首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Phosphorus (P) nutrition of the rice-wheat (RW) systems of the Indo-Gangetic Plain of South Asia has become important due to the alternate flooding and drying cycles of this crop rotation. Field experiments on the RW cropping sequence were conducted at three locations of Bangladesh on three soil types. Two fertilizer doses—farmers' practice (FP) and soil-test based (STB), containing recommended amounts of P, nitrogen (N), potassium (K), and other nutrients—were compared with mungbean or maize as a third crop. The objective of the experiments was to detect P deficiency, if any, in rice, wheat, mungbean, and maize, and to compare the FP and STB doses of fertilizers in rice-wheat-mungbean and rice-wheat-maize sequences under two mungbean management practices (residue removed or retained) and one maize management practice (residue removed) in terms of P nutrition of those crops and annual system-level P removal and apparent P balance in the soil. The apparent P balance was negative with the FP dose (?1 to ?9 kg ha?1 for mungbean sequences at Joydebpur and Nashipur) and there was soil P accumulation under both the STB dose (9–49 kg ha?1) and zero N control (13–50 kg ha?1) across sites. The effect of maize or mungbean as the pre-rice crop on the apparent P balance of various RW sequences was not significant. Phosphorus deficiency occurred at all sites in wheat and maize, and at Ishwordi in rice, suggesting that P fertilizer recommendations need to be revised for RW systems in Bangladesh. The results also suggest that long-term monitoring for P concentration, uptake, and balance would be necessary for improving not only the productivity and sustainability of this system but also the fertilizer P-use efficiency.  相似文献   

2.
ABSTRACT

Nitrogen (N) nutrition of the rice-wheat (RW) systems of the Indo-Gangetic Plain is important for sustaining the region's productivity and food needs. Soil N plays an important role in regulating the supply of N to plants. Monitoring plant concentrations, uptake, and balance of N assist in our understanding of plant and soil N status and in devising N-fertilizer strategies for both individual crops and a cropping system. Field experiments with rice-wheat-mungbean and rice-wheat-maize annual cropping sequences were conducted at Joydebpur, Nashipur, and Ishwordi in Bangladesh, which differ in their soils and climates. The experiments compared three pre-rice treatments (mungbean residues retained, mungbean residues removed, and maize residues removed), supplying each with two fertilizer levels (soil-test based, or STB, and farmers' practice, or FP). Zero N (control) treatments were included, with all other nutrients applied as STB or FP. The objectives were to detect N deficiency, if any, in the component crops, and to determine the changes in soil N fertility, plant N uptake, and soil N balance for various RW sequences. There was a significant decrease in mineral N in the topsoil (0–15 cm) of the +N mungbean and maize-residues removed treatments at Ishwordi, and a generally significant but less marked decline under the same treatments at Nashipur. Wheat and maize crops suffered from N deficiency ranging from 33% to 95% each year, at all sites, but deficiency in rice and mungbean was minimal. Annual system-level N uptake across sites ranged from 89 kg ha?1 for the control to 239 kg ha?1 for sequences containing maize with N. There were significant linear relationships between total system productivity (TSP) and annual N application and between TSP and annual system-level N uptake. Considering no N loss through the system, N fertilizer resulted in a positive N balance that ranged between 24–190 kg ha?1 compared with a negative balance of between 40–49 kg ha?1 without it. However, if a 30% N loss was assumed, N balances were reduced to between ?37–62 kg/ha?1 for N-containing treatments, and to between ?64–55 kg/ha?1 for the control treatments. Further research is needed to understand N depletion and replenishment and to sustain the productivity of the RW system.  相似文献   

3.
A 2-year field experiment was conducted to assess system productivity, nutrient use efficiency and apparent balances of phosphorus (P) and potassium (K) in diversified rice-based cropping systems at Gazipur, Bangladesh. Four cropping systems: wheat–fallow–rice, maize–fallow–rice, potato–fallow–rice and mustard–fallow–rice in main plots and four nutrient combinations: NPK, NK, NP and PK in sub-plots were arranged in a split-plot design with three replications. Receiving the NPK treatment, all the component crops gave the highest yield, and omission of N from fertilizer package gave the lowest yield. The maize–rice system removed the highest amount of N (217 kg ha?1), P (41 kg ha?1) and K (227 kg ha?1) followed by wheat–rice, potato–rice and the least in mustard–rice system. The wheat–rice and maize–rice system showed negative K balance of –35.5 and –60.4 kg ha?1 in NPK treatment, while potato–rice system showed a positive K balance of 31.0 kg ha–1 with NPK treatment. The N, P and K uptake and apparent recovery by the test crops may be used for site-specific nutrient management. The K rates for fertilizer recommendation in wheat and maize in Indo-Gangetic plain need to be revised to take account for the negative K balance in soil.  相似文献   

