首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
基于游程检测法重构集合经验模态的养殖水质溶解氧预测   总被引:1,自引:1,他引:0  
为了提高水产养殖中溶解氧的预测精度,该文提出了基于集合经验模态(ensemble empirical mode decomposition,EEMD)分解、游程检测法重构、适宜的单项预测算法建模和BP神经网络非线性叠加的组合预测模型。该模型首先将溶解氧原始序列用EEMD分解法进行分解,得到了多个分量;其次,用游程检测法将这些分量重构成高频分量、中频分量和低频分量等3个分量;接着,针对高频分量波动性大且复杂、中频分量呈现周期性、低频分量几乎呈线性的特点,采用粒子群(particle swarm optimization,PSO)优化的最小二乘支持向量机(least square support vector machine,LSSVM)对高频项进行预测,采用极限学习机(extreme learning machine,ELM)对中频项预测,采用非线性回归(nonlinear regression method,NRM)对低频项预测;最后,将3个分量预测的结果用BP神经网络进行重构得到最终的预测结果。将该模型应用于江苏省溧阳市埭头黄家荡特种水产养殖场的溶解氧预测中,试验表明,该种以游程检测法重构EEMD为基础的混合预测模型的预测精度高于PSO-LSSVM和单一的ELM预测模型。在预测未来48 h的溶解氧值时,该模型的预测值与实测值的均方根误差RMSE为0.099 2、平均相对误差均值MAPE为0.078、平均绝对误差MAE为0.015 5,R~2为0.995 5。表明该模型有较好的预测精度和泛化能力,能够满足现代化水产养殖业对溶解氧精细化管理的高要求。  相似文献   

2.
主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧   总被引:16,自引:11,他引:5  
为了提高水产养殖溶解氧预测的精度,提出了基于主成分分析(principal component analysis,PCA)和长短时记忆神经网络(long short-term memory,LSTM)的水产养殖溶解氧预测模型。首先通过主成分分析提取水产养殖溶解氧的关键影响因子,消除了原始变量之间的相关性,降低了模型输入向量维度;然后,在Tensorflow深度学习框架的基础上建立LSTM神经网络的水产养殖溶解氧预测模型;最后,利用该模型对浙江省淡水水产养殖研究所综合实验基地某池塘溶解氧进行验证。试验结果表明:该模型与BP神经网络等其他浅层模型相比,模型评价指标平均绝对误差、均方根误差和平均绝对误差分别为0.274、0.089和0.147,均优于传统的预测方法;该模型具有良好的预测性能和泛化能力,能够满足水产养殖溶解氧精确预测的实际需要,可以为水产养殖水质精准调控提供参考。  相似文献   

3.
基于K-means 聚类和ELM神经网络的养殖水质溶解氧预测   总被引:8,自引:5,他引:3  
宦娟  刘星桥 《农业工程学报》2016,32(17):174-181
为解决养殖水质溶解氧预测传统方法引入不良样本、精度低等问题,该文以2014、2015年江苏常州养殖基地水质和气象数据为基础,提出了一种基于K-means聚类和ELM神经网络(extreme learning machine,ELM)的溶解氧预测模型。采用皮尔森相关系数法确定环境因素与溶解氧的相关系数,自定义相似日的统计量-相似度,通过K-means聚类方法将历史日样本划分为若干类,然后分类识别获得与预测日最相似的一类历史日样本集,将其与预测日的实测环境因素作为预测模型的输入样本建立ELM神经网络溶解氧预测模型。试验结果表明,该模型均具有较快的计算速度和较高的预测精度,在常规天气下,平均绝对百分误差和均方根误差分别达到1.4%、10.8%;在突变天气下,平均绝对百分误差和均方根误差分别达到2.6%和11.6%,有利于水产养殖水质精准调控。  相似文献   

4.
基于多模型证据融合的苹果分类方法   总被引:1,自引:1,他引:0  
水果内部品质是水果分类的重要依据之一,利用近红外光谱技术对苹果内部品质进行快速无损检测研究有着非常重要的意义。为提高近红外技术分类模型的预测精度,针对单一预测模型适用性差以及硬分割导致分类不确定性等问题,该研究以烟台红富士苹果为研究对象,利用自行研发的水果在线无损检测系统采集苹果近红外光谱以及可溶性固形物含量 (Soluble Solids Content, SSC),分别采用偏最小二乘(Partial Least Squares, PLS)和极限学习机(Extreme Learning Machine, ELM)法建立苹果预测分类模型,根据SSC的预测值与分类边界的距离提出三角形质量函数生成方法,通过证据理论的Dempster组合规则融合质量函数从而实现2种模型的融合,并探讨基于三角形质量函数的证据理论融合模型对预测精度的影响。研究结果表明:PLS分类模型的准确率为92.25%,ELM分类模型的准确率为 93.80%,而提出多模型融合方法的分类准确率达到了95.35%。而且,该研究提出的三角形质量函数生成法与硬分割生成的质量函数相比方法更符合实际,通过PLS、ELM模型和DS融合模型的混淆矩阵可以看出,融合模型实现了苹果SSC处于分类边界值时的准确分类,三类苹果被错误分类的个数均有减小。该研究提出的多模型证据融合方法不仅提高了模型的预测精度,而且更好地表达了关于类标预测的不确定性,为苹果的在线无损检测分类提供研究基础。  相似文献   

