首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Assessing the accumulation and transport of trace metals in soils and the associated toxicological risks on a national scale requires generally applicable sorption equations. Therefore Freundlich equations were derived for Cd, Zn and Cu using multiple linear regression on batch sorption data from the literature with a wide variety of soil and experimental characteristics, and metal concentrations ranging over five orders of magnitude. Equations were derived based on both total dissolved metal concentrations and free metal activities in solution. Free metal activities were calculated from total metal concentrations taking into account ionic activity, and inorganic (all metals) and organic complexation (Cu only). Cadmium and Zn were present in solution predominantly as free ions, while Cu was present as organic complexes. Since actual dissolved organic carbon (DOC) concentrations were not available they were estimated using an empirical field relation between DOC and organic matter content. The logarithmic transformation of the Freundlich constant for Cd was regressed on the logarithmic transformations of cation exchange capacity (CEC) (H+) and dissolved Ca, and for Zn with CEC and (H+). For Cu the log–log regression model of the Freundlich constant included the solid:solution ratio of the batch to account for dilution of DOC in the batch as compared with the field. The explained variance for the fitted Freundlich equations was 79% for Cd, 65% for Cu and 83% for Zn, using log-transformed adsorbed concentrations and soil solution activities. The Freundlich adsorption models underestimated metal contents determined from 1 m HNO3 digestion on field samples, up to a factor of 6 (Cd and Cu) or 10 (Zn).  相似文献   

2.

Purpose

Soil carbon dynamics were studied at four different forest stands developed on bedrocks with contrasting geology in Slovenia: one plot on magmatic granodiorite bedrock (IG), two plots on carbonate bedrock in the karstic-dinaric area (CC and CD), and one situated on Pleistocene coalluvial terraces (FGS).

Materials and methods

Throughfall (TF) and soil water were collected monthly at each location from June to November during 2005–2007. In soil water, the following parameters were determined: T, pH, total alkalinity, concentrations of Ca2+ and Mg2+, dissolved organic carbon (DOC), and Cl? as well as δ13CDIC. On the other hand, in TF, only the Cl? content was measured. Soil and plant samples were also collected at forest stands, and stable isotope measurements were performed in soil and plant organic carbon and total nitrogen and in carbonate rocks. The obtained data were used to calculate the dissolved inorganic carbon (DIC) and DOC fluxes. Statistic analyses were carried out to compare sites of different lithologies, at different spatial and temporal scales.

Results and discussion

Decomposition of soil organic matter (SOM) controlled by the climate can explain the 13C and 15?N enrichment in SOM at CC, CD, and FGS, while the soil microbial biomass makes an important contribution to the SOM at IG. The loss of DOC at a soil depth of 5 cm was estimated at 1 mol m?2 year?1 and shows no significant differences among the study sites. The DOC fluxes were mainly controlled by physical factors, most notably sorption dynamics, and microbial–DOC relationships. The pH and pCO2 of the soil solution controlled the DIC fluxes according to carbonate equilibrium reactions. An increased exchange between DIC and atmospheric air was observed for samples from non-carbonate subsoils (IG and FGS). In addition, higher δ13CDIC values up to ?19.4?‰ in the shallow soil water were recorded during the summer as a consequence of isotopic fractionation induced by molecular diffusion of soil CO2. The δ13CDIC values also suggest that half of the DIC derives from soil CO2 indicating that 2 to 5 mol m?2 year?1 of carbon is lost in the form of dissolved inorganic carbon at CC and CD after carbonate dissolution.

Conclusions

Major difference in soil carbon dynamics between the four forest ecosystems is a result of the combined influence of bedrock geology, soil texture, and the sources of SOM. Water flux was a critical parameter in quantifying carbon depletion rates in dissolved organic and inorganic carbon forms.
  相似文献   

