首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Prion diseases are characterised by neuronal loss, vacuolation (spongiosis), reactive astrocytosis, microgliosis and in most cases by the accumulation in the central nervous system of the abnormal prion protein, named PrP(Sc). In this review on the "cellular pathogenesis in prion diseases", we have chosen to highlight the main mechanisms underlying the impact of PrP(C)/PrP(Sc) on neurons: the neuronal dysfunction, the neuronal cell death and its relation with PrP(Sc) accumulation, as well as the role of PrP(Sc) in the microglial and astrocytic reaction.  相似文献   

2.
After prion infection, an abnormal isoform of prion protein (PrP(Sc)) converts the cellular isoform of prion protein (PrP(C)) into PrP(Sc). PrP(C)-to-PrP(Sc) conversion leads to PrP(Sc) accumulation and PrP(C) deficiency, contributing etiologically to induction of prion diseases. Presently, most of the diagnostic methods for prion diseases are dependent on PrP(Sc) detection. Highly sensitive/accurate specific detection of PrP(Sc) in many different samples is a prerequisite for attempts to develop reliable detection methods. Towards this goal, several methods have recently been developed to facilitate sensitive and precise detection of PrP(Sc), namely, protein misfolding cyclic amplification, conformation-dependent immunoassay, dissociation-enhanced lanthanide fluorescent immunoassay, capillary gel electrophoresis, fluorescence correlation spectroscopy, flow microbead immunoassay, etc. Additionally, functionally relevant prion-susceptible cell culture models that recognize the complexity of the mechanisms of prion infection have also been pursued, not only in relation to diagnosis, but also in relation to prion biology. Prion protein (PrP) gene-deficient neuronal cell lines that can clearly elucidate PrP(C) functions would contribute to understanding of the prion infection mechanism. In this review, we describe the trend in recent development of diagnostic methods and cell culture models for prion diseases and their potential applications in prion biology.  相似文献   

3.
Until today most prion strains can only be propagated and the infectivity content assayed by experimentally challenging conventional or transgenic animals. Robust cell culture systems are not available for any of the natural and only for a few of the experimental prion strains. Moreover, the pathogenesis of different transmissible spongiform encephalopathies (TSE) can be analysed systematically by using experimentally infected animals. While, in the beginning, animals belonging to the natural host species were used, more and more rodent model species have been established, mostly due to practical reasons. Nowadays, most of these experiments are performed using highly susceptible transgenic mouse lines expressing cellular prion proteins, PrP, from a variety of species like cattle, sheep, goat, cervidae, elk, hamster, mouse, mink, pig, and man. In addition, transgenic mice carrying specific mutations or polymorphisms have helped to understand the molecular pathomechanisms of prion diseases. Transgenic mouse models have been utilised to investigate the physiological role of PrP(C), molecular aspects of species barrier effects, the cell specificity of the prion propagation, the role of the PrP glycosylation, the mechanisms of the prion spread, the neuropathological roles of PrP(C) and of its abnormal isoform PrP(D) (D for disease) as well as the function of PrP Doppel. Transgenic mouse models have also been used for mapping of PrP regions involved in or required for the PrP conversion and prion replication as well as for modelling of familial forms of human prion diseases.  相似文献   

4.
Transmissible spongiform encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seem to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders affecting both human and animals. Prion diseases cause sponge-like degeneration of neuronal tissue and include (among others) Creutzfeldt-Jacob disease in humans, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. TSEs are characterized by the formation and accumulation of transmissible (infectious) disease-associated protease-resistant prion protein (PrP(Sc)), mainly in tissues of the central nervous system. The exact molecular processes behind the conversion of PrP(C) into PrP(Sc) are not clearly understood. Correlations between prion protein polymorphisms and disease have been found, however in what way these polymorphisms influence the conversion processes remains an enigma; is stabilization or destabilization of the prion protein the basis for a higher conversion propensity? Apart from the disease-associated polymorphisms of the prion protein, the molecular processes underlying conversion are not understood. There are some notions as to which regions of the prion protein are involved in refolding of PrP(C) into PrP(Sc) and where the most drastic structural changes take place. Direct interactions between PrP(C) molecules and/or PrP(Sc) are likely at the basis of conversion, however which specific amino acid domains are involved and to what extent these domains contribute to conversion resistance/sensitivity of the prion protein or the species barrier is still unknown.  相似文献   

