首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of neuropeptide Y (NPY) in the brain and retina of gilthead seabream (Sparus aurata L.) was investigated for the first time. For this investigation we employed an immunoperoxidase technique and the western immunoblot analysis using an antiserum raised against porcine NPY. The results showed that NPY-immunoreactivity was widely distributed in the brain of S. aurata. In particular, we have found NPY-immunoreactive (ir) neurons in the area ventralis telencephali pars centralis and pars lateralis, in the area dorsali telencephali pars centralis subdivision two and in nucleus intermedius thalami. An intense NPY-ir was detected in the telencephalon, in the optic tectum, in the thalamus, hypothalamus and in the vagal lobes. Scarce positive fibres were seen in the olfactory bulbs. NPY-ir amacrine cells were observed in the retina. The western immunoblot analysis revealed a protein band with a mobility corresponding to that of synthetic NPY. Our findings are, in general, in agreement with those obtained in other teleosts. The extensive distribution of NPY indicates for this peptide a key role in basic physiological actions, including visual and gustatory inputs processing.  相似文献   

2.
We examined the distribution of the orexin‐like peptides in the pituitary and median eminence of the flat‐tailed house gecko (Hemidactylus platyurus) using immunohistochemistry. Orexin‐B‐like, but not orexin‐A‐like, immunoreactivity was detected in the pituitary, specifically in the pars intermedia, and these cells corresponded to alpha‐melanocyte‐stimulating hormone (αMSH)‐producing cells. Orexin‐B and αMSH secreted from pars intermedia may modulate secretion of adenohypophyseal cells in the pars distalis. In the median eminence, orexin‐B‐immunoreactive puncta and fibres were observed, and these structures corresponded to gonadotropin‐releasing hormone (GnRH)‐immunoreactive puncta and fibres. Orexin‐B secreted from GnRH‐containing neurons in the hypothalamus may affect thyrotropin‐releasing hormone‐containing neurons resulting in modulation of αMSH secretion of melanotrophs in the pars intermedia.  相似文献   

3.
Increasing evidence suggests that orexins--hypothalamic neuropeptides--act as neurotransmitters or neuromediators in the brain, regulating autonomic and neuroendocrine functions. Orexins are closely associated with gonadotropin-releasing hormone (GnRH) neurons in the preoptic area and alter luteinizing hormone (LH) release, suggesting that they regulate reproduction. Here, we investigated the distribution of orexin B (immunohistochemical technique) and the relationship between orexin B and GnRH containing fibres and neurons in the pig hypothalamus using double immunofluorescence and laser-scanning confocal microscopy. Orexin B immunoreactive neurons were mainly localized in the perifornical area (PeF), dorsomedial hypothalamic nucleus (DMH), zona incerta (ZI) and the posterior hypothalamic area (PH), with a sparser distribution in the preoptic and anterior hypothalamic area. Immunoreactive fibres were distributed throughout the central nervous system. Approximately 30% GnRH neurons were in close contact with orexin B immunoreactive fibres, among these approximately 6% of GnRH neurons co-localized with orexin B perikarya in the region between the caudal preoptic area and the anterior hypothalamic area. Orexin B may regulate reproduction by altering LH release in the hypothalamus.  相似文献   