4.
A field study conducted for three crop years (June?–?July) from 1995?–?96 to 1997?–?98 at the Indian Agricultural Research Institute, New Delhi involving five rice-based cropping systems and six nutrient combinations indicated that rice?–?wheat?–?mungbean (RWM), rice?–?potato?–?mungbean (RPM), rice?–?rapeseed?–?mungbean (RRsM) and rice?–?clover (RC) cropping systems gave 0.7?–?1.0, 3.2?–?5.9, 0.2?–?2.2 and 1.5?–?3.6 t ha?1 yr?1, respectively, higher productivity and removed 7.9?–?22.6, 38.0?–?64.5, 53.0?–?61.8 and 51.4?–?66.1?kg ha?1 yr?1, respectively, more nitrogen, 2.3?–?7.1, 14.5?–?22.8, 3.8?–?7.2 and 17.3?–?21.7?kg ha?1 yr?1, respectively, more phosphorus and 1.6?–?11.4, 15.3?–?42.3, 8.2?–?22.7 and 40.8?–?57.8?kg ha?1 yr?1, respectively, more potassium than the rice?–?wheat (RW) cropping system which led to a net balance of +?151, +?58, ??153 and ??167?kg ha?1 of nitrogen, +?13, ??27, ??8 and ??59?kg ha?1 of phosphorus and ??549, ??551, ??558 and ??691?kg ha?1 of potassium after three cycles of RWM, RPM, RRsM and RC cropping systems, respectively against a net balance of +?201, +?26 and ??533?kg ha?1 of N, P and K, respectively in the RW cropping system. Application of FYM along with NPK in these cropping systems changed the negative balance of nitrogen and phosphorus into positive balance and reduced the negative balance of potassium by 151?–?378?kg ha?1. Application of P and K fertilizers along with nitrogen also helped in arresting the negative balance of P and K under different rice based cropping systems. These results thus indicate that balanced use of NPK and FYM plays a major role for sustaining the productivity of a cropping system.  相似文献   

5.
Long-term effect of mungbean inclusion in lowland rice-wheat and upland maize-wheat systems on soil carbon (C) pools, particulate organic C (POC), and C-stabilization was envisaged in organic, inorganic and without nutrient management practices. In both lowland and upland systems, mungbean inclusion increased very-labile C (Cfrac1) and labile C (Cfrac2) in surface soil (0–0.2 m). Mungbean inclusion in cereal-cereal cropping systems improved POC, being higher in lowland (107.4%). Lowland rice-based system had higher passive C-pool (11.1 Mg C ha?1) over upland maize-based system (6.6 Mg C ha?1) indicating that rice ecology facilitates the stabilization of passive C-pool, which has longer persistence in soil. Organic nutrient management (farmyard manure + full crop residue + biofertilizers) increased Cfrac1 and carbon management index (CMI) over inorganic treatment. In surface soil, higher CMI values were evident in mungbean included cropping systems in both lowland and upland conditions. Mungbean inclusion increased grain yield of cereal crops, and yield improvement followed the order of maize (23.7–31.3%) > rice (16.9–27.0%) > wheat (lowland 7.0–10.7%; upland 5.4–16.6%). Thus, the inclusion of summer mungbean in cereal-cereal cropping systems could be a long-term strategy to enrich soil organic C and to ensure sustainability of cereal-cereal cropping systems.  相似文献   

6.
Abstract

Despite being a major domain of global food supply, rice–wheat (RW) cropping system is questioned for its contribution to biomass burning in Indo-Gangetic Plains (IGP). Enhancing the yield and soil quality properties in this system is therefore necessary to reduce environmental degradation and maintain agricultural productivity. A field experiment evaluated the effects of soil management practices such as rice residue (RS) incorporation, and nitrogen (N) application on crop yield and micronutrients transformations in a RW cropping system of north-western India. The results revealed that N application (120?kg N ha?1) and RS incorporation (7.5 t ha?1) significantly increased micronutrients cations and crop yield compared with no-residue (RS0). Irrespective of N application, crop grain yield under RS incorporation (Rs7.5 t ha?1) was significantly higher than RS0 incorporation. Significant increase in all the micronutrient transformations was recorded in N120/Rs7.5 t ha?1 compared with RS0. Among different fractions, crystalline Fe bound in Zn, Mn, and Cu and amorphous Fe oxide in Fe fractions were the dominant fractions under N application (N120) and RS incorporation (RS7.5) treatment. Our study showed that application of N120 followed by RS7.5 can be more sustainable practice under RW cropping system for improvement in micronutrients availability and crop yield. This practice also provides an opportunity to incorporation of crop residues as an alternative to burning, which causes severe air pollution in the RW cropping system in the IGP.  相似文献   

