首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isotherms of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9, but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces. The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil > lateritic red soil > red soil > paddy soil, which was coincided with the content order of amorphous Al oxide. The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5, respectively. The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5. Generally the desorption was contrary to the adsorption with pH changing.  相似文献   

2.
A. K. DOLUI  S. S. ROY 《土壤圈》2005,15(5):611-619
Two Inceptisols and an Alfisol of the Indravati Catchment area in Chattisgarh, India, comprising several gradients in physical and chemical properties were studied to relate phosphate sorption and desorption to soil properties. From the P isotherm curve, the standard P requirement (SPR) of the soils was determined. Phosphate sorption data were also fitted both to the Langmuir and Freundlich Equations. The mean sorption maximum values for three different soil series were: Bastar 〉 Geedam 〉 Mosodi. The fraction of added phosphate sorbed for the 3 series followed this same trend as did SPR; the phosphate sorption maximum and the maximum phosphate buffering capacity, which were estimated by the Langmuir isotherm; and the Freundlich constant 1/n. However, phosphate desorption, as well as the maximum recovery percent did not follow this order. The phosphate affinity constant (K) was also different following the same progression for the 3 soil series as the Freundlich constant K', which measured sorption strength. Meanwhile, an inverse order existed for K and K' versus the percent desorbed relative to the sorbed as well as the maximum recovery percent. In addition, significant correlation coefficients among sorption parameters of P and soil factors were found.  相似文献   

3.
oil P status, inorganic P fractions, and P sorption properties were studied using sandy fluvo-aquic horticultural soils,which are high in organic matter content for vegetable production in comparison with a soil used for grain crop productionin Zhengzhou, Henan Province, China. P fractions, Olsen-P, and OM were determined at different depths in the soilprofile and sorption isotherm experiments were performed. Most P in excess of plant requirements accumulated in thetopsoil and decreased with soil depth. Total P, inorganic P, and OM concentrations increased with continued horticulturaluse.Olsen-P concentrations in the 0-20 cm depth of horticultural soils were 9 to 25 times higher than those of the graincrop soil. A linear transformation of the Langmuir equation showed that the P adsorption maximum (491.3 mg P kg^-1)and the maximum phosphate buffering capacity (162.1 L kg^-1) for 80-100 cm were greater in the grain crop soil than thehorticultural soils. Thus, the most immediate concern with excess P were in areas where heavy P fertilizer was used forvegetable crops and where soil P sorption capacities were low due to sandy soils and high organic matter content.  相似文献   

4.
土壤中氮磷钾肥转化中的交互作用: Ⅰ.土壤pH的动态变化   总被引:10,自引:0,他引:10  
Dynamic changes of soil pH as influenced by ammonium sulfate (AS), monocalcium phosphate (MCP),potassium chloride (KCl) and their interaction in soils were evaluated in incubation experiments. Applyingthese fertilizers significantly reduced soil pH values in all cases and followed sequences of AS > MCP >KCl, MCP > KCl > AS and KCl > AS > MCP for the paddy, calcareous and red soils, respectively. TheAS-induced reduction of pH in the three soils followed the sequence of red soil > paddy soil > calcareous soil,while in MCP and KCl systems the reduction of pH followed the sequences of calcareous soil > paddy soil >red soil and red soil > calcareous soil > paddy soil, respectively. The interactions of the NPK fertilizers on pHwere significant. MCP plus KCl or MCP plus AS reduced pH values more than the fertilizers applied solelyin the paddy soil, but AS partly counteracted the effect of MCP on pH in the 1 d sample of the calcareoussoil. The effect of MCP on pH was trivial when MCP was applied in combination with KCl or AS in the redsoil. When applied in combination with AS, KCl did not affect soil pH initially, but suppressed the reductionof pH at the later incubation stage, which was related to inhibition of nitrification by KCl in the soils.  相似文献   

5.
The Taihu Lake region in East China has become prone to soil acidification, which changes heavy metals such as copper(Cu) in soil into water-soluble species and increases the mobility and contamination risks of heavy metals in the biological environment. In this study, the kinetics of Cu2+sorption by the bulk soil and the aggregate size fractions of an acidic paddy soil collected from the Taihu Lake region, the effects of temperature on Cu2+sorption, and the p H changes of the solution were investigated by static sorption and magnetic stirring. The aggregate size fractions were prepared by low-energy ultrasonic dispersing and freeze-drying. The total sorption amounts of the bulk soil and the aggregate size fractions for Cu2+followed a descending order of clay > coarse sand > bulk soil > silt> sand, corresponding to those of organic matter content, free iron oxide content, free aluminum oxide content, and cation exchange capacity. The kinetic sorption curves of Cu2+by the bulk soil and the aggregates, which were divided into two stages(rapid and slow sequentially), were well fitted by the first-order equation, the diffusion equation, and the Elovich equation, showing significant correlations(P < 0.05). Specific and non-specific sorption dominated in the fast and slow stages, respectively, and the former was predominant throughout the sorption process. The specific sorption accelerated and the non-specific sorption decelerated with rising temperature. The p H of the solution decreased significantly during the specific sorption and remained unchanged or increased slightly during the non-specific sorption. When the specific sorption terminated, the p H of the solution was minimized nearly simultaneously.The sorption progress of Cu2+by the bulk soil significantly preceded that by the aggregates. Therefore, heavy metal contamination may be another factor reducing soil p H and metal sorption forms should be taken into consideration in studies of mitigating soil heavy metal pollution or determining environmental capacity of heavy metal in soil.  相似文献   