4.
5.
Contents The relationship of neuropeptide Y (NPY), galanin (GAL), β-endorphin (β-END) and vasoactive intestinal peptide (VIP) to GnRH neurons were determined during the estradiol-induced LH surge. In experiment 1, 16 ovariectomized (OVX) gilts received 15 μg estradiol benzoate (EB)/kg BW at 0800 h and were slaughtered at either 24 h (n = 5), 48 h (n = 6) or 72 h (n = 5) later and five were injected with corn oil vehicle (0 h controls). Concentrations of neuropeptides were determined in tissue extracts by RIA. In experiment 2, nine OVX gilts were injected with EB as in experiment 1 and killed at either 24, 48 or 72 h (n = 3) later and three were not injected with EB (0 h controls). Frozen sections were processed to localize neuropeptides. In experiment 1, all measured neuropeptides were highest in pituitary stalk median eminence (SME). The GnRH concentration was not different at any time point in medial basal hypothalamus (MBH), preoptic area (POA) or SME. The NPY content in MBH was lower at 24, 48 and 72 h after EB than at 0 h (p < 0.001), and lower in SME at 48 and 72 h than at 24 h (p < 0.05) and 0 h (p < 0.01), respectively. Concentration of GAL in SME was four times higher at 72 h than at 0, 24 or 48 h (p < 0.001). The VIP concentration increased in POA (p < 0.05) and MBH (p < 0.001) at 24 h and 72 h (p < 0.05). Concentration of VIP in SME was lower at 24 and 48 h than at 0 h (p < 0.05) and increased to more than twice (p < 0.05) by 72 h. Concentrations of β-END were not different at any time point in POA and MBH but the highest content of β-END in SME occurred at 24 h (p < 0.001). In experiment 2 a moderate number of GnRH-immunoreactive (IR) fibres were found in the periventricular area of the POA and in organum vasculosum of the laminae terminalis (OVLT). The GnRH-IR fibres formed networks in the external and internal layer of the median eminence (ME). At 24 h, GnRH-IR neurons and fibres in the POA and ME were more numerous and noticeable differences were found in the arcuate nucleus (ARC) and ventromedial nucleus (NVM). At 48 and 72 h, numbers of IR neurons and fibres were higher in the ARC and NVM, but no changes occurred in the POA and ME. The ARC contained a moderate number of NPY-IR fibres, but less numerous small cell bodies. Only a few NPY-IR perikarya and fibres were in the NVM and fibre density was similar at all times after EB injection. VIP-IR fibres were scarcely distributed mostly in the posterior POA and the internal layer of ME. The number of VIP-IR fibres was similar at all time points and regions. A moderate number of varicose β-END fibres supplied the POA, and they were especially dense near the OVLT, but the cell bodies were moderate in number and did not show strong immunoreactivity. In ME, ARC and NVM, the number of β-END immunoreactive structures was greater at 24 and 48 h than at 0 h. The number of β-END-IR nerve fibres in POA was higher at 72 h than at 0 h. Levels of all neuropeptides studied were similar in the POA and MBH and content of NPY, GAL and β-END was very high in the SME of the pig forebrain. The dynamic changes of NPY, GAL, VIP and β-END content in pig hypothalamus during the oestrogen-induced negative and positive feedback phases of LH secretion indicate their potential role in modulating GnRH release from the median eminence.  相似文献   

6.
用免疫组化ABC法,对发情周期中奶山羊下丘脑-垂体-卵巢轴催产素(OT)分布进行了观察研究.结果表明,下丘脑中分泌OT的神经元主要分布在室旁核和视上核,在穹窿周核、腹内侧核、腹外侧核、交叉上核、背内侧核、乳头体、下丘脑外侧区、下丘脑前核等核团也有一定数量的阳性神经元;阳性神经纤维仅见于室旁核、下丘脑前核、视上核等少数核团,在正中隆起和第3脑室室周可见到一定数量的阳性神经纤维.在垂体前叶未见到OT免疫反应阳性产物,自垂体柄和正中隆起的一侧可见到平行排列的OT阳性神经纤维断续地延伸至神经部.卵巢的卵泡及间质未见OT免疫阳性反应,,在黄体组织中存在数量较多的免疫反应阳性细胞,阳性细胞主要呈圆形、卵圆形,小梁两侧及黄体中央近腔区域的阳性细胞呈长梭形,有相当数量的阳性细胞具有突起.连续切片HE染色对照观察显示,黄体中OT主要由大黄体细胞产生,但小黄体细胞也存在OT免疫阳性反应.  相似文献   

7.
The occurrence and density of distribution of nerves and endocrine cells that are immunoreactive for neuropeptides in the bovine pancreas were studied by immunohistochemistry. The six neuropeptides localized were galanin (GAL), substance P (SP), methionine-enkephalin (MENK), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP). The exocrine pancreas was shown to have an appreciable number of GAL- and SP-immunoreactive nerve fibres but few fibres showing immunoreactivity for VIP and CGRP. Numerous MENK-, GAL-, SP-, and NPY-immunoreactive nerve fibres were seen in the endocrine portion of the pancreas. Nerve cell bodies in the intrapancreatic ganglia showed immunoreactivity for all of the neuropeptides except CGRP. Endocrine cells showing immunoreactivity for GAL and SP were observed in the large islets and islets of Langerhans, respectively. The present results indicate a characteristic distribution of neuropeptides in the bovine pancreas, which may regulate both exocrine and endocrine secretions of pancreas.  相似文献   