7.
Abstract

A field experiment investigating amendments of organic material including farmyard manure, paper factory sludge and crop residues combined with fly ash, lime and chemical fertilizer in a rice-peanut cropping system was conducted during 1997–98 and 1998–99 at the Indian Institute of Technology, Kharagpur, India. The soil was an acid lateritic (Halustaf) sandy loam. For rice, an N:P:K level of 90:26.2:33.3 kg ha?1 was supplied through the organic materials and chemical fertilizer to all the treatments except control and fly ash alone. The required quantities of organic materials were added to supply 30 kg N ha?1 and the balance amount of N, P and K was supplied through chemical fertilizer. Amendment materials as per fertilization treatments were incorporated to individual plots 15 days before planting of rice during the rainy season. The residual effects were studied on the following peanut crop with application of N:P:K at 30:26.2:33.3 kg ha?1 through chemical fertilizer alone in all treatments, apart from the control. An application of fly ash at 10 t ha?1 in combination with chemical fertilizer and organic materials increased the grain yield of rice by 11% compared to chemical fertilizer alone. The residual effect of both lime and fly ash applications combined with direct application of chemical fertilizer increased peanut yields by 30% and 24%, respectively, compared to chemical fertilizer alone. Treatments with fly ash or lime increased P and K uptake in both the crops and oil content in peanut kernel compared to those without the amendments. Alkaline coal fly ash proved to be a better amendment than lime for improving productivity of an acid lateritic soil and enriching the soil with P and K.  相似文献   

8.
Apparent utilization of zinc (Zn) and potassium (K) fertilizers was examined in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) using combinations of no K; soil applied K levels and no Zn; soil and foliar applied Zn. Application of 33.2 kg K ha?1 in rice and 24.9 kg K ha?1 in wheat along with foliar spray of 2 kg Zn ha?1 at 30 and 60 days gave the highest mean grain yields. Foliar application of zinc increased Zn concentration in flag leaves, grain, and straw of rice and wheat and K concentration in flag leaves of rice and straw of wheat significantly. Potassium application increased Zn concentration in rice grain and straw and K concentration in wheat straw significantly. Zinc and K increased the uptake of each other in grain; straw and total uptake by both crops significantly. Zinc fertilizer enhanced the utilization of soil K. Potassium fertilizer enhanced the utilization of applied Zn.  相似文献   

9.
Nitrogen (N) and phosphorus (P) deficiencies are key constraints in rainfed lowland rice (Oryza sativa L.) production systems of Cambodia. Only small amounts of mineral N and P or of organic amendment are annually applied to a single crop of rainfed lowland rice by smallholder farmers. The integration of leguminous crops in the pre‐rice cropping niche can contribute to diversify the production, supply of C and N, and contribute to soil fertility improvement for the subsequent crop of rice. However, the performance of leguminous crops is restricted even more than that of rice by low available soil P. An alternative strategy involves the application of mineral P that is destined to the rice crop already to the legume. This P supply is likely to stimulate legume growth and biological N2 fixation, thus enhancing C and N inputs and recycling N and P upon legume residue incorporation. Rotation experiments were conducted in farmers' fields in 2013–2014 to assess the effects of P management on biomass accumulation and N2 fixation (δ15N) by mungbean (Vigna radiata L.) and possible carry‐over effects on rice in two contrasting representative soils (highly infertile and moderately fertile sandy Fluvisol). In the traditional system (no legume), unamended lowland rice (no N, + 10 kg P ha?1) yielded 2.8 and 4.0 t ha?1, which increased to 3.5 and 4.7 t ha?1 with the application of 25 kg ha?1 of urea‐N in the infertile and the moderately fertile soil, respectively. The integration of mungbean as a green manure contributed up to 9 kg of biologically fixed N (17% Nfda), increasing rice yields only moderately to 3.5–4.6 t ha?1. However, applying P to mungbean stimulated legume growth and enhanced the BNF contribution up to 21 kg N ha?1 (36% Nfda). Rice yields resulting from legume residue incorporation (“green manure use”–all residues returned and “grain legume use”–only stover returned) increased to 4.2 and 4.9 t ha?1 in the infertile and moderately fertile soil, respectively. The “forage legume use” (all above‐ground residues removed) provided no yield effect. In general, legume residue incorporation was more beneficial in the infertile than in the moderately fertile soil. We conclude that the inclusion of mungbean into the prevailing low‐input rainfed production systems of Cambodia can increase rice yield, provided that small amounts of P are applied to the legume. Differences in the attributes of the two major soil types in the region require a site‐specific targeting of the suggested legume and P management strategies, with largest benefits likely to accrue on infertile soils.  相似文献   