5.
养殖池塘溶解氧是河蟹赖以生存的重要指标,及时准确地掌握溶解氧浓度变化趋势是确保高密度河蟹健康养殖的关键。为提高溶解氧预测精度和效率,该文提出了蚁群算法(ACA)优化最小二乘支持向量回归机(LSSVR)的河蟹养殖溶解氧预测方法。采用蚁群算法对最小二乘支持向量回归机的模型参数进行优化,并以自动获取的最佳参数组合构建溶解氧与其影响因子间非线性预测模型。利用该模型对江苏宜兴市2010年7月20日~7月28日期间高密度养殖池塘溶解氧进行预测。研究表明,该预测模型取得较好的预测效果,与支持向量回归机和BP神经网络相比,模型评价指标均方根误差、相对均方误差均值、平均绝对误差和和决定系数和运行时间分别为0.0328、0.0016、0.0448、0.9916和3.3275s均优于其他预测方法,ACA-LSSVR模型不仅计算复杂度低、收敛速度快、预测精度高、泛化能力强,还能满足实际高密度河蟹养殖溶解氧管理的需要,为其他领域的水质预测提供参考。  相似文献   

6.
采用SEPLS_ELM模型估算夏玉米地上部生物量和叶面积指数   总被引:2,自引:2,他引:0  
利用高光谱数据进行作物生长状况监测具有无损和高效的特点,是现代精准农业发展的必要手段。该研究以连续3 a(2018-2020)不同水氮供应下夏玉米营养生长期采集的212份植物样品(地上部生物量和叶面积指数)和高光谱实测数据为数据源,分别采用偏最小二乘回归(Partial Least Squares Regression,PLS)、极限学习机(Extreme Learning Machine,ELM)、随机森林(Random Forest,RF)和基于PLS叠加策略的叠加极限学习机算法(Stacked Ensemble Extreme Learning Machine based on the PLS,SEPLS_ELM)构建了夏玉米营养生长期地上部生物量和叶面积指数估算模型。结果表明:基于PLS和ELM构建的夏玉米地上部生物量和叶面积指数估算模型的精度均较低,前者验证集R2低于0.85、均方根误差高于550 kg/hm2,后者R2低于0.90、均方根误差高于0.40 cm2/cm2。相比之下,基于RF和SEPLS_ELM构建的夏玉米营养生长期地上部生物量和叶面积指数估算模型均有着较高的估算精度,SEPLS_ELM模型表现尤为突出,其地上部生物量和叶面积指数估算模型验证集的R2分别为0.955和0.969,均方根误差分别为307.3 kg/hm2和0.24 cm2/cm2,表明叠加集成模型能够充分利用高光谱数据并提高作物地上部生物量和叶面积指数估算精度。  相似文献   

7.
土壤盐渍化是导致土壤退化和生态系统恶化的主要原因之一,对干旱区的可持续发展构成主要威胁。为了尽可能精确地监测土壤盐渍化的空间变异性,该研究收集新疆艾比湖湿地78个典型样点,其中选取54个样本作为训练集,24个样本作为独立验证集。基于Sientinel-2 多光谱传感器(Multi-Spectral Instrument,MSI)、数字高程模型(Digital Elevation Model,DEM)数据提取3类指数(红边光谱指数、植被指数和地形指数),经过极端梯度提升(Extreme Gradient Boosting,XGBoost)算法筛选有效特征变量,构建了关于土壤电导率(Electrical Conductivity,EC)的随机森林(Random Forest,RF)、极限学习机(Extra Learning Machine,ELM)和偏最小二乘回归(Partial Least Squares Regression,PLSR)预测模型,并选择最优模型绘制了艾比湖湿地盐渍化分布图。结果表明:优选的红边光谱指数基本能够预测EC的空间变化;红边光谱指数与植被指数组合建模效果总体上优于其与地形指数的组合,3类指数组合的建模取得了较为理想的预测精度,其中RF模型表现最优(验证集R2=0.83,RMSE=4.81 dS/m,RPD=3.11);在整个研究区内,中部和东部地区土壤盐渍化程度尤为严重。因此,XGBoost所筛选出的环境因子结合机器学习算法可以实现干旱区土壤盐渍化的监测。  相似文献   