8.
The ataxic pogo mouse (pogo/pogo) is a novel neurological mutant, which was derived as an inbred strain (KJR/MsKist) from a Korean wild mouse. The pathological manifestations include a difficulty in maintaining a normal posture, the failure of inter-limb coordination and an inability to walk straight. In this study, we examined the distribution of corticotropin-releasing factor (CRF) immunoreactive cerebellar climbing fibres and their projections to tyrosine hydroxylase (TH) immunoreactive Purkinje cells in the cerebellum of the pogo mutant mouse using immunohistochemistry. In the pogo/pogo mouse, a subset of climbing fibres was stained more intensely for CRF than in the control. Moreover, ataxic pogo mouse, neurons of the inferior olivary nucleus projecting climbing fibres were also more intensely stained for CRF than in the control. In the pogo/pogo mouse, TH immunoreactivity was located in the Purkinje cells, whereas no TH expression was found in the control. Double immunostaining for CRF and TH in the pogo/pogo cerebellum revealed that the distribution of TH-immunoreactive Purkinje cells corresponded to terminal fields of CRF-immunoreactive climbing fibres but not to the CRF-immunoreactive mossy fibres. Therefore, we suggest that an increase of CRF level may alter the function of targeted Purkinje cells and that it is related to the ataxic phenotype in the pogo mutant mouse.  相似文献   

9.
The expression of neuropeptide Y (NPY), galanin (GAL), vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), somatostatin (SOM) and substance P (SP) was studied in the neurons of the inferior mesenteric ganglion (IMG) projecting to the uterine horn and uterine cervix after uterus extirpation-induced axotomy in sexually immature gilts. The expression was studied with immunohistochemistry, in situ hybridization and RT-PCR. Uterus-projecting neurons were identified by retrograde tracing with Fast Blue (FB). Immunohistochemistry revealed that FB-positive (FB+) uterus-projecting neurons in control animals contained only immunoreactivities to NPY (ca. 50%) and GAL (single neurons). Uterus extirpation increased the occurrence of NPY and GAL in FB+ neurons. No other studied neuropeptides were found in axotomized uterus-projecting neurons. Hybridization in situ revealed the reduction of NPY expression and induction of GAL expression in FB+ neurons. RT-PCR detected induction of GAL expression in the IMG after uterus extirpation. The expression level of NPY and SOM was significant and was not affected by axotomy. The expression level of PACAP was very low and did not differ between IMG of control, partially and totally hysterectomized animals. No VIP and SP expression was detected in all ganglia. The presented data show clear axotomy-related changes in the expression of GAL and NPY in the uterus-projecting neurons of the porcine IMG.  相似文献   

10.
11.
Follicle‐stimulating hormone (FSH) and luteinizing hormone (LH) have a central role in follicle growth, maturation and oestrus, but no clear pathway in the seasonal oestrus of yak (Bos grunniens) has been found. To better understand the role of FSH and LH in seasonal oestrus in the yak, six yaks were slaughtered while in oestrus, and the pineal gland, hypothalamus, pituitary gland, and gonads were collected. Using real‐time PCR and immunohistochemical assays, we determined the mRNA and protein expression of the FSH and LH receptors (FSHR and LHR) in these organs. The analysis showed that the FSHR mRNA expression level was higher in the pituitary gland tissue compared with LHR (< .01) during oestrus. By contrast, there was low expression of FSHR and LHR mRNA in the pineal gland and hypothalamus. FSHR mRNA expression was higher than that of LHR (< .05) in the ovary, whereas LHR mRNA expression was higher than that of FSHR (< .01) in the uterus. FSHR and LHR proteins were located in the pinealocyte, synaptic ribbon and synaptic spherules of the pineal gland and that FSH and LH interact via nerve fibres. In the hypothalamus, FSHR and LHR proteins were located in the magnocellular neurons and parvocellular neurons. FSHR and LHR proteins were localized in acidophilic cells and basophilic cells in the pituitary gland, and in surface epithelium, stromal cell and gland epithelium in the uterus. In the ovary, FSHR and LHR protein were present in the ovarian follicle. Thus, we concluded that FSHR and LHR are located in the pineal gland, hypothalamus, pituitary and gonad during oestrus in the yak. However, FSHR was mainly expressed in the pituitary gland and ovaries, whereas LHR was mainly expressed in the pituitary gland and uterus.  相似文献   

