首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The aim of this study was to determine the effect of dietary Forsythia suspensa extract (FSE) supplementation to lactating sows and nursery pigs on post-weaning performance, antioxidant capacity, immunoglobulins, and intestinal health. Based on backfat, body weight (BW), and parity, 24 gestating sows (Landrace × Yorkshire) with average parity of 3.38 ± 0.61 and BW of 234 ± 6.81 kg were allotted into two dietary treatments (control vs. 100 mg/kg FSE) with 12 sows per treatment from day 107 of gestation to day 21 of lactation. After weaning, based on the initial BW and source litter, 192 nursery pigs (Duroc × [Landrace × Yorkshire], average BW of 6.98 ± 0.32 kg, weaned at day 21) were allotted into four dietary treatments with eight replicate pens per treatment, six pigs per pen for a 4-wk study. The treatments included the following: 1) CC (sows and their piglets both fed control diet); 2) CF (sows fed control diet and their piglets fed FSE diet [containing 100 mg/kg FSE]); 3) FC (sows fed FSE diet and their piglets fed control diet); and 4) FF (sows and their piglets both fed FSE diet). The MIXED procedures of SAS for a split-plot arrangement with sow diet as the whole plot and nursery diet as split plot were used to analyze the data. After weaning, piglets from FSE-fed sows had improved (P < 0.05) average daily gain and feed efficiency, and lower (P < 0.05) diarrhea rate in overall (day 1 to 28) compared with those from sows fed control diet. Piglets from FSE-fed sows also had higher (P < 0.05) contents of immunoglobulin G (IgG), growth hormone, superoxide dismutase (SOD), total antioxidant capacity in serum, villus height in ileum, and villus height to crypt depth ratio in jejunum, as well as lower (P < 0.05) content of malondialdehyde (MDA) in serum and crypt depth in ileum compared with those from sows fed control diet. Piglets fed FSE during nursery had increased (P < 0.05) concentrations of IgG, SOD, and catalase, and decreased (P < 0.05) MDA and tumor nuclear factor-α levels in serum compared with those fed control diet during nursery. Piglets from FC group had increased (P < 0.05) protein expression of occludin in jejunal mucosa and relative abundance of Lactobacillus on genus level in colon compared with those from CC group. In conclusion, for the performance and intestinal health, diets supplemented with FSE during lactation phase seemed more efficient to alleviate weaning stress than the nursery phase. In terms of the antioxidant status and immunoglobulins, FSE supplemented in both phases were efficient for nursery pigs.  相似文献   

2.
This experiment aimed to examine the effect of periodical application of bioactive peptides derived from cottonseed (BPC) in comparison with using sub-therapeutic doses of lincomycin and the excessive inclusion of vitamin E on performance, immunity, total antioxidant capacity of serum and intestinal morphology of broiler chickens. A total of 240 one-d-old male broiler chicks with similar initial weight (Ross strain) were randomly assigned to 6 groups (8 chicks/pen): non-treated group (basal diet), basal diet supplemented with 2 mg/kg lincomycin, basal diet supplemented with 50 IU vitamin E, basal diet supplemented with 6 g BPC/kg in starter period, basal diet supplemented with 6 g BPC/kg in starter and grower periods and basal diet supplemented with 6 g BPC/kg throughout the whole experiment. The highest final body weight was obtained in the group supplemented with BPC in starter and grower periods. In the finisher phase, broilers fed the diet containing BPC in the starter period and in the whole trial had significantly (P < 0.05) better feed conversion ratios (FCR). Jejunal villus height was significantly elevated in broilers supplemented with antibiotic (P < 0.001), furthermore it tended to be greater in broilers fed BPC in the starter period. The jejunal villus height-to-crypt depth ratio was significantly (P < 0.01) higher in broilers fed the diet containing antibiotic in comparison to other groups. Humoral immune response against Newcastle disease vaccine tended to be elevated in broilers fed the diet containing BPC in the whole trial (P > 0.05). Broilers supplemented with BPC in starter and grower, and in the whole trial had significantly (P < 0.05) higher antibody titers against sheep red blood cells (SRBC). The highest total antioxidant capacity was obtained in broilers supplemented with the excessive level of vitamin E, furthermore it tended to improve in broilers fed the diet containing BPC in the whole trial. In summary, the results of the study indicated that addition of BPC in broiler diets in the whole trial could improve FCR, immune responses and total antioxidant activity of serum, and BPC could be used in broiler diets as an alternative to in-feed antibiotics.  相似文献   