6.
中国湖南省主要水稻土类型的氨固定   总被引:8,自引:3,他引:8  
The contents, affecting factors, seasonal changes and availability of fixed ammonium in major types ofpaddy soils derived from different parent materials in Hunan Province, China, were studied using the Silva-Bremner method by laboratory and pot experiments. Results showed that the content of fixed ammoniumin the plough horizons ranged from 88.3 mg kg-1 to 388.1 mg kg-1, with 273.2 ± 77.7 mg kg-1 on average,accounting for 11.2% of total soil N on average. Content of fixed ammonium decreased in the order of newlylacustrine clayey paddy soil > alluvial sandy paddy soil > purple clayey paddy soil > newly alluvial sandypaddy soil > yellow clayey paddy soil > reddish-yellow clayey paddy soil > granitic sandy paddy soil. Therewere four distribution patterns of fixed ammonium in the profiles to 1-m depth, i.e., increase with the depth,decrease with increasing depth, no distinct change with the depth, and abrupt increase or decrease in somehorizon. Percentage of fixed ammonium in total N increased with the depth in most of the soils. Fixationof NH4+ by soil was higher at 30 ℃ than at 20 ℃ and 40 ℃, and continuous submergence benefited thefixation of NH4+ in newly alluvial sandy paddy soil, purple clayey paddy soil and alluvial sandy paddy soil,while alternating wetting and drying contributed to the fixation of NH4+ in yellow clayey paddy soil mostly.Fixed ammonium content in the test paddy soils was significantly correlated with < 0.01 mm clay content(P < 0.05), but not with < 0.001 mm clay content, total N, organic N and organic matter. Fixed ammoniumcontent varied with rice growth stages. Application of N fertilizer promoted fixation of NH4+ by soil, and Nuptake by rice plant promoted release of fixed ammonium from the soil. Recently fixed ammonium in paddysoil after N fertilizer application was nearly 100% available to rice plant, while native fixed ammonium wasonly partly available, varying with the soil type and rice type.  相似文献   

7.
连续种植蔬菜对潮土磷素水平的影响   总被引:9,自引:1,他引:9  
Soil P status, inorganic P fractions, and P sorption properties were studied using sandy fluvo-aquic horticultural soils, which are high in organic matter content for vegetable production in comparison with a soil used for grain crop production in Zhengzhou, Henan Province, China. P fractions, Olsen-P, and OM were determined at different depths in the soil profile and sorption isotherm experiments were performed. Most P in excess of plant requirements accumulated in the topsoil and decreased with soil depth. Total P, inorganic P, and OM concentrations increased with continued horticultural use. Olsen-P concentrations in the 0-20 cm depth of horticultural soils were 9 to 25 times higher than those of the grain crop soil. A linear transformation of the Langmuir equation showed that the P adsorption maximum (491.3 mg P kg-1) and the maximum phosphate buffering capacity (162.1 L kg-1) for 80-100 cm were greater in the grain crop soil than the horticultural soils. Thus, the most immediate concern with excess P were in areas where heavy P fertilizer was used for vegetable crops and where soil P sorption capacities were low due to sandy soils and high organic matter content.  相似文献   

8.
The phosphate in the soil-root interface zone under various soil water contents and application rates of phosphate was still of depletion distribution which could be described by a power function in the form of C/Co= axb(C/Co is the relative content of fertilized phosphate in a distance from the root surface x, a and b are the regression constants). The depletion rate of phosphate in soil near the root surface was higher and the depletion range was narrower under lower soil moisture. On the contrary, at higher soil water content the depletion range was wider, generally. The application rate of phosphate led to the greater depletion intensity of phosphorus was higher in the heavier texture soils. In general, the depletion intensity in the soils, which decreased with increasing clay content or increasing buffering power of soil, decreased in the order as loessal soil and black lou soil > lou soil > yellow cinnamon soil when 50 or 100 mg of phosphorus were applied in the form of KH2PO4. This result indicated that the phosphate distribution and its movement in the soil-root interface zone closely related with the buffering capacity of soil.  相似文献   

9.
重金属污染对典型湿润富铁土上钾素行为的影响   总被引:2,自引:2,他引:2  
Difference of montmorillonite(Mt),illite(It) and kaolinite(Kt) in lead sorption characteristics and the effects of amorphous Fe and Al oxide coatings on the characteristics were experimentally sutdied with logistic model.The sorption curves had sigmoid feature due to use of acetate-type buffer solution.With the model the sorption process could be divided into four stages and the sorption characteristics at the stages were discussed.The results showed that,after Mt,It and Kt were coated by amorphous Fe oxide,their maximum sorption capacity(MSC) and percentage of high-SSC concentration scope(HCS) of Pb^2 increased markedly,but the specific sorption capacity(SSC) decreased.with regard to effects of amorphous Al oxide coating,except for It Al,the SSC of other samples showed a downtrend,despite that their MSC remained unchanged.Eventually,the gray correlation degrees to Pb^2 sorption for different physicochemical characteristics of the clay minerals were indicated to be higher for hydronium,zero point of surface charge and hydroxy,but lower for specific surface area.density of surface charge and amount of surface charges.  相似文献   

