首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
快速精准识别棚内草莓的改进YOLOv4-Tiny模型   总被引:5,自引:5,他引:0  
为了实现棚内草莓果实的快速精准识别,该研究提出一种基于改进YOLOv4-Tiny的草莓检测模型。首先,为了大幅度减少模型计算量,采用轻量型网络GhostNet作为特征提取网络,并在GhostBottleneck结构中嵌入卷积注意力模块以加强网络的特征提取能力;其次,在颈部网络中添加空间金字塔池化模块和特征金字塔网络结构,融合多尺度特征提升小目标草莓的检测效果;最后,采用高效交并比损失作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进YOLOv4-Tiny模型权重大小仅为4.68 MB,平均每幅图片的检测时间为5.63 ms,在测试集上的平均精度均值达到92.62%,相较于原YOLOv4-Tiny模型提升了5.77个百分点。与主流的目标检测模型SSD、CenterNet、YOLOv3、YOLOv4和YOLOv5s相比,改进YOLOv4-Tiny模型平均精度均值分别高出9.11、4.80、2.26、1.22、1.91个百分点,并且模型权重大小和检测速度方面均具有绝对优势,该研究可为后续果实智能化采摘提供技术支撑。  相似文献   

2.
基于改进型YOLOv4-LITE轻量级神经网络的密集圣女果识别   总被引:9,自引:9,他引:0  
对密集圣女果遮挡、粘连等情况下的果实进行快速识别定位,是提高设施农业环境下圣女果采摘机器人工作效率和产量预测的关键技术之一,该研究提出了一种基于改进YOLOv4-LITE轻量级神经网络的圣女果识别定位方法。为便于迁移到移动终端,该方法使用MobileNet-v3作为模型的特征提取网络构建YOLOv4-LITE网络,以提高圣女果果实目标检测速度;为避免替换骨干网络降低检测精度,通过修改特征金字塔网络(Feature Pyramid Networks,FPN)+路径聚合网络(Path Aggregation Network,PANet)的结构,引入有利于小目标检测的104×104尺度特征层,实现细粒度检测,在PANet结构中使用深度可分离卷积代替普通卷积降低模型运算量,使网络更加轻量化;并通过载入预训练权重和冻结部分层训练方式提高模型的泛化能力。通过与YOLOv4在相同遮挡或粘连程度的测试集上的识别效果进行对比,用调和均值、平均精度、准确率评价模型之间的差异。试验结果表明:在重叠度IOU为0.50时所提出的密集圣女果识别模型在全部测试集上调和均值、平均精度和准确率分别为0.99、99.74%和99.15%,同比YOLOv4分别提升了0.15、8.29个百分点、6.54个百分点,权重大小为45.3 MB,约为YOLOv4的1/5,对单幅416×416像素图像的检测,在图形处理器(Graphics Processing Unit,GPU)上速度可达3.01 ms/张。因此,该研究提出的密集圣女果识别模型具有识别速度快、识别准确率高、轻量化等特点,可为设施农业环境下圣女果采摘机器人高效工作以及圣女果产量预测提供有力的保障。  相似文献   

3.
针对目前三七检测算法在复杂田间收获工况下检测精度低、模型复杂度大、移动端部署难等问题,该研究提出一种基于YOLOv5s的轻量化三七目标检测方法。首先,采用GSConv卷积方法替换原始颈部网络的传统卷积,引入Slim-neck轻量级颈部网络,降低了模型复杂度,同时提升了模型精度;其次,使用ShuffleNetv2轻量型特征提取网络对主干网络进行轻量化改进,提升了模型实时检测性能,并采用角度惩罚度量的损失(SIoU)优化边界框损失函数,提升了轻量化后的模型精度和泛化能力。试验结果表明,改进后的PN-YOLOv5s模型参数量、计算量、模型大小分别为原YOLOv5s模型的46.65%、34.18%和48.75%,检测速度提升了1.2倍,F1值较原始模型提升了0.22个百分点,平均精度均值达到了94.20%,较原始模型低0.6个百分点,与SSD、Faster R-CNN、YOLOv4-tiny、YOLOv7-tiny和YOLOv8s模型相比能够更好地平衡检测精度与速度,检测效果更好。台架试验测试结果表明,4种输送分离作业工况下三七目标检测的准确率达90%以上,F1值达86%以上,平均精度均值达87%以上,最低检测速度为105帧/s,实际收获工况下模型的检测性能良好,可为后续三七收获作业质量实时监测与精准分级输送提供技术支撑。  相似文献   