3.
The aim of present study was to evaluate whether diets supplemented with dihydroartemisinin (DHA) could alleviate intestinal inflammatory injury in weaned piglets with intrauterine growth retardation (IUGR). Twelve normal birth weight (NBW) piglets and 12 piglets with IUGR were fed a basal diet (NBW-CON and IUCR-CON groups), and another 12 piglets with IUGR were fed the basal diet supplemented with DHA at 80 mg/kg (IUGR-DHA group) from 21 to 49 d of age. At 49 d of age, 8 piglets with similar body weight in each group were sacrificed. The jejunal and ileal samples were collected for further analysis. The results showed that IUGR impaired intestinal morphology, increased intestinal inflammatory response, raised enterocyte apoptosis and reduced enterocyte proliferation and activated transmembrane toll-like receptor 4 (TLR4)/nucleotide-binding and oligomerization domain (NOD)/nuclear factor-κB (NF-κB) signaling pathway. Dihydroartemisinin inclusion ameliorated intestinal morphology, indicated by increased villus height, villus height-to-crypt depth ratio, villus surface area and decreased villus width of piglets with IUGR (P < 0.05). Compared with NBW piglets, IUGR piglets supplemented with DHA exhibited higher apoptosis index and caspase-3 expression, and lower proliferation index and proliferating cell nuclear antigen expression in the intestine (P < 0.05). Dihydroartemisinin supplementation attenuated the intestinal inflammation of piglets with IUGR, indicated by increased concentrations of intestinal inflammatory cytokines and lipopolysaccharides (P < 0.05). In addition, DHA supplementation down-regulated the related mRNA expressions of TLR4/NOD/NF-κB signaling pathway and upregulated mRNA expressions of negative regulators of TLR4 and NOD signaling pathway in the intestine of piglets with IUGR (P < 0.05). Piglets in the IUGR-DHA group showed lower protein expressions of TLR4, phosphorylated NF-κB (pNF-κB) inhibitor α, nuclear pNF-κB, and higher protein expression of cytoplasmic pNF-κB in the intestine than those in the IUGR-CON group (P < 0.05). In conclusion, DHA supplementation could improve intestinal morphology, regulate enterocyte proliferation and apoptosis, and alleviate intestinal inflammation through TLR4/NOD/NF-κB signaling pathway in weaned piglets with IUGR.  相似文献   

4.
ABSTRACT

1. The aim of this experiment was to investigate the effects of ajwain (Trachyspermum ammi) and dill (Anethum graveolens) essential oils (AEO and DEO, respectively), probiotic (PRO) and mannan-oligosaccharides (MOS) on the growth performance, serum metabolites, meat quality, intestinal morphology and microbial populations of Japanese quail.

2. A total of 375 one-day-old Japanese quail were randomly allocated into five treatment groups with five replicates of 15 birds each for a 42 d feeding experiment. The dietary treatments were a basal diet (control) or the same diet supplemented with PRO (0.15 g/kg feed), MOS (2 g/kg feed), AEO (0.25 g/kg feed) or DEO (0.25 g/kg feed).

3. AEO, MOS, and PRO supplementation increased weight gain, while diets supplemented with AEO decreased feed intake (FI), and improved feed conversion ratio from d 1 to 21 (P < 0.05). The relative weight of the gizzard was higher in birds supplemented with AEO compared to control group, while the birds fed MOS diet had the longest intestine (P < 0.05). Ceca length was greater in control, MOS and PRO groups (P < 0.05). Both essential oils decreased malondialdehyde (MDA) concentration of breast meat and percentage of cooking loss in quail (P < 0.05). The villus length (VL) was greater in birds fed diet supplemented with MOS, AEO, and DEO (P < 0.05).The population of E.coli decreased in Japanese quail fed MOS, while Lactobacilli spp. count was increased in the MOS group (P < 0.05).

4. In conclusion, AEO, MOS, and PRO supplementation exhibited a positive effect on growth performance, while lipid peroxidation of the meat decreased in birds fed AEO and DEO diets. The intestinal morphometric indices increased in quail fed the AEO, MOS, and DEO diets. Supplementation with MOS modulated intestinal microbial populations of the Japanese quail.  相似文献   

5.
The present study used intrauterine growth restriction (IUGR) piglets as an animal model to determine the effect of Bacillus subtilis on intestinal integrity, antioxidant capacity, and microbiota in the jejunum of suckling piglets. In total, 8 normal birth weight (NBW) newborn piglets (1.62 ± 0.10 kg) and 16 newborn IUGR piglets (0.90 ± 0.08 kg) were selected and assigned to three groups. Piglets were orally gavaged with 10-mL sterile saline (NBW and IUGR groups), and IUGR piglets were orally gavaged with 10-mL/d bacterial fluid (B. subtilis diluted in sterile saline, gavage in the dose of 2 × 109 colony-forming units per kg of body weight; IBS group; n = 8). IUGR induced jejunal barrier dysfunction and redox status imbalance of piglets, and changed the abundances of bacteria in the jejunum. Treatment with B. subtilis increased (P < 0.05) the ratio of villus height to crypt depth (VH/CD) in the jejunum, decreased (P < 0.05) the plasma diamine oxidase (DAO) activity, and enhanced (P < 0.05) the gene expressions of zonula occludens-1 (ZO-1), occludin, and claudin-1 in the jejunum of IUGR piglets. Treatment with B. subtilis decreased (P < 0.05) the concentration of protein carbonyl (PC) and increased (P < 0.05) the activities of catalase (CAT) and total superoxide dismutase (T-SOD) in the jejunum of IUGR piglets. Treatment with B. subtilis also increased (P < 0.05) gene expressions of superoxide dismutase 1 (SOD1), CAT, and nuclear factor erythroid 2-related factor (Nrf2), as well as the protein expressions of heme oxygenase-1 (HO-1), SOD1, and Nrf2 in the jejunum of IUGR piglets. Treatment with B. subtilis also improved the abundances and the community structure of bacteria in the jejunum of IUGR piglets. These results suggested that IUGR damaged the jejunal barrier function and antioxidant capacity of suckling piglets, and altered the abundances of bacteria in the jejunum. Treatment with B. subtilis improved the intestinal integrity and antioxidant capacity while also improved the abundances and structure of bacteria in the jejunum of suckling piglets.  相似文献   

