首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
在大田试验条件下,在河南省温县高产区监测了冬小麦不同种植模式麦田土壤水分和硝态氮含量变化动态,研究了优化栽培模式对冬小麦产量、水氮利用效率、土壤硝态氮累积量等的影响。结果表明:优化种植模式提高了小麦的产量,且优化栽培高于不施氮处理和习惯种植;在不同的处理中,土壤水分和硝态氮随土壤深度的变化呈相反的趋势,即土壤水分随深度的增加呈增加的趋势,而硝态氮则相反;优化栽培模式提高了土壤水分利用率、氮素生产力、氮肥利用率,且随施氮量增加呈增加趋势。  相似文献   

2.
在大田试验条件下,在河南省温县高产区监测了冬小麦不同种植模式麦田土壤水分和硝态氮含量变化动态,研究了优化栽培模式对冬小麦产量、水氮利用效率、土壤硝态氮累积量等的影响。结果表明:优化种植模式提高了小麦的产量,且优化栽培高于不施氮处理和习惯种植;在不同的处理中,土壤水分和硝态氮随土壤深度的变化呈相反的趋势,即土壤水分随深度的增加呈增加的趋势,而硝态氮则相反;优化栽培模式提高了土壤水分利用率、氮素生产力、氮肥利用率,且随施氮量增加呈增加趋势。  相似文献   

3.
探索施肥对长期轮作下土壤氮素变化及产量的影响,对优化氮素管理具有重要作用。通过优化施肥方案,对关中地区冬小麦-夏大豆长期轮作模式下作物产量及土壤全氮、硝态氮、铵态氮、微生物生物量氮含量动态变化进行定位研究。结果表明:土壤全氮、硝态氮、铵态氮含量秋冬季较高,春夏季较低,微生物生物量氮变化趋势与之相反。土壤中氮素各组分含量均表现为表层土高于下层土,土壤全氮、硝态氮、铵态氮平均含量及铵态氮层化比、土壤硝态氮与铵态氮比值随着化肥施用量的增加而增加,硝态氮层化比随施肥量的增加而减少。与不施肥相比,优化施肥促进微生物生物量氮含量的提升,而常规施肥导致微生物生物量氮含量下降。试验连续运行9 a后,施肥导致土壤pH和水分含量下降,对小麦、大豆产量有显著影响,与不施肥处理相比,小麦、大豆平均增产50.20%、45.29%。麦豆长期轮作种植模式下优化施肥在基本保证作物产量的同时,降低土壤中全氮、硝态氮、铵态氮含量,增加微生物生物量氮含量,减少化肥施用量。  相似文献   

4.
在宁夏引黄灌区露地菜田条件下,以芹菜为研究对象,采用田间试验与室内分析的方法,对不同水氮措施下,土壤-芹菜体系中无机氮动态变化及平衡进行了研究,为宁夏地区芹菜的合理施用氮肥提供科学依据。试验结果表明:节水灌溉处理(W2)的芹菜产量与传统灌水处理(W1)相当,推荐施氮处理的芹菜产量均比对照、单施有机肥处理高。全生育期节水灌溉量为518.7 m3,推荐施氮量为200 kg/hm2处理时,芹菜最高产量。在芹菜生长期间,节水灌溉的干物质积累与传统灌水处理相当,不同施氮量处理,干物质积累变化和芹菜的吸氮量随施氮量增加而增加,均比对照和单施有机肥的处理高。节水灌溉的表观氮素损失量比传统灌溉低26-38 kg/hm2,表观损失率比传统灌溉的低2.1%-6.8%。节水灌溉处理的Nmin(无机氮)残留比传统灌溉处理低8-13 kg/hm2。节水灌溉的土壤残留硝态氮均比传统灌溉的土壤残留硝态氮高,主要分布在0-60 cm土层,推荐施氮处理残留的土壤硝态氮比习惯施氮处理高。  相似文献   