12.
The olfactory bulb (OB) shows special characteristics in its phylogenetic cortical structure and synaptic pattern. In the OB, gamma‐aminobutyric acid (GABA), as an inhibitory neurotransmitter, is secreted from GABAergic neurons which contain parvalbumin (a calcium‐binding protein). Many studies on the distribution of parvalbumin‐immunoreactive neurons in the rodent OB have been published but poorly reported in the avian OB. Therefore, in this study, we compared the structure of the OB and distribution of parvalbumin‐immunoreactive neurons in the OB between the rat and pigeon using cresyl violet staining and immunohistochemistry for parvalbumin, respectively. Fundamentally, the pigeon OB showed layers like those of the rat OB; however, some layers were not clear like in the rat OB. Parvalbumin‐immunoreactive neurons in the pigeon OB were predominantly distributed in the external plexiform layer like that in the rat OB; however, the neurons did not have long processes like those in the rat. Furthermore, parvalbumin‐immunoreactive fibres were abundant in some layers; this finding was not shown in the rat OB. In brief, parvalbumin‐immunoreactive neurons were found like those in the rat OB; however, parvalbumin‐immunoreactive fibres were significantly abundant in the pigeon OB compared to those in the rat OB.  相似文献   

13.
ER免疫反应产物在幼龄公山羊下丘脑-垂体-性腺轴的表达   总被引:2,自引:0,他引:2  
应用免疫组化SP法时雌激素受体(ER)免疫反应产物在幼龄公山羊下丘脑、垂体、性腺中的分布特点进行了研究。结果显示,下丘脑中ER免疫反应阳性神经元主要分布在视上核、室旁核、室周核等9个核团,在视前区、下丘脑外侧区等核团也有一定数量的阳性神经元;阳性细胞呈圆形、卵圆形、三角形不等,阳性物质大多位于细胞质和胞核,阳性纤维散布于各阳性核团中;在正中隆起和第三脑室室管膜可见大量小而密集排列的深染的阳性神经元。神经垂体中可见大小不等、排列较均匀且染色较深的纤维,腺垂体中腺细胞呈强阳性着色。睾丸曲细精管中的初级精母细胞和支持细胞以及睾丸间质细胞中的ER阳性产物均为微弱表达。由此表明,幼龄公山羊雌激素除作用于性腺外,还主要作用于中枢神经系统的广泛区域,推测其参与了脑中生殖、内分泌、认知等多种功能的调控。  相似文献   

14.
神经肽Y免疫反应神经元在鸽小脑中的定位--SABC 法研究   总被引:3,自引:0,他引:3  
采用石蜡切片和免疫组化SABC法(链霉亲合素-生物素-过氧化物酶连结法),对10只肉鸽小脑内神经肽Y免疫反应神经元的分布状况进行了研究.并与北京鸭、鸟鸡、肉鸡及大鼠的相关结果进行了比较。在光镜下观察分析了阳性神经元的分布状况.并用图像分析软件进行了半定量分析。结果显示:(1)小脑内神经肽Y(neuropeptide Y,NPY)阳性神经元主要存在于小脑皮质的蒲肯野氏细胞层,且以小叶顶端的蒲肯野氏细胞阳性明显;(2)小脑白质中央核可见到少量阳性神经元.不同于鸟鸡、肉鸡及大鼠;(3)分子层、颗粒层未见阳性反应细胞。表明:鸽小脑NPY阳性神经元的分布在皮质中与鸡、大鼠大体相似;在白质中与鸡、大鼠有差异。  相似文献   