6.
Ninety eight male, mixed breed weaner rabbits were used in a 70 day feeding trial to study the performance, apparent nutrient digestibility, caecal fermentation, ileal morphology and caecal microflora of growing rabbits fed diets containing Prediococcus acidilactis (1×1010 cfu/g; 0.5 g/kg), Bacillus cereus (1×109 cfu/g; 0.5 g/kg), mannan oligosaccharides (MOS; 1 g/kg), arabinoxylans oligosaccharides (AX; 1 g/kg), oxytetracycline (1 g/kg), or synbiotics (TGI; 1 g/kg). A basal diet containing no feed additive was formulated. There were 14 rabbits per treatment. Rabbits fed diets containing MOS had the highest (P<0.05) final live weight and weight gain. Dietary inclusion of prebiotics (MOS, AX) resulted in higher (P<0.05) weight gains and improved feed to gain ratios. Rabbits fed diets containing MOS showed the highest (P<0.05) while those fed diets containing probiotics (Prediococcus acidilactis, Bacillus cereus) had the least (P<0.05) caecal total volatile fatty acid (VFA) concentration. Rabbits fed diets containing prebiotics (MOS, AX) had longer ileal villi than groups fed with other treatments (P<0.05). Inclusion of various additives showed reduced caecal coliform counts. The lowest (P<0.05) lactobacillus count was obtained in the caecal content of rabbits fed diets containing MOS. Poor growth response was obtained with rabbits fed diets containing Prediococcus acidilactis or Bacillus cereus while inclusion of prebiotics in growing rabbits resulted in improved growth and gut morphology. Rabbits fed diet containing MOS showed the highest overall final live weight, weight gain, total VFA concentration and reduced caecal lactobacillus count.  相似文献   

7.
This study investigated the different addition levels of iron (Fe) in growing-finishing pigs and the effect of different Fe levels on growth performance, hematological status, intestinal barrier function, and intestinal digestion. A total of 1,200 barrows and gilts ([Large White × Landrace] × Duroc) with average initial body weight (BW; 27.74 ± 0.28 kg) were housed in 40 pens of 30 pigs per pen (gilts and barrows in half), blocked by BW and gender, and fed five experimental diets (eight replicate pens per diet). The five experimental diets were control diet (basal diet with no FeSO4 supplementation), and the basal diet being supplemented with 150, 300, 450, or 600 mg/kg Fe as FeSO4 diets. The trial lasted for 100 d and was divided into the growing phase (27 to 60 kg of BW) for the first 50 d and the finishing phase (61 to 100 kg of BW) for the last 50 d. The basal diet was formulated with an Fe-free trace mineral premix and contained 203.36 mg/kg total dietary Fe in the growing phase and 216.71 mg/kg in the finishing phase based on ingredient contributions. And at the end of the experiment, eight pigs (four barrows and four gilts) were randomly selected from each treatment (selected one pig per pen) for digesta, blood, and intestinal samples collection. The results showed that the average daily feed intake (P = 0.025), average daily gain (P = 0.020), and BW (P = 0.019) increased linearly in the finishing phase of pigs fed with the diets containing Fe. On the other hand, supplementation with different Fe levels in the diet significantly increased serum iron and transferrin saturation concentrations (P < 0.05), goblet cell numbers of duodenal villous (P < 0.001), and MUC4 mRNA expression (P < 0.05). The apparent ileal digestibility (AID) of amino acids (AA) for pigs in the 450 and 600 mg/kg Fe groups was greater (P < 0.05) than for pigs in the control group. In conclusion, dietary supplementation with 450 to 600 mg/kg Fe improved the growth performance of pigs by changing hematological status and by enhancing intestinal goblet cell differentiation and AID of AA.  相似文献   

8.
Constipation in gestating and lactating sows is common and the inclusion of dietary fiber may help to alleviate this problem. We investigated the effects of inulin (INU) and isomalto-oligosaccharide (IMO), two sources of soluble dietary fiber, on gastrointestinal motility-related hormones, short-chain fatty acids (SCFA), fecal microflora, and reproductive performance in pregnant sows. On day 64 of gestation, 30 sows were randomly divided into three groups and fed as follows: a basal diet, a basal diet with 0.5% INU, and a basal diet with 0.5% IMO. We found that INU and IMO significantly modulated the levels of gastrointestinal motility-related hormones, as evidenced by an increase in substance P (P < 0.05), and a decrease in the vasoactive intestinal peptide concentrations (P < 0.05), indicating the capacity of INU and IMO to alleviate constipation. Furthermore, IMO enhanced the concentrations of acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids in the feces (P < 0.05). High-throughput sequencing showed that IMO and INU increased the fecal microflora α- and β-diversity (P < 0.05). Methanobrevibacter was more abundant (P < 0.05), whereas the richness of Turicibacter was lower in the INU and IMO groups than in the control group (P < 0.05). In addition, IMO significantly increased litter size (P < 0.05). Overall, our findings indicate that INU and IMO can relieve constipation, optimize intestinal flora, and promote reproductive performance in pregnant sows.  相似文献   