3.
Radiotracer experiments on the sorption of I? (iodide) and IO inf 3 p? (iodate) from water by soils such as field soil, rice paddy soil and sandy soil, as well as by some soil components, have been carried out with special reference to the effects of heating and gamma-irradiating the soil. Desorption phenomena of I from soil to various solutions were also studied. The sorption of I? by soil was markedly reduced through treatments of air-drying and heating the soil prior to its equilibration with water. The results indicated that I? sorption was by the soil fraction which was unstable at about 150 °C, while IO inf 3 p? sorption was by the soil fraction which was relatively stable to heating. Gamma-irradiation at 27 kGy affected the sorption to a smaller extent than heating at 150 °C. A very high sorption (or soil-water distribution coefficient, Kd) was found in untreated field soil (andosol) with a low organic C (humus) content, while the sorption by sandy soil was considerably smaller than the other soils. Neither I? or IO inf 3 p? were well sorbed by clay minerals, Al2O3 and quartz sand, while the sorption by Fe2O3 was IO inf 3 p? were desorbed by 1N NaOH solution. By acidifying this solution, only a part of the desorbed I was re-precipitated with humic acid. The desorption by solutions containing K2SO3 or KI was also high, while that by solutions containing HCI, CH3COONH4 or chemical fertilizer was considerably lower. These findings suggested the possibility that I was not directly associated with humic acid itself.  相似文献   

4.
A field study was undertaken to compare dissolved organic carbon (DOC) concentrations in soil solutions obtained with three different sampling methods over a range of soil types. The sampling devices used were a tension‐free collector, a tension Prenart collector and a tension Rhizon collector. Samples were collected fortnightly for a year at seven sites in northern England, each collection being replicated three times. The soil solution DOC ranged from 1.3 g m?3 in an acid ranker to 34.7 g m?3 in a peat. The DOC concentrations obtained with the three methods correlated reasonably well (r2 = 0.6–0.8) but with an indication of bias, as the best fit line differed from the 1:1 line. The tension‐free collector gave generally higher DOC concentrations except at very low concentrations (in the acid ranker soil). The DOC concentrations measured with the tension‐free collectors were significantly (P < 0.05) higher than those obtained with Prenart and Rhizon collectors at four and six sites, out of seven, respectively. Subsequent laboratory tests on tension‐free collected samples showed no DOC loss on filtration through 0.1 and 0.22‐μm membranes, whereas a significant loss of DOC occurred when tension‐free collected samples were subsequently passed through Prenart and Rhizon collectors, indicating a probable sampling artefact with the tension devices. The difficulties of acquiring representative soil solution samples are discussed, together with the advantages and disadvantages of tension and tension‐free methods.  相似文献   

5.
In order to understand the sorption phenomena of I on Andosols, one of the most typical soils in Japan, radiotracer experiments were carried out using I? (iodide), IO3 ? (iodate), and for comparison, Cl?(chloride) by the batch method, with special emphasis on the influence of solution pH and concentration of the respective ions. Kanuma soil composed of allophane, one of the main consistent minerals in most Andosols, was also examined regarding sorption. The sorption of I? and Cl? on Kanuma soil increased with decreasing pH and the sorptions were expressed by Henry isotherms. This indicated that these anions were electrostatically adsorbed on the positive charges which appeared on the surface of Kanuma soil. Sorption of Cl? onto Andosol could also be explained by electrostatic adsorption. Both I? and IO3 ? were readily sorbed on Andosol from water even under weakly alkaline conditions. The adsorption isotherm of IO3 ? on Andosol almost overlapped with that on Kanuma soil, suggesting that the high IO3 ? sorption on Andosol was caused by the high adsorbability of IO3 ?on allophane and/or sesquioxides of Fe and Al. However, the high I? sorption on Andosol could not be explained analogously.  相似文献   

6.
Amounts of inorganic phosphate (P) sorbed by two unfertilized soils, during times less than required to reach equilibrium, were affected by the ionic strength and cation species of the matrix solution. For non-equilibrium conditions the amounts of P sorbed increased with increasing ionic strength and were greater with Ca2+ than Na+. For higher P additions, resulting in equilibrium solution P concentrations greater than 30 to 40μrnole 1?1, the effects of the matrix solution on P sorption were maintained at equilibrium, whereas at lower P additions the dependence of sorption on matrix solution composition was eliminated at equilibrium. Equilibrium sorption isotherms for each soil and matrix solution were described by three Langmuir equations, which corresponded to distinct concentration ranges or regions (I, II, and III) on the overall isotherm. The free energies of sorption (ΔG) for each region, were essentially independent of the soil matrix solution. The sorption maxima for regions I and II of the isotherm for a particular soil were also virtually independent of the matrix solution used. The sorption maximum for region III, however, was markedly dependent on the matrix solution, implying a potential-determining (p.d.) sorption mechanism.  相似文献   