15.
The autonomic innervation of the mammalian respiratory system is complex, and involves a wide variety of peptide and non-peptide neurotransmitters which will have an important role in normal laryngeal function and the response to disease. This innervation has been partially described in the horse airway and lung, but there is no information on the equine larynx. This paper describes the expression and distribution of nerve fibres immunoreactive for vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), substance P (SP) and the adrenergic enzymatic marker dopamine beta-hydroxylase (DBetaH) in the mucosa of the equine larynx. The overall relative density of nerve fibres immunoreactive for the different antigens was VIP>CGRP>SP>DBetaH. There were differences in the distribution of nerve fibre types, although each antigen was found in nerve fibres adjacent to blood vessels and mucous glands. VIP -like immunoreactivity (VIP -Li) was particularly extensive in association with mucous glands. SP - and CGRP -like immunoreactivity (SP -Li, CGRP -Li) were also seen close to the epithelium, with occasional nerve fibres coursing beneath and between the epithelial cells. Fragments of SP -Li and CGRP -Li fibres were also present in large nerve fibre bundles and ganglionic cell clusters, but not in the neurons themselves. The density of nerve fibres immunoreactive for DBetaH was very low and restricted to blood vessels and mucous glands. There was marked variation in the density of nerve fibres at the different sites, with the greatest density, particularly for VIP, over the arytenoid cartilage. Immunoreactive nerve fibres were less plentiful over the epiglottis, and the density of all types of nerve fibres was low over the cricoid cartilage. Overall VIP -Li nerve fibres were the most plentiful.  相似文献   

16.
NPY、TSH-β、CaBP-28K基因在鸭繁殖期组织中的表达水平分析   总被引:1,自引:0,他引:1  
本研究对繁殖期高邮鸭神经肽Y(NPY)、促甲状腺激素β(TSH-β)、钙结合蛋白-D28K(CaBP-28K)基因在中枢神经组织和周围组织表达量进行了实时荧光定量分析。结果表明:NPY基因在下丘脑中表达量显著高于在垂体和在小肠中的表达量(P<0.05),在卵巢、心脏、肝脏、脾脏、肾脏、胰腺、子宫、胸肌、腿肌等9个部位呈痕量表达;TSH-β基因在垂体、小肠中表达量较高,显著高于其他组织(P<0.05);CaBP-28K基因在小肠表达量最多,其次是卵巢和肾脏,但均显著大于垂体中表达量(P<0.05),在其他测定部位呈痕量表达,就生殖轴而言,CaBP-28KmRNA的表达量表现为卵巢>垂体>下丘脑。本研究为了解高邮鸭繁殖期相关基因的表达特征和内分泌机制,指导高邮鸭选种选育提供了理论依据。  相似文献   

17.
Immunohistochemical properties of nerve fibres supplying the joint capsule were previously described in many mammalian species, but the localization of sensory neurons supplying this structure was studied only in laboratory animals, the rat and rabbit. However, there is no comprehensive data on the chemical coding of sensory neurons projecting to the hip joint capsule (HJC). The aim of this study was to establish immunohistochemical properties of sensory neurons supplying HJC in the sheep. The study was carried out on 10 sheep, weighing about 30–40 kg. The animals were injected with a retrograde neural tracer Fast Blue (FB) into HJC. Sections of the spinal ganglia (SpG) with FB‐positive (FB+) neurons were stained using antibodies against calcitonin gene‐related peptide (CGRP) substance P (SP), pituitary adenylate cyclase‐activating peptide (PACAP), nitric oxide synthase (n‐NOS), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), Leu‐5‐enkephalin (Leu‐Enk), galanin (GAL) and vesicular acetylcholine transporter (VACHT). The vast majority of FB+ neurons supplying HJC was found in the ganglia from the 5th lumbar to the 2nd sacral. Immunohistochemistry revealed that most of these neurons were immunoreactive to CGRP or SP (80.7 ± 8.0% or 56.4 ± 4.8%, respectively) and many of them stained for PACAP or GAL (52.9 ± 2.9% or 50.6 ± 19.7%, respectively). Other populations of FB+ neurons were those immunoreactive to n‐NOS (37.8 ± 9.7%), NPY (34.6 ± 6.7%), VIP (28.7 ± 4.8%), Leu‐Enk (27.1 ± 14.6) and VACHT (16.7 ± 9.6).  相似文献   