9.
Live yeast (Saccharomyces cerevisiae) constitutes an effective additive for animal production; its probiotic effect may be related to the concentrate-to-forage ratio (CTFR). The objective of this study was to assess the effects of S. cerevisiae (SC) on fiber degradation and rumen microbial populations in steers fed diets with different levels of dietary concentrate. Ten Simmental × Local crossbred steers (450 ± 50 kg BW) were assigned to a control group or an SC group. Both groups were fed the same basal diet but the SC group received SC supplementation (8 × 109 cfu/h/d through the ruminal fistula) following a two-period crossover design. Each period consisted of four phases, each of which lasted 17 d: 10 d for dietary adaptation, 6 d for degradation study, and 1 d for rumen sample collection. From the 1st to the 4th phase, steers were fed in a stepwise fashion with increasing CTFRs, i.e., 30:70, 50:50, 70:30, and 90:10. The kinetics of dry matter and fiber degradation of alfalfa pellets were evaluated; the rumen microbial populations were detected using real-time PCR. The results revealed no significant (P > 0.05) interactions between dietary CTFR and SC for most parameters. Dietary CTFR had a significant effect (P < 0.01) on degradation characteristics of alfalfa pellets and the copies of rumen microorganism; the increasing concentrate level resulted in linear, quadratic or cubic variation trend for these parameters. SC supplementation significantly (P < 0.05) affected dry matter (DM) and neutral detergent fiber (NDF) degradation rates (cDM, cNDF) and NDF effective degradability (EDNDF). Compared with the control group, there was an increasing trend of rumen fungi and protozoa in SC group (P < 0.1); copies of total bacteria in SC group were significantly higher (P < 0.05). Additionally, percentage of Ruminobacter amylophilus was significantly lower (P < 0.05) but percentage of Selenomonas ruminantium was significantly higher (P < 0.05) in the SC group. In a word, dietary CTFR had a significant effect on degradation characteristics of forage and rumen microbial population. S. cerevisiae had positive effects on DM and NDF degradation rate or effective degradability of forage; S. cerevisiae increased rumen total bacteria, fungi, protozoa, and lactate-utilizing bacteria but reduced starch-degrading and lactate-producing bacteria.  相似文献   

10.
Beta-glucan has been shown to have a beneficial effect on gastrointestinal health. This experiment was conducted to investigate the effects of β-glucan isolated from Agrobacterium sp. ZX09 on growth performance and intestinal health of weaning pigs. A total of 108 weaned pigs (21 d of age; 6.05 ± 0.36 kg) were randomly divided into 3 groups (6 pens/group; 6 pigs/pen), and the groups were each treated with the following diets: 1) basal diet, 2) basal diet supplemented with 20 mg/kg olaquindox, 3) basal diet supplemented with 200 mg/kg β-glucan, for 21 d. Compared with the control group, pigs fed with 200 mg/kg β-glucan had greaterBW, average daily gain and duodenal villus height to crypt depth ratio (P < 0.05). Olaquindox increased the duodenal or jejunal villus height of pigs compared with β-glucan. Compared with the control group, β-glucan tended to increase the occludin mRNA expression in the jejunum (0.05 < P < 0.10). Beta-glucan enriched the beneficial microbiota in the ileum of pigs (P < 0.05). In conclusion, β-glucan may promote growth performance by improving intestinal health and increasing beneficial microbiota of weaned pigs. The study results will provide valuable theoretical guidance for the utilization of β-glucan in weaned pigs.  相似文献   

11.
High dietary protein may increase susceptibility of weaned pigs to enteric pathogens. Dietary supplementation with functional amino acids (FAA) may improve growth performance of pigs during disease challenge. The objective of this study was to evaluate the interactive effects of dietary protein content and FAA supplementation above requirements for growth on performance and immune response of weaned pigs challenged with Salmonella. Sixty-four mixed-sex weanling pigs (13.9 ± 0.82 kg) were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (AA–) or FAA profile (AA+; Thr, Met, and Trp at 120% of requirements) as factors. After a 7-d adaptation period, pigs were inoculated with either a sterile saline solution (CT) or saline solution containing Salmonella Typhimurium (ST; 3.3 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, ST shedding score in feces and intestinal colonization, fecal and digesta myeloperoxidase (MPO), and plasma urea nitrogen (PUN) were measured pre- and postinoculation. There were no dietary effects on any measures pre-inoculation or post-CT inoculation (P > 0.05). Inoculation with ST increased body temperature and fecal score (P < 0.05), serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), PUN, and fecal MPO, and decreased serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) compared with CT pigs (P < 0.05). ST-inoculation reduced average daily gain (ADG) and feed intake (ADFI) vs. CT pigs (P < 0.05) but was increased by AA+ vs. AA– in ST pigs (P < 0.05). Serum albumin and GSH:GSSG were increased while haptoglobin and SOD were decreased in ST-inoculated pigs fed AA+ vs. AA– (P < 0.05). PUN was higher in HP vs. LP-fed pigs postinoculation (P < 0.05). Fecal ST score was increased in ST-inoculated pigs on days 1 and 2 postinoculation and declined by day 6 (P < 0.05) in all pigs while the overall score was reduced in AA+ vs. AA– pigs (P < 0.05). Cecal digesta ST score was higher in HP vs. LP-fed pigs and were lower in AA+ compared with AA– fed pigs in the colon (P < 0.05). Fecal and digesta MPO were reduced in ST pigs fed AA+ vs. AA– (P < 0.05). These results demonstrate a positive effect of FAA supplementation, with minimal effects of dietary protein, on performance and immune status in weaned pigs challenged with Salmonella.  相似文献   