10.
The rice–wheat cropping system (RWCS), producing about 5–10 Mg ha–1 y–1 of grain, is the backbone of food‐crop production in South‐East Asia. However, this system shows signs of fatigue as indicated by declining yields, negative nitrogen (N) balances, and reduced responses to applied fertilizer at some research centers. The return of rice and wheat residues can recycle up to 20%–30% of the N absorbed by the crops. However, their wide C : N ratio can temporarily immobilize native and applied N. To overcome this immobilization, wheat‐straw application was supplemented with the incorporation of Sesbania green manure and mungbean residues, and their effects on productivity, agronomic N efficiency, and system's apparent N balances were studied. Combining the application of wheat straw with Sesbania green manure or mungbean residues increased cereal grain yield and agronomic N efficiency and improved the generally negative apparent N balances. The combined use of wheat straw and mungbean produced an additional 0.5–0.6 t ha–1 protein‐rich grain and thus appears to be the most promising residue‐management option for rice–wheat cropping systems in South Asia, provided that the transition cropping season between wheat harvest and rice transplanting is long enough.  相似文献   

11.
The status of available macronutrients [phosphorus (P) and potassium (K)] and soil organic carbon (SOC) of the surface soil under a rice–wheat cropping system was studied in 40 districts of the Indo-Gangetic Plains (IGP) of India. The soil samples were collected from the farmers' fields in four transects (Trans-, Upper, Middle, and Lower Gangetic Plains) of the IGP. The selection of farmers, villages, blocks, and districts within an agro-climatic zone (ACZ) was done on the basis of a multistage statistical approach. The available macronutrients were characterized as low, medium, and high. In Trans-Gangetic Plains, SOC, available P, and available K were in the ranges of 0.06–0.86%, 6.7–85.1 kg ha?1, and 50–347 kg ha?1, respectively. In Upper Gangetic Plains, the respective values were in the ranges of 0.05–2.55%, 4.5–155.0 kg ha?1, and 45 to 560 kg ha?1. Similarly, in Middle Gangetic Plains, these values were in the ranges of 0.04–2.01%, 4.7–183.7 kg ha?1, and 72–554 kg ha?1, respectively. In Lower Gangetic Plains, respective values were 0.12–1.78%, 2.2–112.0 kg ha?1, and 83–553 kg ha?1. In Trans-Gangetic plains, the majority of the soils in the midplains ACZ representing intensively cultivated rice–wheat system area were low to medium in SOC and available P, whereas available K status was medium to high. Irrespective of the agroclimatic variations, more than 90% of the soils were low to medium in SOC and available P with a marginal deficiency of K. The majority of the coarse-textured soils in Shiwaliks were found to have low to medium SOC and available P, whereas less intensively cultivated arid zone soils were high in SOC, available P, and available K. In Upper and Middle Gangetic Plains, the majority of the soils tested medium for SOC and medium to high in available P and K. The dominance of medium status of available P in these soils could be due to mining of soil P by the rice–wheat cropping system practiced in these regions for more than 300 years. In Lower Gangetic Plains, the SOC was medium to high in most of the soils, whereas available P and K were high. Recent introduction of the rice–wheat system on intensive scale in these traditionally rice-growing areas resulted in less mining of SOC, P, and K.  相似文献   