5.
基于土壤硝态氮的滴灌春小麦氮素施肥模型建立研究   总被引:1,自引:0,他引:1  
[目的]在滴灌技术条件下,建立基于土壤硝态氮的漓灌春小麦氮素施肥模型.[方法]在各生育时期测定不同深度土壤硝态氮含量,由产量与供氮量的关系,确定各生育时期不同深度土壤供氮能力的临界值,进而建立滴灌春小麦基肥和追肥模型.[结果]采用播前0~20 cm土壤硝态氮含量作为滴灌春小麦基肥推荐指标比较合适,滴灌春小麦达到最高产量的供氮量为324.15 kg/hm2,并建立了基于0~20 cm土壤硝态氮含量的基肥推荐指标.[结论]同时在不同生育时期的追肥,可以采用0~ 20 cm或20~40 cm土壤硝态氮含量作为诊断指标,并以0~20 cm土壤硝态氮为氮素营养诊断指标,建立各生育期相应的追肥模型,并得出滴灌春小麦不同生育时期不同土壤硝态氮含量测定值所对应的氮肥追肥用量.  相似文献   

6.
钼营养对冬小麦无机氮组分的影响   总被引:4,自引:0,他引:4  
采用盆栽试验,研究了钼营养对冬小麦无机氮组分的影响,越冬期冬小麦总氮、非蛋白氮及硝态氮含量均随土壤有效钼含量提高而下降,且分别在土壤有效有效钼含量0.096、0.136、0.216mg/kg以后趋于稳定。施钼能提高冬小麦幼苗硝态氮含量,随后体内硝态氮含量均因施钼而下降,缺钼时,冬小麦硝态氮含量在拨节期前不同断提高,而在适宜供钼水平下则相反,;冬小麦叶绿素含量与硝态氮含量及产量成显著的相关,正相关关系,缺钼导致冬小麦叶片叶绿素含量下降,可能是硝态氮的积累降低铁的活性,进而阻碍叶绿素的合成。  相似文献   

7.
为通过控制施氮量来实现高肥力条件下小麦的高产、高效、安全生产提供依据,以冬小麦品种‘藁8901’为材料,研究了高肥力条件下不同施氮水平对小麦氮素吸收利用、籽粒产量和土壤中硝态氮含量的影响。试验结果表明:在高肥力条件下,随着施氮量的增加,冬小麦的籽粒产量和植株吸氮量均是先增加后降低,籽粒产量和植株吸氮量均以N150最高,氮素生产力则以N0最高。在冬小麦的拔节期和成熟期,土壤NO3-N含量均随着施氮量的增加而增加,减少氮肥施入量能降低冬小麦拔节期和成熟期土壤0-100 cm土层中的硝态氮含量。施用氮肥能提高小麦拔节期和成熟期植株全氮积累量和土壤NO3-N积累量,但两者并非同步增加,土壤NO3-N积累量增加的幅度远远大于植株全氮积累量的增长幅度。在施氮量0-180 kg/hm2范围内时,植株全氮积累量有所增加,且土壤中硝态氮的积累量增加较为缓和;而在施氮量180 kg/hm2的基础上继续提高氮素用量,植株全氮积累量下降,而土壤硝态氮积累量却开始大幅度增加。据此综合考虑,冬小麦‘藁8901’的适宜施氮量应控制在150 kg/hm2左右。  相似文献   

8.
不同施氮处理对夏玉米生长及其氮素吸收的影响   总被引:1,自引:0,他引:1  
采用田间小区试验,研究了不同施氮量(0,103.5,151.8,200.1,248.4 kg/hm2)对夏玉米产量及其不同生长期土壤剖面硝态氮含量变化的影响。结果表明,施氮处理的籽粒产量明显高于不施氮处理,且增产效果明显(增产3.7%~10.6%),以施氮248.4 kg/hm2处理的产量最高。从土壤硝态氮的含量来看,不同施氮处理表层0~40 cm土壤硝态氮含量较高,且随施氮量增加呈逐渐降低趋势;40~90 cm土壤硝态氮含量相对较低且波动较小,在大喇叭口期达到最低值;各生长期表层0~40 cm土壤硝态氮含量大体上施氮处理均高于不施氮处理,施氮能提高土壤硝态氮含量。表明在玉米生长发育期合理施氮是提高籽粒产量的一个重要因素,值得进一步研究氮肥供应期与玉米生长期的配合。  相似文献   