12.
The objective was to determine the effect forage-to-concentrate (F:C) ratio and stage of lactation on methane emissions, digestibility, nutrient balance, lactation performance, and metabolic responses in lactating goats. Twenty Murciano-Granadina dairy goats were used in an experiment divided into 3 periods: early (30 d), mid (100 d), and late (170 d) lactation. All goats were fed a diet with 35:65 F:C (FCL) during early-lactation. Then, 1 group (n = 10 goats) remained on FCL through mid- and late-lactation while the other group (n = 10 goats) was fed a diet with 50:50 F:C at mid-lactation (FCM) and 65:35 (FCH) at late lactation. A greater proportion of concentrate in the diet was associated with greater overall intake and digestibility (P < 0.05). Energy balance was negative in early-lactation (−77 kJ/kg of BW0.75, on average) and positive for FCL at mid- and late-lactation (13 and 35 kJ/kg of BW0.75, respectively). Goats fed FCM and FCH maintained negative energy balance throughout lactation. Plasma concentrations of non-esterified fatty acids at mid-lactation were greater for FCM than FCL (680 mEq/L), and at late-lactation concentrations were greater for FCH and FCL (856 mEq/L). A similar response was detected for plasma β-hydroxybutyrate. Methane emission was greater (P < 0.05) for FCM than FCH (1.7 g CH4/d). This study demonstrated that differences in F:C across stages of lactation lead to distinct metabolic responses at the level of the rumen and tissues.  相似文献   

13.
The present experiment was conducted to investigate the effects of exogenously infused short-chain fatty acids (SCFAs) on the growth development and intestinal functions in a germ-free (GF) pig model. Twelve hysterectomy-derived newborn piglets were reared in six sterile isolators. All piglets were hand-fed Co60-γ-irradiated sterile milk powder for 21 d and then were switched to sterile feed for another 21 d. During the second 21-d period, GF piglets (n = 6) were orally infused with 25 mL/kg sterile saline per day, and SCFA piglets (n = 6) were orally infused with 25 mL/kg SCFAs mixture (acetic, propionic, and butyric acids, 45, 15, and 11 mM, respectively) per day. We observed the concentrations of SCFAs in serum and intestine, and the messenger ribonucleic acid (mRNA) abundance of G-protein-coupled receptor-43 in the ileum was increased (P < 0.05) in the SCFA group. Meanwhile, oral infusion of SCFAs enhanced (P < 0.05) the contents of glucagon-like peptide-2 in the jejunum and serum and tended to increase the villi height in the ileum (P < 0.10). Besides, the activities of lipase, trypsin, sucrase, lactase, Na+-K+-adenosine triphosphatase ([ATPase] P < 0.05), and Ca2+-Mg2+-ATPase (P < 0.10) were stimulated and the mRNA expressions of solute carrier family 7 (SLC7A1) and regeneration protein (REG)-ΙΙΙ γ in the jejunum (P < 0.05) were upregulated in the SCFA group. Additionally, SCFAs infusion downregulated the mRNA abundances of interleukin (IL)-1β and IL-6 in the jejunum, ileum, or colon (P < 0.05) and increased the counts of white blood cell, neutrophils, and lymphocyte in the blood (P < 0.05). Collectively, exogenous infusion of SCFAs might improve intestinal health through promoting intestinal development and absorption function, and enhancing intestinal immune function, and these effects were occur independently of the gut microbiota.  相似文献   