5.
Prion diseases are transmissible neurodegenerative disorders affecting humans and a wide variety of animal species including sheep and cattle. The transmissible agent, the prion, is an abnormally folded form (PrP(Sc)) of the host encoded cellular prion protein (PrP(C)). Distribution of the prion protein in the fluids of species susceptible to these diseases is of importance to human health and the iatrogenic spread of prion disease. Aside from blood which is confirmed to be a source of prion infectivity, it is currently unclear which other body fluids harbor a significant transmission risk. In the current study we examined two ovine fluids; pseudo-afferent lymph and cerebral spinal fluid (CSF), for the presence of exosomes and concurrent enrichment of the normal, cellular form of the prion protein (PrP(C)). Here we demonstrate the existence of exosomes in both pseudo-afferent lymph and CSF isolated from sheep. In the CSF derived exosomes we were able to show an enrichment of PrP(C) over unfractionated CSF. This experimental approach suggests that CSF derived exosomes could be used as a novel means of detecting abnormal forms of the prion protein and provide an in vivo link between these vesicles and prion disease pathogenesis.  相似文献   

6.
Prion diseases are fatal neurodegenerative infectious disorders for which no therapeutic or prophylactic regimens exist. Our work aims to eliminate PrP(c) as substrate for the conversion into PrP(Sc) and to increase the cellular clearance capacity of PrP(Sc). In order to achieve the first objective, we used chemical compounds which interfere with the subcellular trafficking of PrP(c), e.g. by intracellular re-routing. Recently, we found that PrP(c) requires cholesterol for cell surface localisation. Treatment with mevinolin significantly reduced the amount of cell surface PrP(c) and led to its accumulation in the Golgi compartment. These data show that cholesterol is essential for the cell surface localisation of PrP(c), which is in turn known to be necessary for the formation of PrP(Sc). Another anti-prion strategy uses RNA and peptide aptamers directed against PrP(c). We have selected peptide aptamers using a constrained peptide library presented on the active site loop of the Escherichia coli protein TrxA in a Y2H screen. Several peptides reproducibly binding to PrP(c) in several assays were identified. Preliminary data indicate that selected peptide aptamers are able to interfere with prion propagation in prion-infected cells. To obtain additive effects we have tried to clarify cellular mechanisms that enable cells to clear prion infectivity. This goal was achieved by selective interference in intracellular signalling pathways which apparently also increase the cellular autophagy machinery. Finally, we have tried to establish an active auto-vaccination approach directed against PrP, which gave some positive preliminary results in the mouse system. This might open the door to classical immunological interference techniques.  相似文献   

7.
Due to recent renewal of interest and concerns in prion diseases, a number of cell systems permissive to prion multiplication have been generated in the last years. These include established cell lines, neuronal stem cells and primary neuronal cultures. While most of these models are permissive to experimental, mouse-adapted strains of prions, the propagation of natural field isolates from sheep scrapie and chronic wasting disease has been recently achieved. These models have improved our knowledge on the molecular and cellular events controlling the conversion of the PrP(C) protein into abnormal isoforms and on the cell-to-cell spreading of prions. Infected cultured cells will also facilitate investigations on the molecular basis of strain identity and on the mechanisms that lead to neurodegeneration. The ongoing development of new cell models with improved characteristics will certainly be useful for a number of unanswered critical issues in the prion field.  相似文献   