8.
基于PC-RELM的养殖水体溶解氧数据流预测模型   总被引:1,自引:0,他引:1  
养殖水体中溶解氧浓度一直是最重要的水质参数之一。为了精准地对水体溶解氧进行调控,提高养殖生产效率,降低养殖风险,该研究考虑外部天气条件对溶解氧的影响以及溶解氧自身的昼夜变化特征,提出一种基于正则化极限学习机(principal component analysis and clustering method optimized regularized extreme learning machine,PC-RELM)的养殖水体溶解氧数据流预测模型。首先,采用主成分分析法判断影响溶解氧浓度的强重要性因子,降低预测模型的数据维度;其次,利用熵权法计算各时刻点的天气环境指数,并利用快速动态时间规整算法(fast dynamic time warping,FastDTW)完成时间序列数据流在不同天气环境下的相似度度量;然后使用k-means算法对时间序列的相似度进行聚类分簇,并基于分簇结果完成正则化极限学习机预测模型的构建,实现溶解氧浓度的估算。最后将PC-RELM模型应用到无锡南泉试验基地养殖池塘的溶解氧预测调控过程中。试验结果表明:PC-RELM的预测均方根误差值(root mean sq...  相似文献   

9.
基于改进深度信念网络的池塘养殖水体氨氮预测模型研究   总被引:3,自引:3,他引:0  
水体氨氮是影响水产养殖质量和产量的关键参数之一。然而,池塘养殖环境复杂多变,氨氮含量影响因子众多,且各因子之间相互关联并呈现非线性变化,同时,获取的数据存在大量噪声。因此,采用数学方法及传统神经网络很难精准预测氨氮含量,且在进行数据训练时存在局部收敛和计算效率差的问题。针对上述问题,首先,通过主成分分析筛选影响氨氮含量变化的主要因子作为模型输入,利用小波阈值方法实现噪声消除;然后,提出一种基于粒子群优化算法(particle swarm optimization, PSO)并结合多变量深度信念网络(multi-variable deep belief network, MDBN)预测模型,对池塘养殖水体溶解氧预测,并与传统最小二乘支持向量机、BP神经网络、DBNs(deep belief networks)模型进行了比较分析。研究结果表明,该文所提方法其平均百分比误差(mean absolute percentage error,MAPE)为0.1172,与传统最小二乘支持向量机、BP神经网络、DBNs方法进行对比,其MAPE分别降低了0.285 9、0.214 6、0.013 9。除此之外,随着样本数量增加,其模型绝对误差不断降低。因此,该文所提方法具有高的预测精度及泛化性能,研究可为池塘水体氨氮含量精准预测提供理论依据和参数支持。  相似文献   

10.
采用改进长短时记忆神经网络的水产养殖溶解氧预测模型   总被引:1,自引:4,他引:1  
为了精确预测水产养殖溶解氧变化趋势,该研究提出了基于K-means聚类和改进粒子群优化(Improved Particle Swarm Optimization,IPSO)的长短时记忆(Long Short-term Memory,LSTM)神经网络预测模型。根据环境因子间的相似度,应用改进的K-means聚类算法将环境数据划分为若干类。在此基础上,基于LSTM神经网络算法构建改进的水产养殖溶解氧预测模型,并引入改进粒子群优化算法对模型参数进行优化,以减少经验选取参数的盲目性。在不同天气状况下利用该模型对溶解氧进行预测。试验结果表明,在良好天气情况下,该模型预测误差曲线波动较小,预测精度更高。当天气发生突变时,溶解氧预测模型评价指标平均绝对百分误差、均方根误差、平均绝对误差和纳什系数分别为0.129 5、0.645 3、0.461 3和0.902 2。该模型一定程度改善了天气突变状况下的数据缺失、鲁棒性差等问题。  相似文献   