14.
An 8-week feeding trial was conducted to evaluate the effects of sodium butyrate (SB) on growth, digestive enzymes, body composition and nutrient retention-related gene expression of juvenile yellow catfish (Pelteobagrus fulvidraco). Five isonitrogenous and isolipidic diets (420 g/kg protein and 90 g/kg lipid) were formulated to contain 0 (control), 250, 500, 1,000 or 2,000 mg/kg SB. Triplicate groups of 40 fish (BW = 1.26 ± 0.01 g) per tank (300-L cylindrical fiberglass tanks) for each diet were fed to apparent satiation twice daily. Stomach, hepatopancreas and intestine samples were obtained for digestive enzymes activities analyses. A real-time quantitative PCR analysis was performed to determine the relative expression of target of rapamycin (TOR) and lipoprotein lipase (LPL) in the hepatopancreas and intestine. Fish fed the diets supplemented with SB at 500 and 1,000 mg/kg showed significantly higher specific growth rate and significantly lower feed conversion ratio compared to the control (P < 0.05). Dietary SB inclusion did not alter activities of intestinal amylase, creatine kinase and sodium–potassium adenosine triphosphatase (Na+/K+-ATPase), but increased activities of hepatic trypsin, stomachic lipase, intestinal lipase, alkaline phosphatase and γ-glutamyl transpeptidase for fish fed 1,000 mg/kg SB compared to the control (P < 0.05). Intestine length index, intestine somatic index, fold height and muscular thickness of distal intestine were significantly higher in 1,000 mg/kg SB groups compared to the control (P < 0.05). Significantly higher levels of whole-body crude protein, ash, calcium, phosphorus, nutrition retention and relative mRNA of intestinal TOR were observed in 1,000 mg/kg SB group (P < 0.05). Whole-body lipid content and hepatopancreas LPL mRNA expression in 2,000 mg/kg SB group were significantly higher than the control (P < 0.05). Relative mRNA levels of intestinal LPL and hepatopancreas TOR were significantly higher in the 500 mg/kg SB group compared to those in other groups (P < 0.05). The increased growth performance, digestive enzymes and nutrient retention in fish fed the diets supplemented with SB at 500 and 1,000 mg/kg suggests that SB can be a desirable growth promoter as an antibiotic alternative in diets.  相似文献   

15.
The objective of this study was to investigate the effects of xylo-oligosaccharides (XOSs) supplementation on growth performance, serum parameters, small intestinal morphology, intestinal mucosal integrity, and immune function in weaned piglets. A total of 240 weaned piglets with an average body weight (BW) of 8.82 ± 0.05 kg (28 d of age) were assigned randomly to four dietary treatments in a 28-d trial, including a control (CON) diet and three diets with XOS supplementation at the concentration of 100 (XOS100), 500 (XOS500), and 1,000 (XOS1000) mg/kg. There were four replicates per treatment with 15 pigs per pen. From day 1 to 14, there were no differences (P > 0.05) in average daily gain (ADG), average daily feed intake, and gain to feed ratio (G:F) during the different treatments. The different doses of XOSs showed a quadratic effect on BW on day 28, ADG, and G:F on day 1 to 28 of piglets (P < 0.05). From day 15 to 28, ADG of pigs fed the XOS500 diet was higher (P < 0.05) than pigs fed the CON diet. During the overall period (day 1 to 28), pigs fed the XOS500 diet had a higher BW, ADG, and G:F than pigs fed the CON diet (P < 0.05). In addition, compared with the CON group, the XOS500 group had significantly higher serum total antioxidant capacity, total superoxide dismutase and catalase levels, and lower malondialdehyde levels on days 14 and 28 (P < 0.05). The serum immunoglobulin G (IgG) concentration in the XOS500 group was also significantly higher compared with the CON group on days 14 and 28 (P < 0.05). However, serum immunoglobulin A and immunoglobulin M were not affected by the dietary treatments. Supplementation of XOS500 to the feed significantly increased the villus height (VH) and VH to crypt depth ratio in the jejunum and ileum in comparison with the CON and XOS1000 groups. Moreover, the XOS500 group significantly elevated the expression levels of occludin and zonula occludens protein-1 in the ileum compared with the CON group. The ileal interleukin (IL)-1β, IL-8, and interferon (IFN)-γ mRNA expression levels in the XOS100 and XOS500 groups were markedly lower than in the CON group. In contrast, the ileal IL-10 mRNA expression levels were remarkably higher in the XOS500 than in the CON group. In conclusion, XOSs have a beneficial effect on growth performance by improving serum antioxidant defense system, serum IgG, small intestinal structure, and intestinal barrier function in weaned piglets.  相似文献   

16.
The individual and combined effects of 3-nitrooxypropanol (3-NOP) and canola oil (OIL) supplementation on enteric methane (CH4) and hydrogen (H2) emissions, rumen fermentation and biohydrogenation, and total tract nutrient digestibility were investigated in beef cattle. Eight beef heifers (mean body weight ± SD, 732 ± 43 kg) with ruminal fistulas were used in a replicated 4 × 4 Latin square with a 2 (with and without 3-NOP) × 2 (with and without OIL) arrangement of treatments and 28-d periods (13 d adaption and 15 d measurements). The four treatments were: control (no 3-NOP, no OIL), 3-NOP (200 mg/kg dry matter [DM]), OIL (50 g/kg DM), and 3-NOP (200 mg/kg DM) plus OIL (50 g/kg DM). Animals were fed restrictively (7.6 kg DM/d) a basal diet of 900 g/kg DM barley silage and 100 g/kg DM supplement. 3-NOP and OIL decreased (P < 0.01) CH4 yield (g/kg DM intake) by 31.6% and 27.4%, respectively, with no 3-NOP × OIL interaction (P = 0.85). Feeding 3-NOP plus OIL decreased CH4 yield by 51% compared with control. There was a 3-NOP × OIL interaction (P = 0.02) for H2 yield (g/kg DM intake); the increase in H2 yield (P < 0.01) due to 3-NOP was less when it was combined with OIL. There were 3-NOP × OIL interactions for molar percentages of acetate and propionate (P < 0.01); individually, 3-NOP and OIL decreased acetate and increased propionate percentages with no further effect when supplemented together. 3-NOP slightly increased crude protein (P = 0.02) and starch (P = 0.01) digestibilities, while OIL decreased the digestibilities of DM (P < 0.01) and neutral detergent fiber (P < 0.01) with no interactions (P = 0.15 and 0.10, respectively). 3-NOP and OIL increased (P = 0.04 and P < 0.01, respectively) saturated fatty acid concentration in rumen fluid, with no interaction effect. Interactions for ruminal trans-monounsaturated fatty acids (t-MUFA) concentration and percentage were observed (P = 0.02 and P < 0.01); 3-NOP had no effect on t-MUFA concentration and percentage, while OIL increased the concentration (P < 0.01) and percentage (P < 0.01) of t-MUFA but to a lesser extent when combined with 3-NOP. In conclusion, the CH4-mitigating effects of 3-NOP and OIL were independent and incremental. Supplementing ruminant diets with a combination of 3-NOP and OIL may help mitigate CH4 emissions, but the decrease in total tract digestibility due to OIL may decrease animal performance and needs further investigation.  相似文献   