7.
Abstract

Diethylaminoethyl cellulose (DEAE cellulose), a weak anion exchange resin, has been used to isolate dissolved organic matter (DOM) from soil solutions collected from three different soil types, to investigate the amount of DOM isolated from soil solutions of various origin, and the extent to which inorganic ions are isolated together with DOM. The concentration of DOM in the various soil solutions ranged from 2.5 to 32.8 mg#lbL‐1 DOC. More than 80% of dissolved organic carbon (DOC) was usually isolated with DEAE cellulose. High concentrations of aluminum (Al) and sulfate (SO4 2‐) in the soil solutions have reduced DOC recovery. More than 90% of potassium (K+), calcium (Ca2+), and magnesium (Mg2+), were removed during the isolation procedure, but 10 to 20% of Al and 30 to 40% of iron (Fe) were isolated together with the DOC, probably due to strong complexation to DOM. The advantages of using DEAE cellulose were that the use of strong acids and bases was limited and that pH adjustments of the sample, leading to chemical modification of DOM, was not required.  相似文献   

8.
There is now clear evidence for a prolonged increase in atmospheric CO2 concentrations and enrichment of the biosphere with N. Understanding the fate of C in the plant-soil system under different CO2 and N regimes is therefore of considerable importance in predicting the environmental effects of climate change and in predicting the sustainability of ecosystems. Swards of Lolium perenne were grown from seed in a Eutric Cambisol at either ambient (ca. 350 μmol mol−1) or elevated (700 μmol mol−1) atmospheric pCO2 and subjected to two inorganic N fertilizer regimes (no added N and 70 kg N ha−1 month−1). After germination, soil solution concentrations of dissolved organic C (DOC), dissolved inorganic N (DIN), dissolved organic N (DON), phenolics and H+ were measured at five depths down the soil profile over 3 months. The exploration of soil layers down the soil profile by roots caused transient increases in soil solution DOC, DON and phenolic concentrations, which then subsequently returned to lower quasi-stable concentrations. In general, the addition of N tended to increase DOC and DON concentrations while exposure to elevated pCO2 had the opposite effect. These treatment effects, however, gradually diminished over the duration of the experiment from the top of the soil profile downwards. The ambient pCO2 plus added N regime was the only treatment to maintain a notable difference in soil solution solute concentration, relative to other treatments. This effect on soil solution chemistry appeared to be largely indirect resulting from increased plant growth and a decrease in soil moisture content. Our results show that although plant growth responses to elevated pCO2 are critically dependent upon N availability, the organic chemistry of the soil solution is relatively insensitive to changes in plant growth once the plants have become established.  相似文献   

9.
We examined long-term changes in soil solution chemistry associated with experimental, whole watershed-acidification at the Bear Brook Watershed in Maine (BBWM). At BBWM, the West Bear (WB) watershed has been treated with bimonthly additions of ((NH4)2 SO4) since 1989. The adjacent East Bear (EB) watershed serves as a biogeochemical reference. Soil solution chemistry in the EB watershed was relatively stable from 1989?C2007, with the exception of declining SO4?CS concentrations associated with a progressive decline in SO4?CS deposition during this period. Soil solution chemistry in WB reflected a progressive change in acid-neutralization mechanisms from base cation buffering to Al buffering associated with treatment during this period. Total dissolved Al concentrations progressively increased over time and were ~4× higher in 2007 than in 1989. Treatment of WB was also associated with long-term increases in soil solution H+, SO4?CS, and NO3?CN, whereas soil solution dissolved organic carbon (DOC) was unresponsive to treatment. For solutes such as Ca, H+, and SO4?CS, changes in stream chemistry were generally parallel to changes in soil solution chemistry, indicating a close coupling of terrestrial and aquatic processes that regulate the chemistry of solutions in this first-order stream watershed. For other solutes such as Al and DOC, solute concentrations were higher in soil solutions compared with streams, suggesting that sorption and transformation processes along hydrologic flow-paths were important in regulating the chemistry of solutions and the transport of these solutes.  相似文献   

