首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isothermal titration calorimetry (ITC) was used to measure enthalpy changes resulting from injection of anionic (sodium dodecyl sulfate, SDS) or cationic (dodecyl trimethylammonium bromide, DTAB) surfactants into aqueous 1 wt % pectin solutions (30, 60, or 90% methoxylated). In the absence of pectin, the critical micelle concentrations (cmc) determined by ITC were 14.7 mM for DTAB and 7.7 mM for SDS. Binding of DTAB to pectin was endothermic and was attributed to electrostatic attraction between the cationic surfactant and anionic biopolymer. Binding of SDS to pectin was exothermic and was attributed to hydrophobic interactions. Pectin reduced the cmc of SDS, probably because of long-range electrostatic repulsion between the molecules. Above a particular concentration, which depended on pectin and surfactant type, both ionic surfactants promoted pectin aggregation (monitored by turbidity increase). This study demonstrates the potential of ITC for providing valuable information about interactions between polysaccharides and amphiphiles.  相似文献   

2.
ε-Polylysine (ε-PL) is a food-grade cationic antimicrobial that is highly effective against a wide range of food pathogens and spoilage organisms. However, its application within foods and beverages is currently limited because of its tendency to associate with anionic substances, thereby increasing product turbidity or forming sediments. In this study, we examined a potential means of overcoming these problems by forming electrostatic complexes between cationic ε-PL and anionic pectin. The nature of the complexes formed depended on the mass ratio of pectin to ε-PL (R(P-PL)), since this determined their electrical characteristics, aggregation stability, and antimicrobial efficacy. The electrical charge on the complexes went from positive to negative with increasing R(P-PL), with the point of zero charge being around R(P-PL) ~ 8. Soluble complexes or stable colloidal dispersions were formed at low and high R(P-PL) levels, but insoluble complexes were formed at intermediate levels (i.e., 4 ≤ R(P-PL) ≤ 16). The complexes maintained good antimicrobial activity (minimum inhibitory concentration of ε-PL < 10 μg/mL) at R(P-PL) ≤ 20 against two acid resistant spoilage yeasts: Zygosaccharomyces bailli and Saccharomyces cerevisiae. Finally, we showed that certain ε-PL-pectin complexes (10 μg/mL ε-PL; R(P-PL) ≥ 2) could be incorporated into green tea beverages without adversely affecting their appearance or physical stability. This work has shown that the function of a cationic antimicrobial agent (ε-polylysine) can be improved by incorporating it within electrostatic complexes using a food-grade anionic biopolymer (pectin).  相似文献   

3.
The cationic biopolymer ε-polylysine (ε-PL) is a potent food-grade antimicrobial that is highly effective against a range of food pathogens and spoilage organisms. In compositionally complex systems such as foods and beverages, cationic ε-PL molecules may associate with anionic substances, leading to increased turbidity, sediment formation, and reduced antimicrobial activity. This study therefore characterized the interactions between cationic ε-PL and anionic pectins with different degrees of esterification (DE) and then investigated the influence of these interactions on the antimicrobial efficacy of ε-PL. The nature of the interactions was characterized using isothermal titration calorimetry (ITC), microelectrophoresis (ME), and turbidity measurements. High (DE 61%), medium (DE 51%), and low (DE 42%) methoxyl pectins interacted with ε-PL molecules through electrostatic forces, forming either soluble or insoluble complexes with various electrical charges, depending on the relative mass ratio of pectin and ε-PL. The interaction of pectin with ε-PL increased as the negative charge density on the pectin molecules increased, that is, with decreasing DE. The antimicrobial efficacy of ε-PL against two acid-resistant spoilage yeasts (Zygosaccharomyces bailii and Saccharomyces cerevisiae) decreased progressively in the presence of increasing levels of all three pectins. Nevertheless, the low DE pectin decreased the antimicrobial efficacy of ε-PL much more dramatically, likely due to strong electrostatic binding of ε-PL onto low DE pectin molecules reducing its interaction with anionic microbe surfaces. This study provides knowledge that will facilitate the rational application of ε-PL as an antimicrobial in complex food systems.  相似文献   