18.
The immunoreactivity (ir) for c-Fos, NGF and TrkA, following an acute and chronic open field stress, were studied in the periventricular zone of rat hypothalamus. Adult rats were divided into three groups: control, exposed to acute (single exposure--15 minutes) and chronic (multiple exposures--15 minutes daily for 21 days) open field stress. In the control rats neurons immunoreactive to c-Fos, TrkA and NGF were found. The number of TrkA- and NGF-ir cells was high, whereas this of c-Fos-ir ones was low. In animals exposed to acute open field stress the number of c-Fos-ir cells in the examined nuclei varied, however it was much higher than that in the control animals. The number of TrkA-ir neurons in all the studied nuclei was also higher than that in the control animals, but the increase of the number of NGF-ir neurons was not observed in supraoptic nucleus. In the animals exposed to chronic open field stress the number of c-Fos-ir cells was increased in comparison to that in the control rats. After chronic stress exposure the number of TrkA-ir neurons in supraoptic nucleus remained high in comparison to that in animals exposed to acute stress, whereas it was decreased in other studied nuclei. No significant differences in the number of NGF-ir cells were observed between the groups exposed to the acute and chronic stress. Observed decrease of c-Fos- and TrkA-ir in the studied nuclei in the animals suffering from chronic stress in comparison with the acute one may indicate the occurrence of habituation phenomenon. This phenomenon does not concern NGF-ir.  相似文献   

19.
Beacon-immunoreactive (B-ir) fibres and neurons in the hypothalamus of the domestic chick (Gallus domesticus) were studied using an immunohistochemical technique in order to verify the presence and elucidate the pattern of distribution of this novel peptide in an avian brain. B-ir neurons were seen in the n. supraopticus, pars ventralis and pars externus; n. magnocellularis preopticus, pars dorsalis, medialis and ventralis; n. preopticus periventricularis; n. suprachiasmaticus, pars medialis; n. ventrolateralis thalami. Only few B-ir cells were scattered in the most anterior part of the lateral hypothalamic area. B-ir fibres, appearing as thin punctuate structures, were seen mainly along the walls of the third ventricle and in the ventromedial hypothalamus. Labelled fibres and terminals were located in the external and internal zones of the anterior and posterior median eminence. In particular, fibre terminals were seen close to the capillary loops of the hypothalamo-hypophysial portal system. The anatomical data of the present study regarding the distribution of B-ir in the chick hypothalamus suggest that beacon may play a key role in the regulation of the neuroendocrine system by acting as a neuromodulator and/or neurotransmitter.  相似文献   

20.
Using an immunocytochemical technique, we have studied in the alpaca brainstem the distribution of immunoreactive structures containing prodynorphin (alpha‐neoendorphin)‐ and pro‐opiomelanocortin (adrenocorticotrophin hormone (18–39) (ACTH), beta‐endorphin (1–27))‐derived peptides. No peptidergic‐immunoreactive cell body was observed. Immunoreactive fibres were widely distributed, although in most of the brainstem nuclei the density of the peptidergic fibres was low or very low. In general, the distribution of the immunoreactive fibres containing the peptides studied was very similar. A close anatomical relationship occurred among the fibres containing alpha‐neoendorphin, ACTH or beta‐endorphin (1–27), suggesting a functional interaction among the three peptides in many of the brainstem nuclei. The number of fibres belonging to the prodynorphin system was higher than that of the pro‐opiomelanocortin system. A moderate/low density of immunoreactive fibres was observed in 65.11% (for alpha‐neoendorphin (1–27)), 18.18% (for ACTH) and 13.95% (for beta‐endorphin) of the brainstem nuclei/tracts. In the alpaca brainstem, a high density of immunoreactive fibres was not observed. The neuroanatomical distribution of the immunoreactive fibres suggests that the peptides studied are involved in auditory, motor, gastric, feeding, vigilance, stress, respiratory and cardiovascular mechanisms, taste response, sleep‐waking cycle and the control of pain transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号