9.
【目的】阐明夏播玉米大豆间作对小麦玉米轮作体系产量、吸氮量、土壤含水量和硝态氮残留的影响,明确间作地上部和地下部因素对间作优势的相对贡献率,为优化资源配置、提高土地生产力提供科学依据。【方法】2011年6月至2012年10月,在河北省徐水县代表性农田设置玉米单作(T1)、大豆单作(T2)、玉米与大豆间作根部不分隔(T3)、玉米与大豆间作根部分隔(T4)4个处理,并对关键生育时期的作物生长、土壤水分和硝态氮含量进行实时观测。【结果】相对作物单作种植模式,间作产量优势明显,玉米大豆间作种植的土地当量比(LER)大于1,间作模式总吸氮量(256.1 kg·hm-2)显著高于玉米单作种植(159.7 kg·hm-2)。玉米大豆间作主要通过促进玉米生长和氮素吸收来提高间作系统生产能力,其中地上部因素对间作玉米生物量、产量和吸氮量提高的贡献率分别为81.6%、83.4%和75.7%,而地下部因素的贡献率仅为18.4%、16.6%和24.3%。间作玉米条带土壤含水量显著低于单作玉米,隔根间作玉米土壤含水量显著低于不隔根间作玉米,单作大豆与间作大豆土壤含水量无显著差异,隔根对间作大豆土壤含水量无显著影响。相对单作种植,间作系统降低了玉米收获后各层土壤硝态氮含量,而提高了大豆条带土壤硝态氮含量;相对不隔根处理,间作隔根对玉米土壤硝态氮含量影响不大,但降低了间作大豆土壤硝态氮含量。夏季无论是单作种植还是间作种植,其后茬小麦产量和吸氮量均无显著差异,但间作可以显著降低小麦收获后土壤硝态氮残留量(P<0.05),相对玉米单作,间作种植的后茬小麦收获后0-100 cm土层硝态氮残留量降低了87.2 kg·hm-2,其中地上部因素贡献率为77.5%,地下部因素对此贡献仅为22.5%。【结论】夏播间作种植产量优势明显,间作模式整体吸氮量高于玉米单作,其中地上部因素对间作优势的贡献大于地下部因素,并且夏播间作种植对后茬小麦产量和吸氮量均无显著影响。相对单作种植,间作种植降低了玉米条带土壤含水量而对大豆条带无显著影响,间作玉米条带土壤硝态氮含量显著降低而大豆条带土壤硝态氮含量显著提高,但间作系统当季及后茬作物收获后的整体土壤硝态氮残留显著降低。  相似文献   

10.
采用2年试验数据分析了免耕对冬小麦不同生育时期土壤剖面水分、可溶性碳和硝态氮变化动态的影响。结果表明,免耕较传统耕作均不同程度地增加了冬小麦拔节期、扬花期、灌浆期和成熟期0~100 cm土层土壤平均含水量,且冬小麦关键生育时期土壤水分均随土壤深度增加而呈现先减少后增加的趋势。与传统耕作相比,免耕分别提高冬小麦拔节期和扬花期0~40 cm土层平均含水量14.0%和10.3%;在冬小麦拔节期和灌浆期,免耕较传统耕作分别提高了土壤剖面0~100 cm平均硝态氮含量43.1%和5.7%。与传统耕作相比,免耕不仅降低了冬小麦全生育期土壤剖面0~100 cm平均可溶性碳含量2.0%,而且降低了冬小麦拔节期、灌浆期和成熟期土层0~40 cm可溶性碳含量。  相似文献   

11.
To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irrigation strategies must be considered as a method for the sustainable development of water resources. The initial objective of this study was to evaluate and validate the ability of the CERES-Wheat model simulation to predict the winter wheat grain yield, biomass yield and water use efficiency(WUE) responses to different irrigation management methods in the NCP. The results from evaluation and validation analyses were compared to observed data from 8 field experiments, and the results indicated that the model can accurately predict these parameters. The modified CERES-Wheat model was then used to simulate the development and growth of winter wheat under different irrigation treatments ranging from rainfed to four irrigation applications(full irrigation) using historical weather data from crop seasons over 33 years(1981–2014). The data were classified into three types according to seasonal precipitation: 100 mm, 100–140 mm, and 140 mm. Our results showed that the grain and biomass yield, harvest index(HI) and WUE responses to irrigation management were influenced by precipitation among years, whereby yield increased with higher precipitation. Scenario simulation analysis also showed that two irrigation applications of 75 mm each at the jointing stage and anthesis stage(T3) resulted in the highest grain yield and WUE among the irrigation treatments. Meanwhile, productivity in this treatment remained stable through different precipitation levels among years. One irrigation at the jointing stage(T1) improved grain yield compared to the rainfed treatment and resulted in yield values near those of T3, especially when precipitation was higher. These results indicate that T3 is the most suitable irrigation strategy under variable precipitation regimes for stable yield of winter wheat with maximum water savings in the NCP. The application of one irrigation at the jointing stage may also serve as an alternative irrigation strategy for further reducing irrigation for sustainable water resources management in this area.  相似文献   