4.
ε-Polylysine (ε-PL) is a food-grade cationic antimicrobial that is highly effective against a range of food pathogens and spoilage organisms. In compositionally complex environments, like those found in most foods and beverages, the antimicrobial activity of cationic ε-PL is likely to be impacted by its interactions with anionic components. The purpose of this study was to characterize the interactions between cationic ε-polylysine and an anionic biopolymer (high methoxyl pectin, HMP) using isothermal titration calorimetry (ITC), microelectrophoresis (ME), and turbidity measurements. ITC and ME measurements indicated that ε-PL bound to pectin, while turbidity measurements indicated that the complexes formed could be either soluble or insoluble depending on solution composition. Ionic strength and pH were also shown to affect the interactions significantly, highlighting their electrostatic origin. This study demonstrates that ε-PL can form either soluble or insoluble complexes with anionic biopolymers depending on the composition of the system. Our study provides basic knowledge that will facilitate the more rational application of ε-PL in complex food systems.  相似文献   

5.
Oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin (beta-Lg)-pectin membranes were produced using a two-stage process. A primary emulsion containing small droplets (d(32) approximately 0.3 microm) was prepared by homogenizing 10 wt % corn oil with 90 wt % aqueous solution (1 wt % beta-Lg, 5 mM imidazole/acetate buffer, pH 3.0) using a high-pressure valve homogenizer. The primary emulsion was then diluted with pectin solutions to produce secondary emulsions with a range of pectin concentrations (5 wt % corn oil, 0.45 wt % beta-Lg, 5 mM imidazole/acetate buffer, 0-0.22 wt % pectin, pH 3.0). The electrical charge on the droplets in the secondary emulsions decreased from +33 +/- 3 to -19 +/- 1 mV as the pectin concentration was increased from 0 to 0.22 wt %, which indicated that pectin adsorbed to the droplet surfaces. The mean particle diameter of the secondary emulsions was small (d(32) < 1 microm) at relatively low pectin concentrations (<0.04 wt %), but increased dramatically at higher pectin concentrations (e.g., d(32) approximately 13 microm at 0.1 wt % pectin), which was attributed to charge neutralization and bridging flocculation effects. Emulsions with relatively small mean particle diameters (d(32) approximately 1.2 microm at 0.1 wt % pectin) could be produced by disrupting flocs formed in secondary emulsions containing highly negatively charged droplets, for example, by sonication, blending, or homogenization. The particles in these emulsions probably consisted of small flocs containing a number of protein-coated droplets bound together by pectin molecules. These emulsions had good stability to further particle aggregation up to relatively high ionic strengths (< or =500 mM NaCl) and low pH (pH 3). The interfacial engineering technology used in this study could lead to the creation of food emulsions with improved physicochemical properties or stability.  相似文献   

6.
To determine the role of surfactant hydroperoxides on the oxidative stability of fatty acids, the oxidation of methyl linoleate micelles and salmon oil-in-water emulsions was measured as a function of varying Tween 20 hydroperoxide concentrations. Increasing Tween 20 hydroperoxide concentrations from 3.5 to 14.7 micromol hydroperoxide/g Tween 20 decreased the lag phase of headspace hexanal formation but did not increase the total amount of hexanal formed in methyl linoleate/Tween 20 micelles. In the micelle system, Fe(2+) decreased the lag phase of hexanal formation but increased total hexanal concentrations only in micelles with the highest Tween 20 hydroperoxide concentrations (14.7 micromol hydroperoxide/g surfactant). Increasing Tween 20 surfactant hydroperoxide concentrations also increased the oxidation of salmon oil-in-water emulsions as determined by lipid hydroperoxides and headspace propanal. In both the micelle and emulsion systems, the prooxidant effect of Fe(2+) decreased with increasing Tween 20 hydroperoxide concentrations. These data show that surfactant hydroperoxides such as those in Tween 20 could decrease the oxidative stability of lipids in food emulsions.  相似文献   