12.
A study was conducted in a sweet pepper-maize-rice cropping system in six farmers fields in Batac, Ilocos Norte, the Philippines, to determine the optimum P fertilizer rate for sweet pepper that will benefit the succeeding crops, maximize system-level productivity and profitability, and reduce the excessive accumulation of P in the soil. Single super phosphate was applied to sweet pepper at rates of 0, 28, 56, 84, 112, and 140 kg P ha–1 and the succeeding crops were grown without P fertilization. Maize residue was incorporated into the soil at puddling of soil for rice. Phosphorus fertilization at 56 kg P ha–1 and above had a residual effect on maize and rice. A reduction in the P applied to sweet pepper from 140 to 84 kg P ha–1 reduced extractable P in the soil at rice harvest from 52 to 29 kg P ha–1. Phosphorus applied at 111 kg P ha–1 to sweet pepper was optimum for maximum productivity and economic returns of the sweet pepper-maize-rice cropping system. This rate of P also significantly reduced P accumulation in the soil, thereby reducing the chances of negative effects on soil nutrient balance/availability. The results suggested the need for a cropping systems approach to conserve and effectively use native and fertilizer P in the sweet pepper-rice cropping system.  相似文献   

13.
Field experiments were conducted during spring–rainy (kharif) seasons of 2005 and 2006 on a sunflower–mungbean cropping system at the research farm of the Division of Agronomy, Indian Agricultural Research Institute (IARI), New Delhi, India. The objectives of this study were to investigate the residual effect of nitrogen sources, sulfur and boron levels applied to sunflower on productivity, nutrient concentrations and their uptake by the succeeding mungbean crop in a sunflower–mungbean cropping system. The experiment with 19 treatments was laid out in factorial randomized block design for both sunflower and mungbean. The residual effects of nutrients applied to sunflower were significant on the succeeding mungbean crop in terms of biometric parameters, yield attributing characters, seed yield and soil nutrient status. The highest mungbean seed yield (961.2 kg ha?1) was produced with 50 kg ha?1 sulfur application to the preceding sunflower crop, which was significantly (p < 0.05) higher than with 0 and 25 kg sulfur ha?1. The concentrations and uptake of nitrogen, sulfur and boron were also greater in the succeeding mungbean crop due to the residual effects of nutrients applied to the preceding sunflower crop. The soil nutrient status before and after mungbean indicated that the available nitrogen and sulfur were higher due to application to the preceding crop, while available boron after mungbean was even higher than after sunflower due to its slow release and static nature in the soil.  相似文献   

14.
Agricultural productivity is increasingly becoming dependent upon soil fertility, which is generally thought to be supplemented through the application of nutrients mainly through inorganic fertilizers. The present study aims to characterize the soil physical environment in relation to long-term application of farmyard manure (FYM) and inorganic fertilizers in a maize–wheat cropping system. The treatments in both the maize and wheat systems included a control (without any fertilizer or FYM), FYM (farmyard manure at 20 t ha?1), N100 (nitrogen at 100 kg ha?1), N100P50 (nitrogen and phosphorus at 100 and 50 kg ha?1), and N100P50K50 (nitrogen, phosphorus, and potash at 100, 50, and 50 kg ha?1). The treatments were replicated four times in a randomized complete block design in sandy loam soil. The root mass density in surface layers of both the crops was lower in FYM and higher in inorganic fertilizer plots. The root length density was found to be highest in FYM-treated plots and lowest in control plots. The periodic soil matric suction during wheat following maize remained highest in FYM plots followed by that in N100 plots in all the layers. The soil water storage of wheat at harvest (rice–wheat) was highest (21.1 cm) in control and lowest (17.8 cm) in FYM-treated plots. The soil water status, root growth, and crop performance improved with balanced fertilization.  相似文献   

15.
ABSTRACT

In sorghum and mungbean – lentil cropping system, field experiments were conducted for three successive years to assess the effect of mung bean residue incorporation on sorghum and succeeding lentil productivity along with different doses of phosphorus (P; 0, 30, 60 kg ha? 1) applied to these crops. The level of soil fertility was also tested with or without incorporation of mung bean residue. The interaction of phosphorus to mungbean residue incorporation was thus studied in relation to improve crop productivity with balancing fertilizer requirements through an eco-friendly approach. Sorghum grain yield increased significantly when 60 kg P2O5 ha? 1 was applied and mungbean residue incorporated. The response was reduced to 30 kg P2O5 ha? 1 when mungbean residue was not incorporated. The succeeding lentil crop responded up to 60 kg P2O5 ha? 1 only when preceding sorghum crop received 0 or 30 kg P2O5 ha? 1. Response to applied P2O5 to lentil reduced to 30 kg ha? 1 when preceding sorghum crop received 60 kg P2O5 ha? 1 and mungbean residue incorporated. Available soil nitrogen, phosphorus, and organic carbon content increased when mungbean residue was incorporated; however, available potassium (K) of the soil decreased from its initial value.  相似文献   