12.
The test on the model with data collected from two years’ field experiments revealed an ability to satisfactorily simulate crop parameters such as LAI, biomass accumulation and partitioning, yield, and variables influencing crop growth and development as nitrogen uptake by crops and partitioning in different organs, and dynamics of soil water and nitrogen including infiltration and leaching. With the model, crop yield, water use efficiency (WUE), nitrogen use efficiency (NYE) and water-nitrogen leaching at specific soil layers under various water and nitrogen management practices were simulated to provide data used as references for designing sustainable nitrogen and water management practices. The outputs of the simulated experiment with various treatments of irrigation and nitrogen application indicated that crop yield was closely related to water and nitrogen application, crop water use was positively related to irrigation amount, and nitrogen fertilization could improve the crop water use and WUE within certain limits. This is a valuable evidence to be considered in water-saving farming. Nitrogen uptake had a positive relation to nitrogen application, while irrigation to some extent improved its uptake by crops and hence increased NYE. Additionally, irrigation and fertilization had great effects on nitrogen leaching. Thus, in order to improve WUE and NYE, the model showed how nitrogen application and irrigation should be well coordinated.  相似文献   

13.
在南疆干旱气候生态条件下,以矮秆品种新春22和高杆品种新春19为试验材料,研究了滴灌条件下不同土壤水分对春小麦生长、产量及水分利用效率(WUE)的影响,结果表明:拔节-扬花期是春小麦水分敏感期,水分亏缺将显著影响小麦株高、生物量、叶面积和产量形成。各水分处理中T2(出苗-拔节期、拔节-扬花期、扬花-乳熟期田间相对含水量分别为65%-70%、70%-75%、65%-70%)的产量、WUE和收获指数(HI)最高,其次是T4(出苗-拔节期相对含水量为45%-50%,其余时期同T2),其WUE、HI、穗粒数和粒重与处理T2差异不显著,在调亏灌溉中此处理是经济可行性的。不同基因型品种对土壤水分反应有差异,矮秆品种新春22受水分调控较大,各处理的耗水量均低于新春19,是个节水型品种。研究表明南疆春小麦实现高产节水的适宜滴灌量范围:矮秆品种为318.86 mm-368.72mm,高杆品种为394.52 mm-458.14mm。  相似文献   

14.
以强筋春小麦品种宁春4号为供试材料,采用裂区试验设计,研究了传统灌溉和节水灌溉条件下,有机肥处理、增氮处理和减氮处理对春小麦产量、品质及土壤硝态氮含量的影响。结果表明:(1)无论在传统灌溉条件下和节水灌溉条件下,与有机肥处理相比,增氮处理和减氮处理不仅能提高籽粒产量,而且能提高小麦的品质;(2)在传统灌溉条件下,与增氮处理相比,减氮处理能使籽粒产量提高2.9%,使沉降值提高3.6 mL,且降低了0~180 cm土层的NO3--N含量;(3)在节水灌溉条件下,与增氮处理相比,减氮处理的沉降值提高3.3 mL,且降低了0~30 cm土层的NO3--N含量。  相似文献   

15.
日光节能温室节水灌溉对西葫芦生长和土壤环境的影响   总被引:1,自引:1,他引:0  
研究了不同灌水量对日光节能温室西葫芦生长、产量和土壤环境的影响。结果表明,与农民习惯灌溉量比较,灌溉量降低30%对西葫芦植株生长及产量没有显著影响;灌溉量降低50%影响植株前期生长和产量,对后期没有显著影响。降低灌溉量影响叶片和茎的干物质累积和单位面积的养分吸收,却提高了单位产量的养分吸收量。目前对于日光节能温室,农民习惯灌溉量的70%即可满足西葫芦生长需求。  相似文献   