8.
Generation of genuine prion infectivity by serial PMCA   总被引:2,自引:0,他引:2  
Prions are the causative infectious agents of transmissible spongiform encephalopathies (TSEs). They are thought to arise from misfolding and aggregation of the prion protein (PrP). In serial transmission protein misfolding cyclic amplification (sPMCA) experiments, newly formed misfolded and proteinase K-resistant PrP (PrPres) catalysed the structural conversion of cellular prion protein (PrP(C)) as efficiently as PrP(Sc) from the brain of scrapie-infected (263K) hamsters confirming an autocatalytic misfolding cascade as postulated by the prion hypothesis. However, the fact that PrPres generated in vitro was associated with approximately 10 times less infectivity than an equivalent quantity of brain-derived PrP(Sc) casts doubt on the "protein-only" hypothesis of prion propagation and backs theories that suggest there are additional molecular species of infectious PrP or other agent-associated factors. By combining sPMCA with prion delivery on suitable carrier particles we were able to resolve the apparent discrepancy between the amount of PrPres and infectivity which we were then able to relate to differences in the size distribution of PrP aggregates and consecutive differences in regard to biological clearance. These findings demonstrate that we have designed an experimental set-up yielding in vitro generated prions that are indistinguishable from prions isolated from scrapie-infected hamster brain in terms of proteinase K resistance, autocatalytic conversion activity, and - most notably - specific biological infectivity.  相似文献   

9.
Vaccination against prion diseases constitutes a promising approach for the treatment and prevention of the disease. Passive immunisation with antibodies binding to the cellular prion protein (PrP(C)) can protect against prion disease. However, immunotherapeutic strategies with active immunisation are limited due to the immune tolerance against the self-antigen. In order to develop an anti-prion vaccine, we designed a novel DNA fusion vaccine composed of mouse PrP and immune stimulatory helper T-cell epitopes of the tetanus toxin that have previously been reported to break tolerance to other self-antigens. This approach provoked a strong PrP(C)-specific humoral and cellular immune response in PrP null mice, but only low antibody titres were found in vaccinated wild-type mice. Furthermore, prime-boost immunisation with the DNA vaccine and recombinant PrP protein increased antibody titres in PrP null mice, but failed to protect wild-type mice from mouse scrapie.  相似文献   

10.
The misfolded form of cellular prion protein (PrP(C)) is the main component of the infectious agent of transmissible spongiform encephalopathies and the validated biomarker for these diseases. The expression of PrP(C) is highest in the central nervous system and has been found in peripheral tissues. Soluble PrP(C) has been detected in cerebrospinal fluid, urine, serum, milk, and seminal plasma. In this study, attempts were made to characterize prion protein in urine samples from normal and scrapie-infected sheep. Urine samples from scrapie-infected sheep and age-matched healthy sheep were collected and analyzed by Western blot following concentration. A protease K-sensitive protein band with a molecular weight of approximately 27-30 kDa was visualized after immunoblotting with anti-PrP monoclonal antibodies to a C-terminal part of PrP(C), but not after immunoblotting with monoclonal antibodies to an N-terminal epitope of PrP(C) or with secondary antibodies only. The amount of PrP(C) in the urine of 49 animals (control group: n = 16; naturally scrapie-infected group: n = 33) was estimated by comparison with known amounts of ovine recombinant PrP in the immunoblot. Background concentration of PrP(C) in urine was found to be 0-0.16 ng/ml (adjusted to the initial nonconcentrated volume of the urine samples). Seven out of 33 naturally scrapie-infected animals had an elevated level (0.3-4.7 ng/ml) of PrP(C) in urine. The origin of PrP(C) in urine and the reason for the increased level of PrP(C) in scrapie-infected sheep urine has yet to be explored.  相似文献   

11.
PrP蛋白与Shadoo蛋白研究进展   总被引:1,自引:0,他引:1  
朊蛋白(PrP蛋白)在传染性海绵状脑病中具有重要作用,但其生物学功能至今没有明确。Shadoo蛋白是一种与朊蛋白在N端结构上极为相似的新蛋白,SPRN是Shadoo蛋白的结构基因。由于Shadoo蛋白与PrP蛋白具有相同的生物学性质,且它们在脑组织中重叠表达,因此也被认为是研究朊蛋白的关键因素。文章主要探讨PrP蛋白与Shadoo蛋白在基因结构、蛋白功能、朊病毒感染方面的关系。  相似文献   