10.
EFFECTS OF SOLUTION: SOIL RATIO ON PHOSPHATE SORPTION BY SOILS   总被引:2,自引:0,他引:2  
Isotherms for the sorption of inorganic phosphate (P) by three contrasting soils during 40 h showed a dependence on solution: soil ratio. Above a final solution P concentration of 0.5 μg ml?1, more P was sorbed at a solution: soil ratio of 5:1 than at 40:1 for a given level of P in solution. With time up to 146 h, the effect of solution: soil ratio on P sorption was kinetically controlled. Equilibrium solution P concentrations, estimated by extrapolation of the linear relationships between solution P concentration and the reciprocal of time to I/t= o (i.e. t=∞)appeared to be coincident for each solution:soil ratio at high and the low levels of added P. Consequently, sorption isotherms at equilibrium would be coincident, irrespective of the solution soil ratio used. The kinetic control of solution: soil ratio on P sorption is interpreted in terms of the number of P sorbing sites and initial solution P concentration on the rate of P sorption by soils.  相似文献   

11.
Because dissolved organic matter (DOM) plays an important role is terrestrial C-, N- and P-balances and transport of these three components to aquatic environments, there is a need to include it in models. This paper presents the concept of the newly developed DOM modules implemented in the DAISY model with focus on the quantification of DOM sorption/desorption and microbial-driven DOM turnover. The kinetics of DOM sorption/desorption is described by the deviation of the actual DOM concentration in solution from the equilibrium concentration, Ceq. The Ceq is soil specific and estimated from pedotransfer functions taking into account the soil content of organic matter, Al and Fe oxides. The turnover of several organic matter pools including one DOM pool are described by first-order kinetics.The DOM module was tested at field scale for three soil treatments applied after cultivating grass–clover swards. Suction cups were installed at depths 30, 60 and 90 cm and soil solution was sampled for quantification of dissolved organic C (DOC) and dissolved organic N (DON). In the topsoil, the observed fluctuations in DOC were successfully simulated when the sorption/desorption rate coefficient k was low. In the subsoil, the observed concentrations of DOC were steadier and the best simulations were obtained using a high k. The model shows that DOC and DON concentrations are levelled out in the subsoils due to soil buffering. The steady concentration levels were based on the Ceq for each horizon and the kinetic concept for sorption/desorption of DOC appeared a viable approach. If Ceq was successfully estimated by the pedotransfer function it was possible to simulate the DOC concentration in the subsoil. In spite of difficulties in describing the DOC dynamics of the topsoil, the DOM module simulates the subsoil concentration level of DOC well, and also—but with more uncertainty—the DON concentration level.  相似文献   

12.
Dissolved organic nitrogen (DON) plays an important ecological role in forest ecosystems, and its concentration is related to that of dissolved organic carbon (DOC). We investigated DON concentrations and ratios of DOC to DON in throughfall and soil waters in 16 Norway spruce and two Scots pine forest stands sampled at weekly intervals between 1996 and 2006. The stands are all included in the ICP Forests Level II monitoring program and are located throughout Norway. DON concentrations were significantly and positively related to DOC concentrations in throughfall (r 2?=?0.72, p?<?0.0001) and soil water at 5, 15, and 40 cm (r 2?=?0.86, 0.32, and 0.84 and p?<?0.0001, 0.04, and <0.0001, respectively). At most sites, the annual median DOC/DON ratio in throughfall ranged from 20.3 to 55.5, which is lower than values in soil water, which ranged from 24.5 to 81.3, gradually decreasing with soil depth. DON concentrations varied seasonally in throughfall at many plots and in soil water at 5-cm depth at one plot only, with higher values in the growing season, but there was no noticeable seasonality at greater depth. The ratios of DOC/DON in soil water were significantly positively related to the C/N ratio in soil at the same depth. Above-ground litter input was the main factor having a significant, negative relationship to DOC/DON in soil water at all depths studied. This might reflect the effect of site conditions on both DOC/DON ratios and litter quantity.  相似文献   

13.
14.
Because of the deleterious effects of acid rain and the need to predict reversibility of acidification, various scientific tools such as modeling, stable isotopes and flux/budget calculations have been used in biogeochemical sulfur (S) research. The aim of this study was to evaluate consistencies and discrepancies between these different tools. While modeling has been seemingly successful in predicting S dynamics in soil solution and stream water by considering inorganic sulfate sorption and desorption only, stable S isotopes indicate that biological S turnover plays a crucial role for the sulfate released to soil solution and stream water. A comparison of budget calculations with soil S pools reveals that inorganic sulfate sorption and desorption are the controlling processes as long as deposition is high (> 15 kg S ha?1yr?1) and soils have a high sulfate sorption capacity. This explains the successful model predictions of the last two decades. However, for soils with low sulfate sorption capacity and under low sulfate deposition, organic S seems to be a significant source for stream water sulfate and has to be considered in future modeling.  相似文献   