7.
Molecular complexes based on proteins and ionic polysaccharides have considerable potential for encapsulation of functional food components, but their widespread utilization is limited because their structure is highly sensitive to pH and ionic strength. We have investigated the possibility of creating stable hydrogel particles by thermal treatment of protein (beta-lactoglobulin) and cationic polysaccharide (chitosan) mixtures. Mixed solutions of beta-lactoglobulin (0.5 wt %) and chitosan (0.1 wt %) were prepared at various pH's (3-8) and were heated (80 degrees C for 20 min). Prior to heating, the biopolymer mixtures formed molecular complexes at pH values where there was an electrostatic attraction between the protein and the polysaccharide: soluble complexes at pH 4.5; complex coacervates at pH 5.0 and 5.5; precipitates at pH>5.5. After heating, relatively small (d approximately 140 nm) and cationic (zeta>+20 mV) hydrogel particles were formed at pH 4.5, but much larger aggregates were formed at pH 5.0 and higher (d>1000 nm). The thermally treated hydrogel particles formed at pH 4.5 maintained their initial particle size when the pH was subsequently adjusted within the range pH 3-5, but they aggregated when the pH was adjusted to >pH 5 because of a reduction in the magnitude of their electrical charge. This study suggests that hydrogel particles can be formed by heating mixed protein-polysaccharide systems under controlled conditions. These hydrogel particles may be useful for encapsulation of functional food components.  相似文献   

8.
The bioactivity of caffeine aqueous solutions (0.20-2.00 wt %) and caffeine oleate emulsions (20 vol % oil, 2.00 wt % surfactant, 0.04 wt % caffeine, 0.05 wt % oleic acid) was assessed against two biological models: Drosophila melanogaster and Hypothenemus hampei. The caffeine aqueous solutions showed no insecticidal activity, whereas caffeine oleate emulsions had high bioactivity against both D. melanogaster and H. hampei. By preparing the caffeine oleate emulsions with anionic surfactants (i.e., sodium lauryl sulfate, sodium laureate, and sodium oleate), we obtained a lethal time 50 (LT50) of 23 min. In the case of caffeine oleate emulsions prepared with nonionic surfactants (i.e., Tween 20 and Tween 80), a LT50 of approximately 17 min was observed. The high bioactivity of the caffeine oleate emulsion against H. hampei opens the possibility of using this insecticide formulation as an effective way to control this pest that greatly affects coffee plantations around the world.  相似文献   

9.
Interfacial protein-polysaccharide complexes can be used to improve the physical stability of oil-in-water emulsions. The purpose of this study was to examine the impact of ionic strength on the formation and stability of oil-in-water emulsions containing polysaccharide-protein-coated droplets. Emulsions were prepared that contained 0.1 wt % corn oil, 0.05 wt % beta-lactoglobulin, and 0.02 wt % pectin at pH 7. The emulsions were then adjusted to pH 4 to promote electrostatic deposition of the pectin molecules onto the surfaces of the protein-coated droplets. The salt concentration of the aqueous phase (0 or 50 mM NaCl) was adjusted either before or after deposition of the pectin molecules onto the droplet surfaces. We found that stable emulsions containing polysaccharide-protein-coated droplets could be formed when the salt was added after pectin adsorption but not when it was added before pectin adsorption. This phenomenon was attributed to the ability of NaCl to promote droplet flocculation in the protein-coated droplets so that the pectin molecules adsorbed onto the surfaces of flocs rather than individual droplets when salt was added before pectin adsorption. We also found that polysaccharide-protein-coated droplets had a much improved stability to salt-induced flocculation than protein-coated droplets with the same droplet charge (zeta-potential). Theoretical predictions indicated that this was due to the ability of the adsorbed polysaccharide layer to strongly diminish the van der Waals attraction between the droplets.  相似文献   

10.
Beta-casein is an intrinsically unstructured amphiphilic protein that self-assembles into micelles at neutral pH. This paper reports that beta-casein self-organizes into micelles also under acidic conditions. The protein association behavior and micelle characteristics at pH 2.6, well below the p I, are presented. The pH was found to strongly affect the micelle shape and dimensions. Cryogenic transmission electron microscopy (cryo-TEM) experiments revealed disk-like micelles of 20-25 nm in length and approximately 3.5 nm in height in acidic conditions. An aggregation number of 6 was determined by sedimentation equilibrium under these conditions. Isothermal titration calorimetry experiments verified the association below the p I and allowed determination of the micellization enthalpy, the critical micellar concentration, and the micellization relative cooperativity (MR). Small-angle X-ray scattering results at concentrations below the critical micellization concentration (CMC) suggest that the monomeric protein is likely in a premolten globule state at low pH. Calculations of the protein charge at acidic and neutral pH reveal a similar high net charge but considerable differences in the charge distribution along the protein backbone. Overall the results show that beta-casein is amphiphilic at low pH, but the distribution of charge along the protein chain creates packing constraints that affect the micelle organization, leading at concentrations above the CMC to the formation of disk micelles.  相似文献   