16.
【目的】为明确旱地麦田土壤水分变化与植株氮素吸收利用及产量形成的关系,探索极端年型可采取的耕作蓄水、覆盖播种等应急措施。【方法】2011—2016年于山西运城闻喜县开展大田试验,选取2011—2013、2015—2016 3年降雨量极端年份,在休闲期深松和免耕2个耕作基础上,对全膜覆土穴播、膜际条播、常规条播3类播种方式进行研究,分析极端年型休闲期深松蓄水配套覆盖播种对旱地麦田水分消耗与植株氮素吸收和利用关系的影响。【结果】不同降水年型休闲期深松较免耕,覆盖播种较常规条播,播种—拔节阶段土壤耗水量及其比例降低,拔节—开花和开花—成熟两阶段土壤耗水量及其比例增加,生育期总耗水量增加;各生育阶段吸氮量增加,尤其是拔节—开花阶段吸氮比例;花前各器官氮素运转量及其对籽粒的贡献率增加;深松较免耕显著提高产量16%—30%,覆盖播种较常规条播提高产量13%—28%,同时水分利用效率提高,氮素吸收效率和氮素生产效率显著提高。不同降水年型、深松与否均影响了全膜覆土穴播和膜际条播两播种方式对麦田水分消耗、氮素吸收利用、产量、水分和养分利用效率。丰水年深松条件下,全膜覆土穴播较膜际条播生育期总耗水量增加,拔节—开花阶段吸氮量显著增加,叶片中氮素运转量对籽粒的贡献率显著提高,产量、氮素吸收效率和氮素生产效率显著提高;而欠水年和丰水年在未深松条件下,两覆盖播种间生育期总耗水量差异不显著,膜际条播较全膜覆土穴播花前各器官氮素运转量、茎秆+叶鞘氮素积累量对籽粒的贡献率和花后氮素积累量提高,产量提高、氮素吸收效率也显著提高。此外,丰水年播种—拔节0—120 cm,拔节—开花120—300 cm,开花—成熟180—300 cm土层耗水量与花前各器官氮素运转量和花后氮素积累量相关性达显著或极显著水平;欠水年,播种—拔节0—100 cm,拔节—开花120—240 cm,开花—成熟120—300 cm土层耗水量与花前各器官氮素运转量和花后氮素积累量相关性达显著或极显著水平。【结论】旱地小麦休闲期深松、生育期采用覆盖播种可增加小麦生育期耗水,促进各生育阶段植株对氮素的吸收及运转,从而提高产量、水分和养分效率。休闲期深松条件下,丰水年采用全膜覆土穴播,欠水年采用膜际条播,增产增效明显。  相似文献   

17.
为提升湖北漳河灌区水稻产量和灌溉水生产力(IWP),基于土壤、气象和大田试验数据,利用调参验证后的ORYZA v3水稻模型,模拟不同情景下水稻的产量和灌溉水生产力,并利用ArcGIS 10.2工具,将点尺度的模拟结果扩大到区域尺度,同时结合漳河灌区的土壤类型,综合分析得出适宜于漳河灌区水稻的管理措施组合。结果表明:1)模型率定期和验证期的评价指标均体现出良好的相关性,表明该模型对于漳河灌区水稻的生长模拟体现出较高的精度,具有较好的适应性。2)利用本地化后的ORYZA v3模型模拟分析,选定情景10(灌溉下限为土壤饱和含水率的60%,施氮量为198 kg/hm2,种植密度为4株/穴)为丰水年推荐管理措施组合,可以使产量提升5.28%、IWP提升104.38%;情景7(灌溉下限为土壤饱和含水率的70%,施氮量为198 kg/hm2,种植密度为5株/穴)为平水年推荐管理措施组合,可以使产量提升4.23%、IWP提升74.34%;情景9(灌溉下限为土壤饱和含水率的60%,施氮量为162 kg/hm2,种植密度为4株/穴)为枯水年...  相似文献   