12.
To detect prion protein, brains from 5 cattle naturally affected with bovine spongiform encephalopathy (BSE) and 3 sheep naturally affected with scrapie were examined and compared with brains of normal cattle and sheep using a histoblot technique. The technique enabled the in situ distinctive detection of the cellular (PrP(C)) and abnormal (PrP(Sc)) isoforms of the prion protein. In BSE- or scrapie-affected brains, the Prp(C) signal decreased, especially in those areas where the PrP(Sc) signal was detected.  相似文献   

13.
The scrapie prion protein (PrP27-30) is a crucial component of the prion and is responsible for its transmissibility. Structural information on this protein is limited because it is insoluble and shows aggregated properties. In this study, PrP27-30 was effectively dispersed using sonication under the weak alkaline condition. Subsequently, the small PrP27-30 aggregates were subjected to different pH, heat, and denaturing conditions. The loss of proteinase K (PK) resistance of PrP27-30 and prion infectivity were monitored along with spectroscopic changes. Prion inactivation could not be achieved by the loss of PK resistance alone; a significant loss of the PrP27-30 amyloid structure, which was represented by a decrease in thioflavin T fluorescence, was required for the loss of transmissibility.  相似文献   

14.
Hitherto accredited prion tests use the PK resistance of PrP(Sc), the pathogenic isoform of the prion protein, as a marker for the disease. Because of variations in the amount of disease-related aggregated PrP, which is not PK-resistant, these prion tests offer only limited sensitivity. Therefore, a prion detection method that does not rely on PK digestion would allow for the detection of both PK-resistant as well as PK-sensitive PrP(Sc). Furthermore, single particle counting is more sensitive than methods measuring an integrated signal. Our new test system is based on dual-colour fluorescence correlation spectroscopy (FCS). This method quantifies the number of protein aggregates that have been simultaneously labelled with two different antibodies using dual-colour fluorescence intensity distribution analysis (2D-FIDA). This only counts PrP aggregates, and not PrP monomers. To increase the sensitivity, PrP(Sc) was concentrated in a two-dimensional space by immobilizing it so that the antibodies could be captured on the surface of the slide (surface-FIDA). When the surface was systematically scanned, even single prion particles were detected. Using this new technique, the sensitivity to identify samples from scrapie-infected hamster as well as BSE-infected cattle can be dramatically increased in comparison with identification using FIDA in solution.  相似文献   

15.
The cellular prion protein (PrP(C)) is a copper binding protein. The molecular features of the Cu(2+) binding sites have been investigated and characterized by spectroscopic experiments on PrP(C)-derived peptides and the correctly folded human full-length PrP(C) (hPrP-[23-231]). These experiments allowed us to distinguish two different configurations of copper binding. The different copper complexes depend on sequence context, buffer conditions and stoichiometry of copper. The combined information of spectroscopic data from our EXAFS, EPR and ENDOR experiments was used to create models for these two copper complexes. A large number of conformations of these models were calculated using molecular mechanics computations, and the simulated spectra of these structures were compared with our experimental data. Common features and differences of the copper binding motifs are discussed in this paper and it remains for future investigations to study whether different configurations are associated with different functional states of PrP(C).  相似文献   

16.
朊蛋白(prion)是传染性海绵状脑病(transmissible spongiform encephalopathy,TSE)的唯一致病因子。在细胞内存在两种形式的朊蛋白,即正常形式PrP~c和致病形式PrP~(sc)(PrP~(res))。PrP~(sc)的出现是TSE发生的关键因素。本文阐述了朊蛋白的发现与意义及其在物种内、物种间的致病机理。  相似文献   