11.
This paper deals with the influence of different levels of three pectins, low-methylated pectin (LMP), high-methylated pectin (HMP), and low-methylated and amidated pectin (LMA), on the in vitro gastric hydrolysis of beta-lactoglobulin (beta-lg). Proteolysis by pepsin consisted of a 2-h progressive reduction of pH. A turbidity measurement of beta-lg-pectin mixtures was carried out during the proteolysis. The influence of pectins on pepsin enzymatic activity was also evaluated. beta-Lg was resistant to peptic digestion. The presence of each of the three pectins at a concentration of 50 wt % increased the N release at all pH values considered, despite a significant inhibition of the pepsin enzymatic activity with the pectins. The turbidity of beta-lg solutions during proteolysis was reduced by the addition of pectins, because of the formation of electrostatic complexes between this protein and pectins. The increase of N release could be a false positive result due to the difficulty of precipitating protein by trichloroacetic acid because of the formation of electrostatic complexes demonstrated by the decrease of turbidity.  相似文献   

12.
Characterization of interactions between chitosan and an anionic surfactant   总被引:3,自引:0,他引:3  
Chitosan is a cationic biopolymer that has many potential applications in the food industry because of its unique nutritional and physiochemical properties. Many of these properties depend on its ability to interact with anionic surface-active molecules, such as phospholipids, surfactants, and bile acids. The purpose of this study was to characterize the interaction between chitosan and a model anionic surfactant (sodium dodecyl sulfate, SDS) using isothermal titration calorimetry (ITC), surfactant-selective electrode (SSE), and turbidity measurements. ITC and SSE indicated that SDS bound strongly to chitosan via a highly exothermic interaction. The turbidity measurements indicated that chitosan formed insoluble complexes with SDS that strongly scattered light. The chitosan bound approximately 4 mM of SDS per 0.1 wt % chitosan before becoming saturated with surfactant. The SDS-chitosan interaction was weakened appreciably by the presence of 100 mM NaCl, which suggested that it was electrostatic in origin. This study provides information about the origin and characteristics of molecular interactions between chitosan and anionic surface-active lipids that may be useful for the rational design of chitosan-based food ingredients with specific nutritional and functional characteristics, e.g., cholesterol lowering or fat replacement.  相似文献   

13.
The cationic hydroxyethylcellulose Polyquaternium 10 (PQ10) was found to produce a dose-dependent destabilization of casein micelles from whole or skim milk without affecting the stability of most of the whey proteins. The anionic phosphate residues on caseins were not determinant in the observed interaction since the destabilization was also observed with dephosphorylated caseins to the same extent. However, the precipitation process was completely inhibited by rising NaCl concentration, indicating an important role of electrostatic interactions. Furthermore, the addition of 150 mM NaCl solubilized preformed PQ10-casein complexes, rendering a stable casein suspension without a disruption of the internal micellar structure as determined by dynamic light scattering. This casein preparation was found to contain most of the Ca2+ and only 10% of the lactose originally present in milk and remained as a stable suspension for at least 4 months at 4 degrees C. The final concentration of PQ10 determined both the size of the casein-polymer aggregates and the amount of milkfat that coprecipitates. The presence of PQ10 in the aggregates did not inhibit the activity of rennet or gastrointestinal proteases and lipases, nor did it affect the growth of several fermentative bacteria. The cationic cellulose PQ10 may cause a reversible electrostatic precipitation of casein micelles without disrupting their internal structure. The reversibility of the interaction described opens the possibility of using this cationic polysaccharide to concentrate and resuspend casein micelles from whole or skim milk in the production of new fiber-enriched lactose-reduced calcium-caseinate dairy products.  相似文献   

