首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this experiment transmission of classical swine fever (CSF) virus via excretions of infected pigs was investigated under experimental conditions. Five pairs of pigs were experimentally infected with CSF virus. Eight days after experimental infection, when all pigs were viraemic for at least 3 days, the pens were depopulated and 20 h later, restocked with five pairs of susceptible pigs which stayed in these pens for 35 days. During the first 3 weeks of the experiment, the pens were neither cleaned nor disinfected. During the observation period, none of the susceptible pigs became infected. This result indicates that CSF virus spread via excretions is of minor importance in the early stages of infection. For extrapolation of these findings to the field situation and to increase the validity of the conclusions further research is needed to evaluate the effect of factors like virus strain, interval, ..., that may influence the outcome of the experiment.  相似文献   

2.
3.
The spread of classical swine fever virus was investigated in an isolation unit containing four pens, each containing six slaughter pigs. One pig in the middle pen of three adjacent pens was inoculated intramuscularly and intranasally with the virus. The fourth pen was located in a separate compartment. The pens were visited in a strict order to study, first, the effect of indirect contact via contaminated clothing and footwear on the spread of the virus to adjacent pens and, secondly, the airborne transmission of the virus between compartments. The pigs were examined and blood samples were taken every other day for 62 days for virological and serological analyses. The virus was highly contagious for the five pigs that were in direct contact with the inoculated pig, but spread to the other pens only after all the pigs in the originally infected pen had become viraemic. The spread of the virus was promoted by contaminated clothing and footwear, but airborne transmission contributed considerably to the spread of the virus within the pighouse. The first clinical signs observed after the virus was introduced into a pen were decreased feed intake, increased mean rectal temperature and apathy. Neither the clinical course of the infection, nor the pattern of seroconversion observed over time, was affected by the differences in the intensity of contact with the virus between the pigs in the different pens.  相似文献   

4.
5.
It has been demonstrated that pigs that have been double vaccinated with an E2 sub-unit marker vaccine and that are infected with classical swine fever virus (CSFV) through a natural contact infection may react positive in a CSFV detecting RT-nPCR test, whereas no virus could be isolated by using the conventional virus isolation (VI) technique. To evaluate whether these vaccinated and infected pigs may spread the virus, three experiments were set up. In the first, susceptible pigs were inoculated with serum originating from vaccinated RT-nPCR positive pigs. In the second, vaccinated RT-nPCR positive pigs were brought into contact with sentinel animals. In the third, vertical transmission was evaluated in RT-nPCR positive vaccinated pregnant gilts. In the first two experiments, no proof of virus transmission was found, whereas in the third vertical transmission was observed. The conclusion is that in vaccinated pigs that are positive in RT-nPCR but negative in VI, the level of circulating virus is probably not high enough for horizontal transmission, whereas vertical transmission of the virus is possible.  相似文献   

6.
Several routes contribute to the spread of classical swine fever (CSF) during outbreaks of this disease. However, for many infected herds in recent epidemics, no route of virus introduction could be indentified. To obtain more insight into the relative importance of secretions and excretions in transmission of CSF virus, a model was developed. This model quantified the daily transmission probabilities from one infectious pig to one susceptible pig, using quantitative data on: (a) virus excretion by infected pigs, (b) survival of virus in the environment and (c) virus dose needed to infect susceptible pigs. Furthermore, the model predicted the relative contribution of secretions and excretions to this daily probability of infection of a susceptible pig. Three virus strains that differed in virulence were evaluated with the model: the highly virulent strain Brescia, the moderately virulent strain Paderborn and the low virulent strain Zoelen. Results suggest that it is highly probable that susceptible pigs in contact with Brescia or Paderborn infected pigs will be infected. For a pig in contact with a Zoelen infected pig, infection is less likely. When contact with blood is excluded, the predicted overall probability of infection was only 0.08 over the entire infectious period. The three strains differed in the relative contribution of secretions and excretions to transmission, although blood had a high probability of causing infection of a susceptible pig when in contact with a pig infected with any strain. This supports the statement that during outbreaks, control measures should ideally be based on the characteristics of the specific virus strain involved, which implies the development of strain-specific measures.  相似文献   