18.
利用盆栽试验研究人工灌水及雨水对西藏河谷农区高产青稞耗水特性及产量的影响。试验材料为西藏青稞品种‘藏青25’,水分处理8个:全生育期正常水分、轻度水分胁迫、中度水分胁迫和重度水分胁迫理,以及灌浆前正常水分、轻度水分胁迫、中度水分胁迫和重度水分胁迫处理后灌浆期以后雨水灌溉。试验结果表明,土壤含水量越大,青稞耗水量越大,拔节期及灌浆期是青稞耗水量最大的时期。全生育期土壤水分胁迫会降低青稞的生物量及产量,轻度水分胁迫、中度水分胁迫、重度水分胁迫与正常水分处理相比生物量下降了29.9%、41.7%、47.6%,单株产量下降了15.8%、43.7%、57.2%。但前期水分胁迫灌浆期后雨水灌溉对青稞的生长受到促进,生物量和产量增大,与长期水分胁迫相比生物量增长了13%、75.8%、128.1%、157.8%,产量增长了42.8%、84%、201.6%和269.5%。雨水灌溉在后期对青稞进行了补偿生长,水分利用率也相应提高。因此,在适当的水分胁迫(50%~65%土壤田间持水量)下,利用雨水补充灌溉,可以提高西藏高产青稞‘藏青25’的水分利用率,增加产量。  相似文献   

19.
选用春小麦品种宁春50号为试验材料,通过3个节水处理研究灌水次数对春小麦耗水特性及产量的影响。结果表明:灌1水的W1处理可显著增加0~120cm同层土壤贮水的利用,尤其增加60~100cm深层同层土壤贮水的利用;而随着灌水的增加,春小麦深层同层土壤贮水及0~120cm同层土壤贮水的利用率随之降低。随着灌水次数的增加,总的耗水量增加,春小麦拔节至开花期的耗水量降低,但春小麦开花至成熟期的耗水量增加。春小麦灌水次数过少的W1处理抽穗期叶面积系数、旗叶叶绿素含量、旗叶叶面积明显高于其他处理,但春小麦开花以后的叶面积系数、旗叶叶绿素含量、旗叶叶面积随灌水次数增加明显增加;生育后期灌水有利于提高抽穗后的干物质积累量,灌水次数过少的W1处理不利于春小麦开花后的干物质积累。增加灌水次数,可提高灌溉水的利用比例,降低土壤贮水的利用比例,增加春小麦籽粒产量和收获指数,但春小麦灌水利用效率明显降低;灌水次数较多的处理春小麦水分利用效率明显降低,生育后期物质向籽粒转移量增加,灌水次数过少的W1处理春小麦穗数、穗粒数明显降低。综合考虑春小麦籽粒产量、水分利用效率、灌水利用效率、物质生产等因子,确定灌二棱水+拔节水2水的处理是春小麦获得高产和高水分利用效率的最佳灌水模式。  相似文献   

20.
施氮对膜下滴灌棉花生长发育及土壤硝态氮的影响   总被引:1,自引:1,他引:1  
【目的】 研究施氮量对膜下滴灌棉花生长发育及土壤硝态氮的影响,为膜下滴灌棉花的氮肥管理提供理论参考。【方法】 以新陆早52号为材料,设N0(不施氮)、N150(150 kg/hm2)、N250(250 kg/hm2)、N350(350 kg/hm2)、N450(450 kg/hm2)共5个处理,研究膜下滴灌棉花的氮肥运行规律及最佳氮肥施用量。【结果】 不同氮肥处理地上部生物累积量进符合Logistic 曲线模型Y=a/(1+b×exp(-k×t)),最大积累速率出现时间在71~77 d,进入快速积累期在56~60 d。2试验年各处理LAI表现为N450>N350>N250>N150 >N0,最大可达4.51~4.81。0~60 cm土层,硝态氮含量变化表现为随土层深入先增加后降低的趋势,在20~40 cm土层硝态氮含量最高,现蕾阶和铃期消耗土壤硝态氮较多。产量、肥利用率、氮肥贡献率2试验年N350最大,分别在为7 477.5和7 731.7 kg/hm2,40.32%、43.24%,56.09%、57.02%。【结论】 N350(350 kg/hm2)处理效果最佳,施氮量在327.70~340.67 kg/hm2的阈值范围内,有利于棉花形成高产和提高肥料利用率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号