14.
Heated (20-100 °C/0-30 min) skim milks (pH 6.5-7.1) were diluted in buffer (pH 7.0). Rennet was added, and the particle size with time was measured. For all samples, the size initially decreased (lag phase) and then increased (aggregation phase). Milks heated at ≤60 °C had short lag phases and rapid aggregation phases regardless of pH. Milks heated at >60 °C at pH 6.5 had long lag phases and slow aggregation phases. As the pH increased, the lag phase shortened and the aggregation phase accelerated. The aggregation time was correlated with the level of whey protein associated with the casein micelles and with the level of κ-casein dissociated from the micelles. Heated milks formed weak gels when renneted. It is proposed that the milks heated at low pH have whey proteins associated with the casein micelles and that these denatured whey proteins stabilize the micelles to aggregation by rennet and therefore inhibit gelation. In the milks heated at higher pH, the whey proteins associate with κ-casein in the serum and, on rennet treatment, the κ-casein-depleted micelles and the serum-phase whey protein/κ-casein complexes aggregate; however, the denatured whey proteins stabilize the aggregates so that gelation is still inhibited.  相似文献   

15.
Oil-in-water (O/W) emulsions containing small oil droplets (d32 approximately 0.22 microm) stabilized by sodium dodecyl sulfate (SDS)-fish gelatin (FG) membranes were produced by an electrostatic deposition technique. A primary emulsion containing anionic SDS-coated droplets (zeta approximately -40 mV) was prepared by homogenizing oil and emulsifier solution using a high-pressure valve homogenizer (20 wt % corn oil, 0.46 wt % SDS, 100 mM acetic acid, pH 3.0). A secondary emulsion containing cationic SDS-FG-coated droplets (zeta approximately +30 mV) was formed by diluting the primary emulsion with an aqueous fish gelatin solution (10 wt % corn oil, 0.23 wt % SDS, 100 mM acetic acid, 2.00 wt % fish gelatin, pH 3.0). The stabilities of primary and secondary emulsions with the same oil concentration to thermal processing, ionic strength, and pH were assessed by measuring particle size distribution, zeta potential, microstructure, destabilized oil, and creaming stability. The droplets in secondary emulsions had good stability to droplet aggregation at holding temperatures from 30 to 90 degrees C for 30 min, [NaCl] < or = 100 mM, and pH values from 3 to 8. This study shows that the ability to generate emulsions containing droplets stabilized by multilayer interfacial membranes comprised of two or more types of emulsifiers, rather than a single interfacial layer comprised of one type of emulsifier, may lead to the development of food products with improved stability to environmental stresses.  相似文献   

16.
The stability of emulsions prepared with soy protein isolates was investigated as a function of pH in the presence of two negatively charged polysaccharides: high methoxyl pectin (HMP) and soy soluble polysaccharide (SSPS). Both polysaccharides are composed of a backbone which contains galacturonic acid but, when added to soy protein isolate-stabilized emulsions, SSPS showed a different behavior than that of HMP. At neutral pH and above a critical concentration of stabilizer (0.05%), HMP caused flocculation of the emulsion droplets via a depletion mechanism. On the other hand, the emulsions containing a similar amount of SSPS did not show creaming or flocculation. At acidic pH (<4.0) the addition of pectin caused extensive droplet aggregation, while no aggregation was observed with the addition of SSPS. The differences in the stabilization behavior between the two polysaccharides can be attributed to their differences in charge, neutral sugars side chains, and molecular weight.  相似文献   

17.
Peroxides are an important factor in oxidative reactions in foods because their decomposition can result in formation of highly reactive free radicals. Emulsifiers such as the Brijs, Tweens, and lecithin were found to contain 4-35 micromol of peroxides/g of surfactant. Peroxide concentrations in Tween 20 micelles increased in the presence of low iron concentrations but decreased when iron concentrations were high, suggesting that iron was capable of promoting both peroxide formation and decomposition. Oxidation of alpha-tocopherol was observed in micelles high in peroxides (Tween 20) but not in micelles where peroxide concentrations were low (Brij). Transition metals accelerated the oxidation of alpha-tocopherol in Tween 20 micelles, whereas EDTA stabilized alpha-tocopherol in the presence of added Fe(2+). These results suggest that surfactant peroxides could decrease the oxidative stability of food emulsions by acting as a source of free radicals, especially in the presence of transition metals.  相似文献   