7.
The airborne transmission of Classical Swine Fever (CSF) virus to susceptible pigs, as well as the effect of vaccination with the CSF virus PAV-250 strain was investigated on this mode of transmission. Experiment I: four pigs were inoculated with the ALD CSFV strain (10(4.3) 50% TCID) by the intramuscular route, and at the onset of fever, they were introduced into an enclosed chamber. At the end of the experiment surviving pigs were sedated, anesthetized and euthanatized. Experiment II: four pigs were previously vaccinated with the CSF virus PAV-250 strain, and at 14 days post-vaccination they were challenged with the CSF virus ALD strain. In both experiments, four susceptible pigs were exposed to infectious aerosols by placing them in a chamber connected by a duct to the adjacent pen containing the infected animals and were kept there for 86 hs. In Experiment I, pigs exposed to contaminated air died as a result of infection with CSF virus on days 14, 21 and 28 post-inhalation. These four pigs seroconverted from day 12 post-inhalation. CSF virus was isolated from these animals, and the fluorescent antibody test on tonsils was positive. In Experiment II, a vaccinated pig exposed to contaminated air did not seroconvert, nor was CSF virus isolated from lymphoid tissues. However, mild fluorescence in tonsil sections from these pigs was observed. In conclusion, CSF virus was shown to be transmitted by air at a distance of 1 m to susceptible pigs. Vaccination with the PAV-250 CSF virus strain protected the pigs from clinical disease under the same conditions.  相似文献   

8.
It has been demonstrated that pigs that have been double vaccinated with an E2 sub‐unit marker vaccine and that are infected with classical swine fever virus (CSFV) through a natural contact infection may react positive in a CSFV detecting RT‐nPCR test, whereas no virus could be isolated by using the conventional virus isolation (VI) technique. To evaluate whether these vaccinated and infected pigs may spread the virus, three experiments were set up. In the first, susceptible pigs were inoculated with serum originating from vaccinated RT‐nPCR positive pigs. In the second, vaccinated RT‐nPCR positive pigs were brought into contact with sentinel animals. In the third, vertical transmission was evaluated in RT‐nPCR positive vaccinated pregnant gilts. In the first two experiments, no proof of virus transmission was found, whereas in the third vertical transmission was observed. The conclusion is that in vaccinated pigs that are positive in RT‐nPCR but negative in VI, the level of circulating virus is probably not high enough for horizontal transmission, whereas vertical transmission of the virus is possible.  相似文献   

9.
Sixty-one pigs were housed in an isolation unit with three compartments and five pens. Each compartment had its own ventilation system resulting in air currents flowing from compartment A (pens 1 to 3) towards compartment B (pen 4), but not towards compartment C (pen 5). Classical swine fever virus was introduced by the experimental inoculation of one pig in the middle pen (pen 2) of compartment A. The virus infected the pigs in pen 4, following the prevalent air currents, and the compartmentalisation had only a retarding effect on the transmission of the virus. The absence of infection in the pigs in pen 5, which was not different from pen 4 except for the ventilation system, indicates that the spread of virus was affected by the air currents.  相似文献   

10.
A classical swine fever virus (CSFV) field isolate originating from wild boar was investigated on its virulence in domestic pigs and wild boar. Three weaner pigs and two wild boars (yearlings) were intranasally inoculated with the isolate "Spante" and tested for clinical, virological, hematological and serological findings until day 31 after infection (p. i.). One day p. i. the piglets were put in contact to three sentinel pigs. During a period of 31 d neither the domestic pigs nor the wild boars showed clinical signs specific for CSF. Two infected weaner pigs became transiently viraemic, transmitted CSFV in nasal secretions, showed a slight leukopenia and reacted serologically positive. The contact infection resulted in a viraemia in two sentinel piglets on day 30. Only one contact animal developed antibodies. None of the wild boars became viraemic, excreted CSFV in nasal secretions or developed antibodies. The CSFV isolate "Spante" represents a low virulent virus. Referring to a significant higher percentage of virologically positive tissue samples after nested PCR compared with the virus isolation, persistence of CSFV is discussed.  相似文献   

11.
12.
The most effective method of containing an outbreak of foot-and-mouth disease (FMD) is by the culling of livestock. However, qualified people must diagnose the disease before the culling can begin, and they must avoid susceptible animals after having been in contact with infected premises, to prevent them from transmitting the virus. To test the effectiveness of biosecurity procedures in preventing the transmission of FMD virus (O/UK/35/2001) investigators contacted and sampled pigs inoculated with FMD virus for approximately 45 minutes and then contacted and sampled sentinel pigs and sheep after either using no biosecurity procedures, or washing their hands and donning clean outerwear, or showering and donning clean outerwear. The virus was detected in the nasal secretions of one investigator immediately after the postmortem investigation of the inoculated pigs but was not detected in samples collected between approximately 12 and 84 hours later. After the contaminated personnel had showered and changed into clean outerwear they did not transmit the strain of FMD virus to susceptible pigs and sheep.  相似文献   

