the biological yield, oil yield, leaf area index (LAI), crop growth rate (CGR), plant height, water‐use efficiency and final achene yield during both the years. Foliar applications of GB and SA at both the stages improved the achene yield, although foliar application of GB at flowering was the most effective. Neither the planting methods nor the foliar application of GB and SA altered the achene oil contents during both the years. Foliar application of GB and SA increased the free proline content of the leaf and GB contents at flowering but reduced the achene protein contents, whereas planting method had no effect on these attributes across the years. Of the foliar applied chemicals, GB was more effective in improving sunflower growth and yield and water productivity than SA. To conclude, ridge sowing coupled with foliar application of GB at flowering stage could be beneficial for achieving maximum yields of hybrid sunflower under relatively water limited conditions in the field.  相似文献   

16.
In a field trial conducted during 1993–1994, mustard ( Brassica juncea L. Czern & Coss.) cv. Varuna was sprayed with either deionised water or 10−5 M GA3 at 40 (vegetative stage), 60 (flowering stage) or 80 (pod fill stage) days after sowing (DAS) to select the suitable growth stage for spray for augmenting productivity of the crop. Shoot length per plant, leaf number per plant, leaf area per plant, dry weight per plant and leaf area index and accumulation of N, P and K were recorded at 100 DAS. Pods per plant, seeds per pod, 1000 seed weight, seed yield, biological yield, harvest index and seed yield merit were computed at harvest. Growth, NPK accumulation and yield were maximal when spraying was done at 40 DAS. However, spraying at 40 and 60 DAS gave at par values for most of the growth and yield parameters. It was also noted that there was a significant difference in spray treatment at different growth stages only when G A, was sprayed and not when water was sprayed.  相似文献   

17.
底墒差异对夏玉米生理特性及产量的影响   总被引:1,自引:0,他引:1  
研究了底墒差异对夏玉米生理特性及产量的影响。试验结果表明,在夏玉米生育期间极度干旱的条件下,以冬小麦生育期间灌拔节水和抽穗水(各40mm),夏玉米生育期间灌两水(共计100mm)的处理夏玉米产量最高,达7466.58 kg/hm2。而且该处理的叶面积、光合速率、蒸腾速率等生理指标高于其余各处理,气孔阻力和叶温等生理指标则低于其余各处理,以上各生理指标的变化是由于前茬冬小麦不同生育期灌溉而造成的。本试验同时表明,研究作物的水分问题应与特定的种植制度相结合。  相似文献   

18.
A field experiment was conducted during kharif, 1985 and summer, 1986 in sandy clay loam soil under irrigated condition at Tamil Nadu Agricultural University, Coimbature, with a view (i) to assess the suitable method of planting of sorghum CO 24 when intercropped with soybean, (ii) to evaluate the suitable planting ratio of sorghum - soybean intercropping system, (iii) to find out the compatible population level of soybean when intercropped with sorghum CO 24.
Direct sown sorghum at 4: 2 and 2: 2 recorded grater leaf area (LA) compared to transplanted sorghum in both kharif and summer. Sorghum transplanted with 14 days old seedlings recorded higher Crop Growth Rate (CGR) compared to 21 days old seedlings. Increased Net Assimilation Rate (NAR) were recorded in sorghum transplanted with 14 days old seedlings as compared to direct sown and 21 days old transplanted crop. Transplanted sorghum recorded higher Relative Growth Rate (RGR) as compared to direct sown sorghum. Summer sorghum recorded higher Relative Growth Rate (RGR) as compared to kharif season.  相似文献   

19.
为了准确的监测山西省冬小麦动态长势和预测产量,本研究使用ALMANAC作物生长模型对山西省洪洞县高、中、低产田的冬小麦产量进行了模拟。收集了模型需要的作物属性、土壤、气象及田间管理措施等众多参数并根据实际情况对参数进行了调整,结果表明:冬小麦模拟产量的相对误差(RE)为-7.8%~5.7%,叶面积指数的RE为-12.5%~13.6%,水地最大叶面积指数最大;与背景态相比生育期提前,叶面积指数水地变化不大,旱地低较多,温度主要是对生育期的影响,而水分则对叶面积指数产生较大影响。冬小麦的产量和叶面积指数的动态变化能够被ALMANAC模型较好地模拟;而且模型能够模拟不同水分条件下冬小麦的叶面积指数及气候变化对冬小麦影响。  相似文献   

20.
阴山北麓旱作区垄沟集雨种植增产机理研究   总被引:3,自引:1,他引:2  
为改善旱作农田水分状况,提高作物水分利用效率(WUE),达到高产稳产的目的,在内蒙古阴山北麓地区对垄沟集雨栽培措施下食用向日葵和马铃薯的土壤水热及作物生长状况进行了研究。结果表明:马铃薯试验不同处理距地表10 cm地温变化基本上在整个生育期一直表现为:垄膜沟植>起垄沟植>垄作>平作;向日葵试验在6月中旬前不同处理距地表10 cm地温表现为:垄膜沟植>垄作>起垄沟植>平作,而到6月下旬至8月上旬起垄沟植处理温度高于垄作,表现为:垄膜沟植>起垄沟植>垄作>平作,8月中旬至9月上旬起垄沟植温度最高,表现为:起垄沟植>垄膜沟植>垄作>平作,9月中下旬又表现为:垄膜沟植>起垄沟植>垄作>平作。整个生育期,向日葵采用垄膜沟植、垄作和起垄沟植较平作积温分别增加了162.6℃?d、35.8℃?d和80.6℃?d,而马铃薯分别增加了228.7℃?d、48.6℃?d和58.7℃?d。不同作物叶面积指数呈现先增加后降低趋势,向日葵叶面积指数最高值出现在播种后100天左右,马铃薯出现在播种后90天左右,整个生育期向日葵叶面积指数大小顺序基本表现为:垄膜沟植>起垄沟植>垄作>平作,而马铃薯在播种后90天之前,叶面积指数大小顺序基本表现为:垄膜沟植>起垄沟植>平作>垄作,之后垄膜沟植叶面积指数下降明显,在收获前15天左右不同处理叶面积指数大小顺序基本表现为:起垄沟植>垄作>平作>垄膜沟植。向日葵和马铃薯增产趋势表现为:垄膜沟植>起垄沟植>垄作>平作。向日葵和马铃薯生育期耗水量均表现为:垄膜沟植<起垄沟植<垄作<平作,WUE变化趋势相同,均表现为:垄膜沟植>起垄沟植>垄作>平作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号