11.
基于CGA-BP神经网络的好氧堆肥曝气供氧量预测模型   总被引:1,自引:1,他引:0  
为提高好氧堆肥曝气供氧量的曝气效率以及预测精度,该研究利用遗传算法(genetic algorithm, GA)对标准反向传播(back propagation, BP)神经网络的初始权值和阈值进行优化,再利用克隆选择算法(clonal genetic algorithm, CGA)优化遗传算法中的变异算子并复制算子,加快获取最优参数的速度,构建基于CGA-BP神经网络的曝气供氧量预测模型。为验证CGA-BP模型的有效性,与BP模型、GA-BP模型预测结果进行对比。试验结果表明:克隆遗传算法优化BP神经网络能加快获得最优解,效率相比BP模型和GA-BP模型分别提高了75.36%、51.30%;在曝气供氧量预测模型中,CGA-BP模型具有更准确的预测效果,预测精度为99.65%,而BP模型与GA-BP模型预测精度分别为96.99%、99.26%;CGA-BP模型评价指标的均方误差、平均绝对误差、平均绝对百分误差分别为0.003 4、0.038 9和0.350 6,均小于BP神经网络和GA-BP神经网络模型评价指标的误差;利用CGA-BP好氧堆肥曝气供氧量预测模型对好氧堆肥发酵过程进行精准...  相似文献   

12.
基于时间相似数据的支持向量机水质溶解氧在线预测   总被引:3,自引:0,他引:3  
为及时辨识集约化水产养殖水质变化趋势、动态调控水质,确保无应激环境下健康养殖,该文提出了基于时序列相似数据的最小二乘支持向量回归机(least squares support vector regression,LSSVR)水质溶解氧在线预测模型。采用特征点分段时间弯曲距离(feature points segmented time warping distance,FPSTWD)算法对在线采集的时间序列数据进行分段与相似度计算,以缩减规模的子序列数据集对LSSVR模型进行快速训练优化,实现了多个LSSVR子模型在线建模,将预测数据序列与LSSVR子模型的相似度匹配,自适应地选取最佳的子模型作为在线预测模型。应用该模型对集约化河蟹福利养殖水质参数溶解氧浓度进行在线预测,模型评价指标中最大相对误差、平均绝对百分比误差、相对均方根误差和运行时间分别为4.76%、8.18%、5.23%、8.32 s。研究结果表明,与其他预测方法相比,该模型具有较好的综合预测性能,能够满足河蟹福利养殖水质在线预测的实际需求,并为集约化水产养殖水质精准调控提供研究基础。  相似文献   

13.
基于遗传神经网络的全国小麦条锈病长期气象预测   总被引:1,自引:0,他引:1  
为了提高反向传播(BP)神经网络模型预测小麦条锈病发病率的准确性和效率,以上年1月-当年3月组合的120个大气环流特征量为基础,定量分析大气环流特征量与全国小麦条锈病发病率之间的相关性并从中筛选出主要的影响因子;对影响因子进行主成分分析(PCA),提取累计贡献达到85.46%的前10个主成分作为预测因子;利用逐步回归、BP神经网络及遗传算法(GA)优化的BP神经网络三种模型进行预测,三种模型的预测精度均在80%以上,其中GA—BP神经网络模型的精度最高,达92.6%,而其训练步长仅为标准BP神经网络的1/4左右。通过PCA简化网络结构,同时运用GA优化网络初始权值和阈值,GA—BP神经网络模型可以较好的预测小麦条锈病的发病率。  相似文献   

14.
为了精准揭示不同水层各个时间序列的海域养殖水质参数含量在三维空间的变化规律,该研究首先在海水水质数据处理方面提出了将主成分分析算法(principal component analysis,PCA)与互信息算法(mutual information,MI)相融合的数据处理算法(MIPCA);其次将双向长短期记忆(bidirectional long short-term memory,BLSTM)与transformer 2个网络融合提出了新模型,即首先利用改进烟花算法(improved fireworks algorithm,IFWA)优化了双向长短期记忆神经网络中超参数;再利用transformer中注意力机制关注重要水质特征,最后将两个网络集成提出了混合模型MIPCA-BLSTM-transformer-IFWA。试验结果表明,该模型在MAPE(mean absolute percentage error)、RMSE(root mean square error)、R(coefficient of correlation)和D(willmott index of agreemen...  相似文献   

15.
基于遗传神经网络的黑龙江浅表地层水分预测   总被引:1,自引:0,他引:1  
针对BP神经网络预测土壤墒情容易出现较大空间内存在局部极值点的问题,采用GA算法对BP网络进行优化,根据大豆作物在不同生长阶段的根系分布及吸水情况,划分3个不同发育阶段,5个地层深度,建立3种对应的土壤含水量遗传神经网络预测模型,并应用于黑龙江垦区红星农场大豆田间土壤水分预测,分别对3种模型的整体预测误差进行了分析,2009年大豆播种前期及其全生育期土壤体积含水量预测的平均绝对误差为1.83%,能较好地反映大豆田间土壤水分具体情况,为大豆节水灌溉与管理提供可靠的科学依据,该预测方法亦可为寒地大豆或其他农作物田间土壤水分预测提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号