4.
为提高金银花采摘机器人的工作效率和采摘精度,实现将模型方便快速部署到移动端,该研究提出一种基于改进YOLOv5s的轻量化金银花识别方法。用EfficientNet的主干网络替换YOLOv5s的Backbone层,并在改进之后的Backbone层加入原YOLOv5s的SPPF特征融合模块,减少了模型的参数量和计算量,同时降低模型权重的大小,便于之后移动端的部署;其次,为提高模型对于金银花的识别效果,该研究在Neck层中用CARAFE上采样模块替换原始模型中的上采样模块,在略微提高参数量的前提下提高了模型识别金银花的精确度和平均精度,提高了采摘效率。试验结果显示,改进后的轻量化模型参数量仅为3.89 × 106 M,为原始YOLOv5s模型的55.5%;计算量仅为7.8 GFLOPs,为原始模型的49.4%;权重仅为7.8 MB,为原始模型的57.4%,并且精确度和平均精度达到了90.7%和91.8%,相比原始YOLOv5s模型分别提高1.9和0.6个百分点。改进后的轻量化模型与当前主流的Faster-RCNN、SSD、YOLO系列目标检测模型相比,不但提高了检测精度,还大幅减少了模型的参数量、计算量和权重大小,研究结果为后续金银花采摘机器人的识别和移动端的部署提供了参考和依据。  相似文献   

5.
基于改进EfficientDet的油橄榄果实成熟度检测   总被引:2,自引:2,他引:0  
自然环境下自动准确地检测油橄榄果实的成熟度是实现油橄榄果实自动化采摘的基础。该研究根据成熟期油橄榄果实表型特征的变化以及参考国际油橄榄理事会和中国林业行业标准的建议制定了油橄榄果实成熟度标准,并针对油橄榄果实相邻成熟度特征差异不明显以及果实之间相互遮挡问题,提出一种改进EfficientDet的油橄榄果实成熟度检测方法。首先改进特征提取网络,在特征提取网络中引入卷积注意力模块(Convolution Block Attention Module,CBAM)细化不同成熟度之间的特征映射;其次改进特征融合网络,在加权双向特征金字塔网络(Bidirectional Feature Pyramid Network,Bi-FPN)中增加跨级的数据流加强果实的相对位置信息,最后通过623幅油橄榄测试图像对改进的EfficientDet模型进行测试。改进EfficientDet模型在测试集下的精确率P、召回率R和平均精度均值mAP分别为92.89%、93.59%和94.60%,平均检测时间为0.337 s,模型大小为32.4 M。对比SSD、EfficientDet、YOLOv3、YOLOv5s和Faster R-CNN模型,平均精度均值mAP分别提升7.85、4.77、3.73、1.15和1.04个百分点。改进EfficientDet模型能够为油橄榄果实的自动化采摘提供有效探索。  相似文献   

6.
在高架栽培环境下,精准识别草莓果实并分割果梗对提升草莓采摘机器人的作业精度和效率至关重要。该研究在原YOLOv5s模型中引入自注意力机制,提出了一种改进的YOLOv5s模型(ATCSP-YOLOv5s)用于高架草莓的果实识别,并通过YOLOv5s-seg模型实现了果梗的有效分割。试验结果显示,ATCSP-YOLOv5s模型的精确率、召回率和平均精度值分别为97.24%、94.07%、95.59%,较原始网络分别提升了4.96、7.13、4.53个百分点;检测速度为17.3帧/s。此外,YOLOv5s-seg果梗分割模型的精确率、召回率和平均精度值分别为82.74%、82.01%和80.67%。使用ATCSP-YOLOv5s模型和YOLOv5s-seg模型分别对晴天顺光、晴天逆光和阴天条件下的草莓图像进行检测,结果表明,ATCSP-YOLOv5s模型在3种条件下识别草莓果实的平均精度值为95.71%、95.34%、95.56%,较原始网络提升4.48、4.60、4.50个百分点。YOLOv5s-seg模型在3种条件下分割草莓果梗的平均精度值为82.31%、81.53%、82.04%。该研究为草莓采摘机器人的自动化作业提供了理论和技术支持。  相似文献   