18.
Thyme oil-in-water nanoemulsions stabilized by a nonionic surfactant (Tween 80, T80) were prepared as potential antimicrobial delivery systems (pH 4). The nanoemulsions were highly unstable to droplet growth and phase separation, which was attributed to Ostwald ripening due to the relatively high water solubility of thyme oil. Ostwald ripening could be inhibited by incorporating ≥75% of corn oil (a hydrophobic material with a low water solubility) into the nanoemulsion droplets. The electrical characteristics of the droplets in the nanoemulsions were varied by incorporating ionic surfactants with different charges after homogenization: a cationic surfactant (lauric arginate, LAE) or an anionic surfactant (sodium dodecyl sulfate, SDS). The antifungal activity of nanoemulsions containing positive, negative, or neutral thymol droplets was then conducted against four strains of acid-resistant spoilage yeasts: Zygosaccharomyces bailli, Saccharomyces cerevisiae, Brettanomyces bruxellensis, and Brettanomyces naardenensis. The antifungal properties of the three surfactants (T80, LAE, SDS) were also tested in the absence of thymol droplets. Both ionic surfactants showed strong antifungal activity in the absence of thymol droplets, but no antimicrobial activity in their presence. This effect was attributed to partitioning of the antimicrobial surfactant molecules between the oil droplet and microbial surfaces, thereby reducing the effective concentration of active surfactants available to act as antimicrobials. This study shows oil droplets may decrease the efficacy of surfactant-based antimicrobials, which has important consequences for formulating effective antimicrobial agents for utilization in emulsion-based food and beverage products.  相似文献   

19.
Oil-in-water emulsions containing cationic droplets stabilized by lecithin-chitosan membranes were produced using a two-stage process. A primary emulsion was prepared by homogenizing 5 wt % corn oil with 95 wt % aqueous solution (1 wt % lecithin, 100 mM acetic acid, pH 3.0) using a high-pressure valve homogenizer. This emulsion was diluted with aqueous chitosan solutions to form secondary emulsions with varying compositions: 1 wt % corn oil, 0.2 wt % lecithin, 100 mM acetic acid, and 0-0.04 wt % chitosan (pH 3.0). The particle size distribution, particle charge, and creaming stability of the primary and secondary emulsions were measured. The electrical charge on the droplets increased from -49 to +54 mV as the chitosan concentration was increased from 0 to 0.04 wt %, which indicated that chitosan adsorbed to the droplet surfaces. The mean particle diameter of the emulsions increased dramatically and the emulsions became unstable to creaming when the chitosan concentration exceeded 0.008 wt %, which was attributed to charge neutralization and bridging flocculation effects. Sonication, blending, or homogenization could be used to disrupt flocs formed in secondary emulsions containing droplets with high positive charges, leading to the production of emulsions with relatively small particle diameters (approximately 1 microm). These emulsions had good stability to droplet aggregation at low pH (< or =5) and ionic strengths (<500 mM). The interfacial engineering technology utilized in this study could lead to the creation of food emulsions with improved stability to environmental stresses.  相似文献   

20.
Oil-in-water emulsions containing cationic droplets stabilized by lecithin-chitosan membranes were produced using a two-stage process. A primary emulsion containing anionic lecithin-coated droplets was prepared by homogenizing oil and emulsifier solution using a high-pressure valve homogenizer (5 wt % corn oil, 1 wt % lecithin, 100 mM acetic acid, pH 3.0). A secondary emulsion containing cationic lecithin-chitosan-coated droplets was formed by diluting the primary emulsion with an aqueous chitosan solution (1 wt % corn oil, 0.2 wt % lecithin, 100 mM acetic acid, and 0.036 wt % chitosan). The stabilities of the primary and secondary emulsions with the same oil concentration to thermal processing, freeze-thaw cycling, high calcium chloride concentrations, and lipid oxidation were determined. The results showed that the secondary emulsions had better stability to droplet aggregation during thermal processing (30-90 degrees C for 30 min), freeze-thaw cycling (-10 degrees C for 22 h/30 degrees C for 2 h), and high calcium chloride contents (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号