17.
Scrapie is a prion disease characterised by the accumulation of the pathological associated form of cellular prion protein (PrP(SC)) in the central nervous system. Susceptibility to scrapie is associated with polymorphism in the ovine prion protein (PrP) gene. The European Union has implemented scrapie control programs, relying on selective breeding for scrapie resistance; the use of ARR-carrier and the exclusion of VRQ-carrier were recommended. In this study, 4323 individuals from Rasa Aragonesa Sheep breed were genotyped for the PrP gene and the individual estimated breeding values (EBV) for prolificity were calculated. Most represented PrP alleles do not work against prolificity. Only a significant association between VRQ/VRQ genotype and a lower EBV was observed (p = 0.027, eta2 = 0.002). Therefore, avoiding reproduction of VRQ/VRQ individuals would not cause negative effect regarding prolificity.  相似文献   

18.
小胶质细胞活化是朊病的病理学特征之一。朊蛋白多肽PrP106—126具神经毒性,是研究异常腕蛋白(PrPSc)的理想工具。为探讨PrP106—126对小胶质细胞氧化压力的影响。本研究以小胶质细胞BV-2为细胞模型,PrP106—126作用48h,应用MTT和流式细胞仪检测细胞的活化情况,应用分子探针技术对细胞的氧化压力(reactiveoxygenspecies,ROs)进行检测,并通过荧光定量RT—PCR对与R0s相关的酶的mRNA表达进行了测定。结果表明PrPl06—126显著促进小胶质细胞BV-2的活化,并提高胞内的ROS水平;定量RT—PCR显示,PrP106—126显著降低细胞S0D-1(P〈0.01)表达水平、提高胞内Cat(P〈0.01)的表达水平;对Grx、Trx-1、和Trx-2mRNA的表达水平有升高的趋势,但未达到显著水平(P〉0.05),对SOd-2、GPx、GR无显著性影响(P〉0.05)。从分子水平初步阐明小胶质细胞ROS升高的机理。  相似文献   

19.
An overview of transmissible spongiform encephalopathies   总被引:2,自引:0,他引:2  
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders of humans and animals associated with an accumulation of abnormal isoforms of prion protein (PrP) in nerve cells. The pathogenesis of TSEs involves conformational conversions of normal cellular PrP (PrP(c)) to abnormal isoforms of PrP (PrP(Sc)). While the protein-only hypothesis has been widely accepted as a causal mechanism of prion diseases, evidence from more recent research suggests a possible involvement of other cellular component(s) or as yet undefined infectious agent(s) in PrP pathogenesis. Although the underlying mechanisms of PrP strain variation and the determinants of interspecies transmissibility have not been fully elucidated, biochemical and molecular findings indicate that bovine spongiform encephalopathy in cattle and new-variant Creutzfeldt-Jakob disease in humans are caused by indistinguishable etiological agent(s). Cumulative evidence suggests that there may be risks of humans acquiring TSEs via a variety of exposures to infected material. The development of highly precise ligands is warranted to detect and differentiate strains, allelic variants and infectious isoforms of these PrPs. This article describes the general features of TSEs and PrP, the current understanding of their pathogenesis, recent advances in prion disease diagnostics, and PrP inactivation.  相似文献   

20.
Mammalian prions are the infectious agents responsible for transmissible spongiform encephalopathies (TSE), a group of fatal, neurodegenerative diseases, affecting both domestic animals and humans. The most widely accepted view to date is that these agents lack a nucleic acid genome and consist primarily of PrP(Sc), a misfolded, aggregated form of the host-encoded cellular prion protein (PrP(C)) that propagates by autocatalytic conversion and accumulates mainly in the brain. The BSE epizooty, allied with the emergence of its human counterpart, variant CJD, has focused much attention on two characteristics that prions share with conventional infectious agents. First, the existence of multiple prion strains that impose, after inoculation in the same host, specific and stable phenotypic traits such as incubation period, molecular pattern of PrP(Sc) and neuropathology. Prion strains are thought to be enciphered within distinct PrP(Sc) conformers. Second, a transmission barrier exists that restricts the propagation of prions between different species. Here we discuss the possible situations resulting from the confrontation between species barrier and prion strain diversity, the molecular mechanisms involved and the potential of interspecies transmission of animal prions, including recently discovered forms of TSE in ruminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号