13.
In this paper, we describe the transmission of Classical Swine Fever virus (CSF virus) within herds during the 1997–1998 epidemic in the Netherlands. In seven herds where the infection started among individually housed breeding stock, all breeding pigs had been tested for antibodies to CSF virus shortly before depopulation. Based upon these data, the transmission of CSF virus between pigs was described as exponential growth in time with a parameter r, that was estimated at 0.108 (95% confidence interval (95% CI) 0.060–0.156). The accompanying per-generation transmission (expressed as the basic reproduction ratio, R0) was estimated at 2.9. Based upon this characterisation, a calculation method was derived with which serological findings at depopulation can be used to calculate the period in which the virus was with a certain probability introduced into that breeding stock. This model was used to estimate the period when the virus had been introduced into 34 herds where the infection started in the breeding section. Of these herds, only a single contact with a herd previously infected had been traced. However, in contrast with the seven previously mentioned herds, only a sample of the breeding pigs had been tested before depopulation (as was the common procedure during the epidemic). The observed number of days between the single contact with an infected herd and the day of sampling of these 34 herds fitted well in the model. Thus, we concluded that the model and transmission parameter was in agreement with the transmission between breeding pigs in these herds.

Because of the limited sample size and because it was usually unknown in which specific pen the infection started, we were unable to estimate transmission parameters for weaned piglets and finishing pigs from the data collected during the epidemic. However, from the results of controlled experiments in which R0 was estimated as 81 between weaned piglets and 14 between heavy finishing pigs (Laevens et al., 1998a. Vet. Quart. 20, 41–45; Laevens et al., 1999. Ph.D. Thesis), we constructed a simple model to describe the transmission of CSF virus in compartments (rooms) housing finishing pigs and weaned piglets. From the number of pens per compartment, the number of pigs per pen, the numbers of pigs tested for antibodies to CSF virus and the distribution of the seropositive pigs in the compartment, this model gives again a period in which the virus most probably entered the herd. Using the findings in 41 herds where the infection started in the section of the finishers or weaned piglets of the age of 8 weeks or older, and of which only a single contact with a herd previously infected was known, there was no reason to reject the model. Thus, we concluded that the transmission between weaned piglets and finishing pigs during the epidemic was not significantly different from the transmission observed in the experiments.  相似文献   


14.
用1 200 RID、6 000 RID和24 000 RID 3种不同剂量的猪瘟活疫苗单次免疫9头30日龄的断奶仔猪,检测试验猪的抗体消长和疫苗毒核酸在猪体内的存留时间,并用6头猪进行攻毒保护试验.结果表明:不同免疫剂量的试验猪其抗体水平的动态变化没有显著差异,免疫后21 d试验猪的猪瘟抗体均成阳性,63 d后至578 d猪瘟抗体阻断率仍然高于85%,应用荧光定量RT-PCR技术检测,猪瘟疫苗毒核酸在猪血液和扁桃体中的检出时间分别达28 d和42 d;免疫后370 d进行猪瘟强毒攻击后,免疫猪没有出现明显的临床症状,存活且不带毒.本研究证实,没有其他疫病和母源抗体的仔猪单次接种合理剂量的猪瘟活疫苗就能产生坚强的保护力,提出加强种猪场各种病原监测,淘汰病原阳性种猪,净化种猪群对提高猪瘟疫苗免疫效果,最终控制猪瘟具有重要意义.  相似文献   

15.
To assess the transmission of porcine reproductive and respiratory syndrome virus (PRRSV) from pigs to mallard ducks, 10 adult (one-year-old) female mallard ducks were housed with pigs infected experimentally with PRRSV, and allowed to be in close contact with them for 21 days. To evaluate the transmission of PRRSV from mallard ducks to pigs, two adult ducks were inoculated orally with PRRSV (total dose 10(6.0) TCID50) and allowed to drink PRRsv-infected water; 24 hours later, two four-week-old PRRsv-naive sentinel pigs were housed in pens below the cages housing the ducks for 14 days. In both experiments, cloacal and faecal samples were collected three times a week from the ducks and tested by PCR, virus isolation and a pig bioassay. Blood samples from the pigs were tested by ELISA, PCR and virus isolation. Sera from the ducks were tested by serum neutralisation. The ducks were examined postmortem and selected tissues were tested by PCR, virus isolation, histopathology and pig bioassay. In both experiments all the cloacal swabs, faecal samples, tissues and sera from the ducks were negative by all the tests. The sera from the pigs in the first experiment were PCR positive at three, seven, 14 and 21 days after infection and ELISA positive at 14 and 21 days. Sera from the pigs in the second experiment were negative by all the tests. The virus was isolated from the oral inoculum and the drinking water provided for the ducks in the second experiment. Under the conditions of this study, it was not possible to demonstrate the transmission of PRRSV either from the pigs to the ducks or from the ducks to the pigs.  相似文献   