7.
目标检测与分割是实现黄花菜智能化采摘的关键技术,原始目标检测算法容易出现漏检、误检等问题,无法满足自然环境下生长的黄花菜采摘要求。该研究提出一种基于改进YOLOv7-seg的黄花菜目标检测与实例分割识别算法模型(YOLO-Daylily)。通过在YOLOv7-seg骨干网络(backbone)中引入CBAM(convolutional block attention module)注意力机制模块,降低背景等干扰因素的影响;在ELAN(efficient layer aggregation networks)模块中采用PConv(partial convolution)替换原有的3×3卷积层,减少冗余计算和内存访问,提升对目标黄花菜特征提取的能力。颈部网络(neck)采用坐标卷积(CoordConv)替换PA-FPN(path aggregation-feature pyramid networks)中1×1卷积层,增强模型对位置的感知,提高掩膜(mask)鲁棒性。在改进的PA-FPN结构中采用残差连接方法将浅层特征图几何信息与深层特征图语义信息特征相结合,提高模型对目标黄花菜的检测分割性能。消融试验表明:改进后的算法检测准确率、召回率和平均精度分别达到92%、86.5%、93%,相比YOLOv7-seg基线算法分别提升2.5、2.3、2.7个百分点;分割准确率、召回率和平均精度分别达到92%、86.7%、93.5%,比基线算法分别提升0.2、3.5、3个百分点。与Mask R-CNN、SOLOv2、YOLOV5-seg、YOLOv5x-seg算法相比,平均精度分别提升8.4、12.7、4.8、5.4个百分点。改进后的模型减少了漏检、误检等情况,对目标定位更加精准,为后续黄花菜智能化采摘实际应用提供理论支持。  相似文献   

8.
基于改进YOLOv7模型的复杂环境下鸭蛋识别定位   总被引:1,自引:1,他引:0  
在干扰、遮挡等复杂环境下,对鸭蛋进行快速、准确识别定位是开发鸭蛋拾取机器人的关键技术,该研究提出一种基于改进YOLOv7(you only look once)模型的复杂环境鸭蛋检测方法,在主干网络加入卷积注意力模块(CBAM,convolutional block attention module),加强网络信息传递,提高模型对特征的敏感程度,减少复杂环境对鸭蛋识别干扰;利用深度可分离卷积(DSC,depthwise separable convolution)、调整空间金字塔池化结构(SPP,spatial pyramid pooling),降低模型参数数量和运算成本。试验结果表明,与SSD、YOLOv4、YOLOv5_M以及YOLOv7相比,改进YOLOv7模型的F1分数(F1 score)分别提高了8.3、10.1、8.7和7.6个百分点,F1分数达95.5%,占内存空间68.7 M,单张图片检测平均用时0.022 s。与不同模型在复杂环境的检测对比试验表明,改进的YOLOv7模型,在遮挡、簇拥、昏暗等复杂环境下,均能对鸭蛋进行准确快速的识别定位,具有较强鲁棒性和适用性。该研究可为后续开发鸭蛋拾取机器人提供技术支撑。  相似文献   