15.
Abundant production of organic matter that decomposes slowly under anaerobic conditions can result in substantial accumulation of soil organic matter in wetlands. Tedious means for estimating production and decomposition of plant material, especially roots, hampers our understanding of organic matter dynamics in such systems. In this paper, I describe a study that amended typical estimates for both production and decomposition of organic matter by measuring net flux of carbon dioxide (CO2) over the peat surface within a conifer swamp, a sedge-dominated marsh, and a bog in the Appalachian Mountain region of West Virginia and western Maryland, USA. The sites are relatively productive, with net primary production (NPP) of 30 to 82.5 mol C m?2 yr?1, but peat deposits are shallow with an average depth of about 1 m. In summer, all three sites showed net CO2 flux from the atmosphere to the peat during the daytime (?20.0 to ?30.5 mmol m?2 d?1), supported by net photosynthesis, which was less than net CO2 flux from the peat into the atmosphere at nighttime (39.2 to 84.5 mmol m?2 d?1), supported by ecosystem respiration. The imbalance between these estimates suggests a net loss of carbon (C) from these ecosystems. The positive net CO2 flux seems to be so high because organic matter decomposition occurs throughout the peat deposit — and as a result concentrations of dissolved inorganic carbon (DIC) in peat pore waters reached 4,000 Μmol L?1 by late November, and concentrations of dissolved organic carbon (DOC) in peat pore waters reached 12,000 Μmol L?1. Comparing different approaches revealed several features of organic matter dynamics: (i) peat accretion in the top 30 cm of the peat deposit results in a C accumulation rate of about 15 mmol m?2 d?1; however, (ii) the entire peat deposit has a negative C balance losing about 20 mmol m?2 d?1.  相似文献   

16.
An intensive survey of mercury speciation was performed at a site on the Upper St. Lawrence River near Cornwall, Ontario, Canada with a history mercury contamination in sediments. Surface sediments were collected every 1.50 h. Total mercury (Hgtotal), methylmercury (MeHg), organic carbon, inorganic and organic sulphur were determined in the solid fraction. Dissolved Hgtotal, MeHg and dissolved organic carbon (DOC) were measured in pore waters. Concentrations of Hgtotal in the upper layers (first 5 cm) were high, ranging from 1.42 to 25.8 nmol g?1 in solids and from 125 to 449 pM in pore waters. MeHg levels were also high, ranging from 4.34 to 34.1 pmol g?1 in solids and from 40 to 96 pM in pore waters. This amounts to up to 1.4% of Hgtotal present as MeHg in solids and 64% in pore waters. A daily pattern for Hgtotal was observed in the solid fraction. The MeHg distribution in solids and pore waters was not correlated with Hgtotal or DOC, suggesting that the concentrations of MeHg are probably more influenced by the relative rates of methylation/demethylation reactions in the sediment–water interface. Acid volatile sulphide levels and DOC were inversely correlated with organic sulphur (Sorg) levels suggesting that both parameters are involved in the rapid production of Sorg. A positive correlation was also observed between Hgtotal and Sorg in solids (R?=?0.87, p?<?0.01) illustrating the importance of organic sulphur in the retention and distribution of Hg in the solid fraction of the sediments. The results suggest that variations of Hgtotal concentrations in Upper St. Lawrence River surface sediments were strongly influenced by the formation/deposition/retention of organic sulphur compounds in the sediment–water interface.  相似文献   

17.
A monitoring study was carried out in an alluvial fan area in Tsukui, Central Japan during the study period of 1999–2003, in order to explain selenium (Se) behaviors in ecosystem combined with air, soil and groundwater. Monthly Se concentrations in open bulk precipitation (rainfall+aerosol, gaseous deposition and etc.), soil solution (collected by porous ceramic-cup) and groundwater ranged from 0.1 to 1.4 μg L?1 (volume-weighted average: 0.34 μg L?1), 0.21 to 1.0 μg L?1 (0.48 μg L?1) and 1.6 to 2.4 μg L?1 (2.2 μg L?1), respectively. Se concentration in open bulk precipitation was negatively correlated with the rainfall amount. Se concentration in soil solution significantly increased with DOC concentration in soil solution. Besides, despite atmospheric Se input and rainfall to the grassland study area, Se concentration in soil solution and groundwater received no significant effect from the rainfall amount, pH, Se, DOC, SO4 2?, NO3 ? and EC in rainfall. Even though Se concentrations in groundwater were significantly correlated with soil solution volume, Se, DOC and NO3 ? and groundwater level, the result of multiple regression analyses (MRA) indicated that the groundwater Se was negatively influenced by groundwater level, which depended on groundwater recharge. Se was transported into the groundwater through the groundwater recharge that largely increased in this alluvial fan study area after heavy rain.  相似文献   