17.
Human-grade (HG) pet foods are commercially available, but they have not been well studied. Our objective was to determine the apparent total tract digestibility (ATTD) of HG pet foods and evaluate their effects on fecal characteristics, microbiota, and metabolites, serum metabolites, and hematology of dogs. Twelve dogs (mean age = 5.5 ± 1.0; BW = 11.6 ± 1.6 kg) were used in a replicated 4 × 4 Latin square design (n = 12/treatment). The diets included 1) Chicken and Brown Rice Recipe (extruded; Blue Buffalo); 2) Roasted Meals Tender Chicken Recipe (fresh; Freshpet); 3) Beef and Russet Potato Recipe (HG beef; JustFoodForDogs); and 4) Chicken and White Rice Recipe (HG chicken; JustFoodForDogs). Each period consisted of 28 d, with a 6-d diet transition phase, 16 d of consuming 100% of the diet, a 5-d phase for fecal collection, and 1 d for blood collection. All data were analyzed using the Mixed Models procedure of SAS 9.4. Dogs fed the extruded diet required a higher (P < 0.05) daily food intake (dry matter basis, DMB) to maintain BW. The ATTD of dry matter (DM), organic matter (OM), energy, and acid-hydrolyzed fat (AHF) were greater (P < 0.05) in dogs fed the HG diets than those fed the fresh diet, and greater (P < 0.05) in dogs fed the fresh diet than those fed the extruded diet. Crude protein ATTD was lower (P < 0.05) for dogs fed the extruded diet than those fed all other diets. Dogs fed the extruded diet had greater (P < 0.05) fecal output (as-is; DMB) than dogs fed fresh (1.5–1.7 times greater) or HG foods (2.0–2.9 times greater). There were no differences in fecal pH, scores, and metabolites, but microbiota were affected by diet. Dogs fed HG beef had higher (P < 0.05) relative abundance of Bacteroidetes and lower (P < 0.05) relative abundance of Firmicutes than dogs fed the fresh or HG chicken diets. The Actinobacteria, Fusobacteria, Proteobacteria, and Spirochaetes phyla were unchanged (P > 0.05), but diet modified the relative abundance of nearly 20 bacterial genera. Similar to previous reports, these data demonstrate that the fecal microbiota of dogs fed HG or fresh diets is markedly different than those consuming extruded diets, likely due to ingredient, nutrient, and processing differences. Serum metabolites and hematology were not greatly affected by diet. In conclusion, the HG pet foods tested resulted in significantly reduced fecal output, were highly digestible, maintained fecal characteristics, serum chemistry, and hematology, and modified the fecal microbiota of dogs.  相似文献   

18.
This study was conducted to evaluate the prebiotic effects of dietary xylooligosaccharide (XOS) supplementation on performance, nutrient digestibility, intestinal morphology, and gut microbiota in laying hens. In a 12-wk experiment, a total of 288 Hy-Line Brown layers at 50 wk of age were randomly assigned into 3 dietary treatments supplemented with XOS at 0, 200 or 400 mg/kg. Each treatment had 8 replicates with 12 birds each. Hens fed XOS diets showed a lower feed-to-egg ratio during wk 7 to 12 and a higher egg yolk color value in wk 12 compared with those fed the control diet (P < 0.05). Dietary XOS supplementation improved the apparent total tract digestibility of gross energy and nitrogen at the end of the 12th wk (P < 0.05). In addition, a higher villus height-to-crypt depth ratio of the ileum was observed in XOS-added groups (P < 0.05). The high throughput sequencing analysis of bacterial 16S rRNA revealed that dietary XOS supplementation at 200 mg/kg altered cecal microbiota. Alpha diversity analysis illustrated a higher cecal bacterial richness in birds fed with XOS at 200 mg/kg. The composition of cecal microbiota modulated by the XOS addition was characterized by an increased abundance of Firmicutes along with a reduced abundance of Bacteroidetes. At the genus level, dietary XOS supplementation triggered decreases in Bacteroides and Campylobacter concurrent with increases in Lactobacillus and several short chain fatty acid producers including Desulfovibrio, Faecalitalea, Faecalicoccus, and 5 genera of family Lachnospiraceae. Collectively, dietary XOS addition improved the feed conversion ratio by modulating nutrient digestibility and ileal morphology in laying hens, which could be attributed to the enhancement of bacterial diversity and alteration of microbial composition.  相似文献   