9.
为减少采摘点定位不当导致末端碰撞损伤结果枝与果串,致使采摘失败及损伤率提高等问题,该研究提出了基于深度学习与葡萄关键结构多目标识别的采摘点定位方法。首先,通过改进YOLACT++模型对结果枝、果梗、果串等葡萄关键结构进行识别与分割;结合关键区域间的相交情况、相对位置,构建同串葡萄关键结构从属判断与合并方法。最后设计了基于结构约束与范围再选的果梗低碰撞感兴趣区域(region of interest, ROI)选择方法,并以该区域果梗质心为采摘点。试验结果表明,相比于原始的YOLACT++,G-YOLACT++边界框和掩膜平均精度均值分别提升了0.83与0.88个百分点;对单串果实、多串果实样本关键结构从属判断与合并的正确率分别为88%、90%,对关键结构不完整的果串剔除正确率为92.3%;相较于以ROI中果梗外接矩形的中心、以模型识别果梗的质心作为采摘点的定位方法,该研究采摘点定位方法的成功率分别提升了10.95、81.75个百分点。该研究为葡萄采摘机器人的优化提供了技术支持,为非结构化环境中的串类果实采摘机器人的低损收获奠定基础。  相似文献   

10.
基于改进型YOLOv4的果园障碍物实时检测方法   总被引:9,自引:6,他引:3  
针对农业机器人在复杂的果园环境中作业时需要精确快速识别障碍物的问题,该研究提出了一种改进型的YOLOv4目标检测模型对果园障碍物进行分类和识别。为了减少改进后模型的参数数量并提升检测速度,该研究使用了深度可分离卷积代替模型中原有的标准卷积,并将主干网络CSP-Darknet中的残差组件(Residual Unit)改进为逆残差组件(Inverted Residual Unit)。此外,为了进一步增强模型对目标密集区域的检测能力,使用了软性非极大值抑制(Soft DIoU-Non-Maximum Suppression,Soft-DIoU-NMS)算法。为了验证该研究所提方法的有效性,选取果园中常见的3种障碍物作为检测对象制作图像数据集,在Tensorflow深度学习框架上训练模型。然后将测试图片输入训练好的模型中检测不同距离下的目标障碍物,并在同一评价指标下,将该模型的测试结果与改进前YOLOv4模型的测试结果进行评价对比。试验结果表明,改进后的YOLOv4果园障碍物检测模型的平均准确率和召回率分别为96.92%和91.43%,视频流检测速度为58.5帧/s,相比于原模型,改进后的模型在不损失精度的情况下,将模型大小压缩了75%,检测速度提高了29.4%。且改进后的模型具有鲁棒性强、实时性更好、轻量化的优点,能够更好地实现果园环境下障碍物的检测,为果园智能机器人的避障提供了有力的保障。  相似文献   

11.
基于优选YOLOv7模型的采摘机器人多姿态火龙果检测系统   总被引:3,自引:3,他引:0  
为了检测复杂自然环境下多种生长姿态的火龙果,该研究基于优选YOLOv7模型提出一种多姿态火龙果检测方法,构建了能区分不同姿态火龙果的视觉系统。首先比较了不同模型的检测效果,并给出不同设备的建议模型。经测试,YOLOv7系列模型优于YOLOv4、YOLOv5和YOLOX的同量级模型。适用于移动设备的YOLOv7-tiny模型的检测准确率为83.6%,召回率为79.9%,平均精度均值(mean average precision,mAP)为88.3%,正视角和侧视角火龙果的分类准确率为80.4%,推理一张图像仅需1.8 ms,与YOLOv3-tiny、YOLOv4-tiny和YOLOX-tiny相比准确率分别提高了16.8、4.3和4.8个百分点,mAP分别提高了7.3、21和3.9个百分点,与EfficientDet、SSD、Faster-RCNN和CenterNet相比mAP分别提高了8.2、5.8、4.0和42.4个百分点。然后,该研究对不同光照条件下的火龙果进行检测,结果表明在强光、弱光、人工补光条件下均保持着较高的精度。最后将基于YOLOv7-tiny的火龙果检测模型部署到Jetson Xavier NX上并针对正视角火龙果进行了验证性采摘试验,结果表明检测系统的推理分类时间占完整采摘动作总时间的比例约为22.6%,正视角火龙果采摘成功率为90%,验证了基于优选YOLOv7的火龙果多姿态检测系统的性能。  相似文献   