16.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

17.
Intensive rice-based cropping systems rely on nitrogenous fertilizer for optimum grain production and legume crops could be used as an alternative nitrogen (N) source for rice. We investigated the fate of N applied to dual cropping wetland rice in the form of legume residue and 15N labeled fertilizer. In 2001–2002, hairy vetch and broad bean accumulated 131 and 352 kg N ha?1 of which 41 and 78% was derived from N2 fixation. In 2002–2003, hairy vetch accumulated 64 kg N ha?1 and broad bean accumulated 320 kg N ha?1 of which 21 to 24% was derived from hairy vetch and 31 to 82% N was derived from broad bean by N difference and 15N-natural abundance method. Our results reveal that hairy vetch and broad bean can supply 50–100% of N required for intensive wetland rice and can be a viable alternative N source to enhance soil fertility.  相似文献   

18.
In a long-term fertilizer experiment at the Indian Agricultural Research Institute, New Delhi, with maize, wheat, and cowpea, various forms of potassium (K) and their contribution toward K uptake were found to be affected by fertilizer use and intensive cropping. The treatments included for the study were a control, 100% nitrogen (N), 100% N–phosphorus (P), 50% NPK, 100% NPK, 100% NPK + farmyard manure (FYM at 15 t ha?1 to maize only), and 150% NPK. The concentration of nonexchangeable K was greatest, followed by exchangeable K and water-soluble K. The study revealed no significant change in water-soluble K concentration in surface soil compared to N, NP, and control, indicating existence of an equilibrium between different K forms. Application of 100% NPK significantly increased water-soluble K concentration in surface soil compared to N, NP, and control treatments after maize, wheat, and cowpea. Application of NPK + FYM and 150% NPK resulted in greater quantities of all the K forms as compared to other treatments. Among the three forms, water-soluble K contributed predominantly to K uptake by maize and wheat; however, nonexchangeable K contributed significantly to K uptake by cowpea.  相似文献   

19.
A 2-year field study was conducted to evaluate the effect of two organics, farmyard manure and vermicompost, each at three rates (0, 5, 10 t ha?1 and 0, 1, 2 t ha?1, respectively), along with two levels of mineral fertilizer (75% and 100% of recommended dose), on crops yields and soil properties under a wheat–fodder maize cropping sequence. Individual addition of organics at a higher level increased yields of wheat and subsequent maize. Soil microbial biomass carbon was enhanced as both a direct and residual effect with the addition of farmyard manure followed by vermicompost and fertilizer treatments, and also by combined addition of manure with either vermicompost or mineral fertilizer. Farmyard manure increased the availability of soil macro- and micronutrients, whereas vermicompost influenced only the availability of micronutrients at wheat harvest. A residual effect of farmyard manure and mineral fertilizers was found for available N. Meanwhile, the residual status of micronutrients in the soil was either maintained or significantly improved due to organic amendments (Mn and Zn with farmyard manure; Fe and Zn with vermicompost). Interaction of farmyard manure and vermicompost at a higher level benefited the next crop by increasing the yield of fodder maize and improving the availability of P and metals in soil.  相似文献   

20.
Abstract

Quantitative assessment of soil nitrogen (N) that will become available is important for determining fertilizer needs of crops. Nitrogen‐supplying capacity of soil to rice and wheat was quantified by establishing zero‐N plots at on‐farm locations to which all nutrients except N were adequately supplied. Nitrogen uptake in zero‐N plots ranged from 41.4 to 110.3 kg N ha?1 for rice and 33.7 to 123.4 kg N ha?1 for wheat. Availability of soil N was also studied using oxidative, hydrolytic, and autoclaving indices, salt‐extraction indices, light‐absorption indices, and aerobic and anaerobic incubation indices. These were correlated with yield and N uptake by rice and wheat in zero‐N plots. Nitrogen extracted by alkaline KMnO4 and phosphate borate buffer and nitrogen mineralized under aerobic incubation were satisfactory indices of soil N supply. For rice, 2 M KCl and alkaline KMnO4 were the best N‐availability indices. Thus, alkaline KMnO4 should prove a quick and reliable indicator of indigenous soil N supply in soils under a rice–wheat cropping system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号