19.
This experiment was conducted to evaluate potential replacements for pharmacological levels of Zn (provided by Zn oxide), such as diet acidification (sodium diformate) and low dietary crude protein (CP: 21 vs 18%) on nursery pig performance and fecal dry matter (DM). A total of 360 weaned pigs (Line 200 × 400, DNA, Columbus, NE; initially 5.90 ± 0.014 kg) were used in a 42-d growth study. Pigs were weaned at approximately 21 d of age and randomly assigned to pens (five pigs per pen). Pens were then allotted to one of eight dietary treatments with nine pens per treatment. Experimental diets were fed in two phases: phase 1 from weaning to day 7 and phase 2 from days 7 to 21, with all pigs fed the same common diet from days 21 to 42. The eight treatment diets were arranged as a 2 × 2 × 2 factorial with main effects of Zn (110 mg/kg from days 0 to 21 or 3,000 mg/kg from days 0 to 7, and 2,000 mg/kg from days 7 to 21), diet acidification, (without or with 1.2% sodium diformate), and dietary CP (21% or 18%, 1.40% and 1.35% in phases 1 and 2 vs. 1.20% standardized ileal digestible Lys, respectively). Fecal samples were collected weekly from the same three pigs per pen to determine DM content. No 2- or 3-way interactions (P > 0.05) were observed throughout the 42-d study for growth performance; however, there was a Zn × acidifier × CP interaction (P < 0.05) for fecal DM on day 7 and for the overall average of the six collection periods. Reducing CP without acidification or pharmacological levels of Zn increased fecal DM, but CP had little effect when ZnO was present in the diet. From days 0 to 21, significant (P < 0.05) main effects were observed where average daily gain (ADG) and gain:feed (G:F) increased for pigs fed pharmacological levels of Zn, sodium diformate, or 21% CP (P < 0.065). In the subsequent period (days 21 to 42) after the experimental diets were fed, there was no evidence of difference in growth performance among treatments. Overall (days 0 to 42), main effect tendencies were observed (P < 0.066) for pigs fed added Zn or sodium diformate from days 0 to 21, whereas pigs fed 21% CP had greater G:F than those fed 18% CP. Pig weight on day 42 was increased by adding Zn (P < 0.05) or acidifier (P < 0.06) but not CP. In summary, none of the feed additives had a major influence on fecal DM, but dietary addition of pharmacological levels of Zn or sodium diformate independently improved nursery pig performance.  相似文献   

20.
In theory, supplementing xylanase in corn-based swine diets should improve nutrient and energy digestibility and fiber fermentability, but its efficacy is inconsistent. The experimental objective was to investigate the impact of xylanase on energy and nutrient digestibility, digesta viscosity, and fermentation when pigs are fed a diet high in insoluble fiber (>20% neutral detergent fiber; NDF) and given a 46-d dietary adaptation period. A total of 3 replicates of 20 growing gilts were blocked by initial body weight, individually housed, and assigned to 1 of 4 dietary treatments: a low-fiber control (LF) with 7.5% NDF, a 30% corn bran high-fiber control (HF; 21.9% NDF), HF + 100 mg xylanase/kg (HF + XY [Econase XT 25P; AB Vista, Marlborough, UK]) providing 16,000 birch xylan units/kg; and HF + 50 mg arabinoxylan-oligosaccharide (AXOS) product/kg (HF + AX [XOS 35A; Shandong Longlive Biotechnology, Shandong, China]) providing AXOS with 3–7 degrees of polymerization. Gilts were allowed ad libitum access to fed for 36-d. On d 36, pigs were housed in metabolism crates for a 10-d period, limit fed, and feces were collected. On d 46, pigs were euthanized and ileal, cecal, and colonic digesta were collected. Data were analyzed as a linear mixed model with block and replication as random effects, and treatment as a fixed effect. Compared with LF, HF reduced the apparent ileal digestibility (AID), apparent cecal digestibility (ACED), apparent colonic digestibility (ACOD), and apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), crude protein (CP), acid detergent fiber (ADF), NDF, and hemicellulose (P < 0.01). Relative to HF, HF + XY improved the AID of GE, CP, and NDF (P < 0.05), and improved the ACED, ACOD, and ATTD of DM, GE, CP, NDF, ADF, and hemicellulose (P < 0.05). Among treatments, pigs fed HF had increased hindgut DM disappearance (P = 0.031). Relative to HF, HF + XY improved cecal disappearance of DM (162 vs. 98 g; P = 0.008) and NDF (44 vs. 13 g; P < 0.01). Pigs fed xylanase had a greater proportion of acetate in cecal digesta and butyrate in colonic digesta among treatments (P < 0.05). Compared with LF, HF increased ileal, cecal, and colonic viscosity, but HF + XY decreased ileal viscosity compared with HF (P < 0.001). In conclusion, increased insoluble corn-based fiber decreases digestibility, reduces cecal fermentation, and increases digesta viscosity, but supplementing xylanase partially mitigated that effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号