12.
采用改进YOLOv4-tiny的复杂环境下番茄实时识别   总被引:7,自引:7,他引:0  
实时识别番茄的成熟度是番茄自主采摘车的关键功能。现有目标识别算法速度慢、对遮挡番茄和小番茄识别准确率低。因此,该研究提出一种基于改进YOLOv4-tiny模型的番茄成熟度识别方法。在头部网络(Head network)部分增加一个76×76的检测头(y3)来提高小番茄的识别准确率。为了提高被遮挡番茄的识别准确率,将卷积注意力模块(Convolution Block Attention Module,CBAM)集成到YOLOv4-tiny模型的骨干网络(Backbone network)部分。在深层卷积中使用Mish激活函数替代ReLU激活函数以保证提取特征的准确性。使用密集连接的卷积网络(Densely Connected Convolution Networks, DCCN)来加强全局特征融合,并建立红风铃番茄成熟度识别的数据集。试验结果表明,与YOLOv3、YOLOv4、YOLOv4-tiny、YOLOv5m和YOLOv5l模型相比,改进YOLOv4-tiny-X模型的平均精度均值(mean Average Precision, mAP)分别提高了30.9、0.2、0.7、5.4和4.9个百分点,在Nvidia GTX 2060 GPU 上达到111帧/s的速度,平均精度均值达到97.9%。不同模型的实时测试可视化结果表明,改进模型能够有效解决遮挡和小番茄识别准确率低的问题,可为番茄采摘车研制提供参考。  相似文献   

13.
针对非结构化环境下香梨识别准确率低,检测速度慢的问题,该研究提出了一种基于改进YOLOv8n的香梨目标检测方法。使用Min-Max归一化方法,对YOLOv3-tiny、YOLOv5n、YOLO6n、YOLOv7-tiny和YOLOv8n评估选优;以YOLOv8n为基线,进行以下改进:1)使用简化的残差与卷积模块优化部分C2f(CSP bottleneck with 2 convolutions)进行特征融合。2)利用simSPPF(simple spatial pyramid pooling fast)对SPPF(spatial pyramid pooling fast)进行优化。3)引入了PConv(partial convolution)卷积,并提出权重参数共享以实现检测头的轻量化。4)使用Inner-CIoU(inner complete intersection over union)优化预测框的损失计算。在自建的香梨数据集上,指标F0.5分数(F0.5-score)和平均精度均值(mean average precision, mAP)比原模型分别提升0.4和0.5个百分点,达到94.7%和88.3%。在GPU和CPU设备上,检测速度分别提升了34.0%和24.4%,达到了每秒99.4和15.3帧。该模型具有较高的识别准确率和检测速度,为香梨自动化采摘提供了一种精确的实时检测方法。  相似文献   

14.
基于改进YOLOv3的果园复杂环境下苹果果实识别   总被引:5,自引:4,他引:1  
为使采摘机器人能够全天候的在不同光照、重叠遮挡、大视场等果园复杂环境下对不同成熟度的果实进行快速、准确的识别,该研究提出了一种基于改进YOLOv3的果实识别方法。首先,将DarkNet53网络中的残差模块与CSPNet(Cross Stage Paritial Network)结合,在保持检测精度的同时降低网络的计算量;其次,在原始YOLOv3模型的检测网络中加入SPP(Spatial Pyramid Pooling)模块,将果实的全局和局部特征进行融合,提高对极小果实目标的召回率;同时,采用Soft NMS(Soft Non-Maximum Suppression)算法代替传统NMS(Non-Maximum Suppression)算法,增强对重叠遮挡果实的识别能力;最后,采用基于Focal Loss和CIoU Loss的联合损失函数,对模型进行优化,提高识别精度。以苹果为例进行的试验结果表明:经过数据集训练之后的改进模型,在测试集下的MAP(Mean Average Precision)值达到96.3%,较原模型提高了3.8个百分点;F1值达到91.8%,较原模型提高了3.8个百分点;在GPU下的平均检测速度达到27.8帧/s,较原模型提高了5.6帧/s。与Faster RCNN、RetinaNet等几种目前先进的检测方法进行比较并在不同数目、不同光照情况下的对比试验结果表明,该方法具有优异的检测精度及良好的鲁棒性和实时性,对解决复杂环境下果实的精准识别问题具有重要参考价值。  相似文献   