16.
Contact transmission of vesicular stomatitis virus New Jersey in pigs   总被引:4,自引:0,他引:4  
OBJECTIVE: To determine how viral shedding and development or lack of clinical disease relate to contact transmission of vesicular stomatitis virus New Jersey (VSV-NJ) in pigs and determine whether pigs infected by contact could infect other pigs by contact. ANIMALS: 63 pigs. PROCEDURE: Serologically naive pigs were housed in direct contact with pigs that were experimentally inoculated with VSV-NJ via ID inoculation of the apex of the snout, application to a scarified area of the oral mucosa, application to intact oral mucosa, or ID inoculation of the ear. In a second experiment, pigs infected with VSV-NJ by contact were moved and housed with additional naive pigs. Pigs were monitored and sampled daily for clinical disease and virus isolation and were serologically tested before and after infection or contact. RESULTS: Contact transmission developed only when vesicular lesions were evident. Transmission developed rapidly; contact pigs shed virus as early as 1 day after contact. In pens in which contact transmission was detected, 2 of 3 or 3 of 3 contact pigs were infected. CONCLUSIONS AND CLINICAL RELEVANCE: Transmission was lesion-dependent; however, vesicular lesions often were subtle with few or no clinical signs of infection. Contact transmission was efficient, with resulting infections ranging from subclinical (detected only by seroconversion) to clinical (development of vesicular lesions). Long-term maintenance of VSV-NJ via contact transmission alone appears unlikely. Pigs represent an efficient large-animal system for further study of VSV-NJ pathogenesis and transmission.  相似文献   

17.
18.
Active transmission of classical swine fever virus (CSFV) was studied in six birds (five ravens, one hooded crow) and two laying hens. Cloacal swabs, blood and organs of birds and hens as well as blood and organ samples of pigs which had been fed with faeces derived from CSFV infected birds or which had come in contact with faeces of infected hens were negative for CSFV. None of the animals seroconverted during the study. This result demonstrates that active virus transmission by these animals is unlikely. Dissemination of CSFV from wild boar to domestic pigs is discussed.  相似文献   

19.
A strict system for visiting experimentally inoculated and susceptible weaner pigs was used to examine the potential indirect transmission of classical swine fever (CSF) virus by people wearing contaminated boots, gloves and coveralls. The inoculated and susceptible pigs were housed in separate compartments, between which the airborne transmission of the virus was impossible. A worst-case scenario with an intensive visiting protocol and no form of disinfection or hygiene was established. Fifteen days after the pigs were inoculated, infection was detected in one contact pig, and it was concluded that under the conditions of the experiment CSF virus could be transmitted by contact with people.  相似文献   

20.
The objective of this study was to determine the amount and infectivity of porcine circovirus type 2 (PCV2) shed in nasal, oral and fecal secretions following experimental infection. Fecal, oral and nasal swabs and blood were collected at regular intervals until 69 days post-inoculation (DPI) from five PCV2-experimentally inoculated pigs (Trial 1). To assess the infectivity of the PCV2 present in excretions, secretions, and on a hypodermic needle, 26 PCV2-na?ve pigs (Trial 2) were inoculated with various samples obtained from Trial 1 pigs. In Trial 1, PCV2 DNA was detected in all sample types by 69 DPI. There were no differences in the amount of PCV2 DNA present in different sample types over time. In Trial 2, intraperitoneal inoculation with contaminated fecal, nasal and oral samples; intranasal inoculation of nasal secretions; and feces fed to na?ve animals resulted in viremia and seroconversion. Viremia and microscopic lesions were noted in one animal injected using a contaminated needle. In conclusion, experimental PCV2 exposure results in a long term infection. PCV2 is shed in similar amounts by nasal, oral and fecal routes and is infectious to na?ve pigs confirming that multiple routes of transmission are likely important in spread of PCV2 between pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号