18.
Partition coefficients K P of nonylphenol (NP) in soil were determined for 193 soil samples which differed widely in content of soil organic carbon (SOC), hydrogen activity, clay content, and in the content of dissolved organic carbon (DOC). By means of multiple linear regression analysis (MLR), pedotransfer functions were derived to predict partition coefficients from soil data. SOC and pH affected the sorption, though the latter was in a range significantly below the pKa of NP. Quality of soil organic matter presumably plays an important but yet not quantified role in sorption of NP. For soil samples with SOC values less than 3 g kg?1, model prediction became uncertain with this linear approach. We suggest that using only SOC and pH data results in good prediction of NP sorption in soils with SOC higher than 3 g kg?1. Considering the varying validity of the linear model for different ranges of the most sensitive parameter SOC, a more flexible, nonlinear approach was tested. The application of an artificial neuronal network (ANN) to predict sorption of NP in soils showed a sigmoidal relation between K P and SOC. The nonlinear ANN approach provided good results compared to the MLR approach and represents an alternative tool for prediction of NP partitioning coefficients.  相似文献   

19.
Composition and Speciation of Soil Solution collected in a Heavy Metal polluted calcareous Soil Close to a brass foundry, which had emitted heavy metal containing dusts for over 80 years, soil water was collected in the topsoil (18 cm) and in the subsoil (40 cm) of a severely polluted Calcic Fluvisol by means of polyethylen suction cups over a period of 2 years. The total metal content of the topsoil (extracted with 2M HNO3 at 100 °C for 2 hours) was 38 nmol g?1, 24 μmol g?1, and 25 μmol g?1 for Cd, Cu, and Zn, respectively. The mean heavy metal concentrations of the soil solution were 0.5 mol L?1, 300 nmol L?1, and 200 nmol L?1 in the topsoil and 0.6 nmol L?1, 90 nmol L?1, and 30 nmol L?1 in the subsoil for Cd, Cu, and Zn, respectively. Solubility calculations showed that the soil solutions were undersaturated with respect to heavy metal carbonates as well as to hydroxides. It seems that the heavy metal concentration is determined by sorption processes rather than by precipitation. The composition of the soil solution has been shown to be governed by the presence, of calcite, by the soil temperature and by the partial pressure of CO2 in the soil air. The pCO2 in the soil air (in both depths) has been estimated at 2 mbar during the winter term and at 20 mbar during the summer term. A corresponding increase of the concentration of macroelements (Ca, Mg, Na) as well as of total dissolved carbonate and of dissolved organic matter (DOC) has been measured in the summer half year. No significant seasonal variations of the heavy metal concentrations were detected and no correlations with concentrations of other components could be found.  相似文献   

20.
Equilibrium studies on soil require reliable estimates of ion concentrations in the soil solution under field conditions. We evaluated the previously described iterative method to approximate the equilibrium soil solution (ESS) with four acid forest soils. We examined for which ions the ESS is suitable, making use of the fact that concentrations in water extracts are functions of the soil: solution ratio. The electric conductivity, pH, and the concentrations of base cations, Mn2+, NO?3, SO42+, and dissolved organic carbon (DOC) were usually linear with the soil:solution ratio in water extracts, whereas no relation was observed for Al (with one exception) and Fe. Assuming that the ESS can be attributed the soil solution ratio of the field moist soil at the time of sampling, concentrations appeared as the continuation of the linear relation with the soil: solution ratio for base cations, pH, and the electric conductivity. This indicates that the ESS actually represents field conditions for these solution properties. For Al water extracts allowed no evaluation of the ESS result. The ESS underestimated SO42? concentrations under field conditions, presumably because the lack of DOC in the solutions added distorts the balance amongst anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号