15.
改进Faster-RCNN自然环境下识别刺梨果实   总被引:16,自引:12,他引:4  
为了实现自然环境下刺梨果实的快速准确识别,根据刺梨果实的特点,该文提出了一种基于改进的Faster RCNN刺梨果实识别方法。该文卷积神经网络采用双线性插值方法,选用FasterRCNN的交替优化训练方式(alternating optimization),将卷积神经网络中的感兴趣区域池化(ROI pooling)改进为感兴趣区域校准(ROI align)的区域特征聚集方式,使得检测结果中的目标矩形框更加精确。通过比较Faster RCNN框架下的VGG16、VGG_CNN_M1024以及ZF 3种网络模型训练的精度-召回率,最终选择VGG16网络模型,该网络模型对11类刺梨果实的识别精度分别为94.00%、90.85%、83.74%、98.55%、96.42%、98.43%、89.18%、90.61%、100.00%、88.47%和90.91%,平均识别精度为92.01%。通过对300幅自然环境下随机拍摄的未参与识别模型训练的刺梨果实图像进行检测,并选择以召回率、准确率以及F1值作为识别模型性能评价的3个指标。检测结果表明:改进算法训练出来的识别模型对刺梨果实的11种形态的召回率最低为81.40%,最高达96.93%;准确率最低为85.63%,最高达95.53%;F1值最低为87.50%,最高达94.99%。检测的平均速度能够达到0.2 s/幅。该文算法对自然条件下刺梨果实的识别具有较高的正确率和实时性。  相似文献   

16.
为解决莲田环境下不同成熟期莲蓬的视觉感知问题,该研究提出了一种改进YOLOv5s的莲蓬成熟期检测方法。首先,通过在主干特征网络中引入BoT(bottleneck transformer)自注意力机制模块,构建融合整体与局部混合特征的映射结构,增强不同成熟期莲蓬的区分度;其次,采用高效交并比损失函数EIoU(efficient IoU)提高了边界框回归定位精度,提升模型的检测精度;再者,采用K-means++聚类算法优化初始锚框尺寸的计算方法,提高网络的收敛速度。试验结果表明,改进后YOLOv5s模型在测试集下的精确率P、召回率R、平均精度均值mAP分别为98.95%、97.00%、98.30%,平均检测时间为6.4ms,模型尺寸为13.4M。与YOLOv3、 YOLOv3-tiny、 YOLOv4-tiny、 YOLOv5s、YOLOv7检测模型对比,平均精度均值mAP分别提升0.2、1.8、1.5、0.5、0.9个百分点。基于建立的模型,该研究搭建了莲蓬成熟期视觉检测试验平台,将改进YOLOv5s模型部署在移动控制器Raspberry Pi 4B中,对4种距离范围下获取的莲蓬场景图像...  相似文献   

17.
基于改进RetinaNet的果园复杂环境下苹果检测   总被引:1,自引:1,他引:0  
为了快速准确地检测重叠、遮挡等果园复杂环境下的苹果果实目标,该研究提出一种基于改进RetinaNet的苹果检测网络。首先,该网络在传统RetinaNet的骨干网络ResNet50中嵌入Res2Net模块,提高网络对苹果基础特征的提取能力;其次,采用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network,BiFPN)对不同尺度的特征进行加权融合,提升对小目标和遮挡目标的召回率;最后,采用基于焦损失(Focal Loss)和高效交并比损失(Efficient Intersection over Union Loss,EIoU Loss)的联合损失函数对网络进行优化,提高网络的检测准确率。试验结果表明,改进的网络在测试集上对叶片遮挡、枝干/电线遮挡、果实遮挡和无遮挡的苹果检测精度分别为94.02%、86.74%、89.42%和94.84%,平均精度均值(mean Average Precision,mAP)达到91.26%,较传统RetinaNet提升了5.02个百分点,检测一张苹果图像耗时42.72 ms。与Faster-RCNN和YOLOv4等主流目标检测网络相比,改进网络具有优异的检测精度,同时可以满足实时性的要求,为采摘机器人的采摘策略提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号