10.
利用粘粒矿物修复重金属污染农业土壤研究进展   总被引:16,自引:2,他引:14  
Heavy metal contamination of agricultural soils poses risks and hazards to humans.The remediation of heavy metal-polluted soils has become a hot topic in environmental science and engineering.In this review,the application of clay minerals for the remediation of heavy metal-polluted agricultural soils is summarized,in terms of their remediation effects and mechanisms,influencing factors,and future focus.Typical clay minerals,natural sepiolite,palygorskite,and bentonite,have been widely utilized for the in-situ immobilization of heavy metals in soils,especially Cd-polluted paddy soils and wastewater-irrigated farmland soils.Clay minerals are able to increase soil pH,decrease the chemical-extractable fractions and bioavailability of heavy metals in soils,and reduce the heavy metal contents in edible parts of plants.The immobilization effects have been confirmed in field-scale demonstrations and pot trials.Clay minerals can improve the environmental quality of soils and alleviate the hazards of heavy metals to plants.As main factors affecting the immobilization effects,the pH and water condition of soils have drawn academic attention.The remediation mechanisms mainly include liming,precipitation,and sorption effects.However,the molecular mechanisms of microscopic immobilization are unclear.Future studies should focus on the long-term stability and improvement of clay minerals in order to obtain a better remediation effect.  相似文献   

11.
上海土壤磷的吸附特性及缓冲性能的研究   总被引:8,自引:0,他引:8  
本文以上海土壤为对象,研究选定了土壤磷等温吸附试验条件为:水土比10,平衡时间6天,控温25℃,磷加入量为100,200,400,600μgP/g土,溶液基质为0.01M CaCl2。磷缓冲能力试验条件为:平衡时间2天,磷加入量为20,40,100,200μgP/g土。根据Freundlich, Tempkin和Langmuir方程计算的土壤吸附指标与土壤类型及土壤性质有密切关系,是土壤磷素肥力的重要指标。反映土壤缓冲能力的“磷肥指标”与土壤有机质、粘粒、活性铝及pH值相关较好。上海几种主要土壤中以青紫泥的最大吸附量(Xm),0.2ppm P吸附量和“磷肥指标”为最高,其次为青黄土,沟干泥和黄泥头,最小为夹沙泥。应用磷吸附指标与“磷肥指标”来预测土壤需磷量,初步试验是可行的,但实际应用还需进一步试验研究。  相似文献   

12.
研究了四川盆地丘陵区典型水田和旱地土壤对磷的吸附与解吸特征,并讨论了吸附-解吸参数与土壤基本理化性质的关系。结果表明,不同pH的农田土壤对磷的吸附和解吸均存在显著差异,土壤对磷的吸持能力表现为中性土壤〉酸性土壤〉石灰性土壤,中性有利于土壤吸附磷;水稻土对磷的最大吸附容量(Qm)和最大缓冲容量(MBC)高于紫色土,而临界平衡磷浓度(EPC0)和解吸率(b)低于紫色土。农田土壤对磷的吸附与解吸参数还受土壤理化性质的影响,Qm和MBC与有机质含量、无定形铁(Fe-ox)含量呈极显著正相关(P〈0.01,n=6);吸附常数(K)与有机磷含量呈显著负相关(P〈0.05,n=6);EPC0与土壤pH、CaCO3含量呈显著负相关,与有机磷含量呈显著正相关(P〈0.05,n=6);b与Fe-ox含量呈显著负相关(P〈0.05,n=6)。  相似文献   

13.
红壤基质组分对磷吸持指数的影响   总被引:8,自引:1,他引:7  
在红壤旱地肥料长期定位试验(始于1988年)中,选取了无机肥试验区的NPK、NP、NK、PK,有机无机配施试验区的CK、CK+猪厩肥(BM)及CK+花生秸秆(SR)等7个施肥处理土壤,测定了土壤磷吸持指数(Phosphate sorption index,PSI),分析了PSI与红壤最大吸磷量(Xm)的相关关系,讨论了土壤pH、有机质、黏粒、铁铝氧化物及无机磷酸盐等基质组分对PSI的影响。结果表明:长期施磷或配施有机肥均可显著降低红壤PSI值,随着土壤pH的升高、有机质及铁结合态磷酸盐(Fe-P)含量的增加,红壤PSI显著降低;土壤游离铁铝氧化物及黏粒含量越高,PSI也越大。PSI与Xm呈显著线性相关关系(Xm=0.5PSI+412.8,n=15,r=0.967**,p<0.01),因此,可以用PSI替代Xm来表征土壤固磷能力,亦可由PSI的大小来推断土壤磷的供磷能力。  相似文献   

14.
To evaluate the available silicon (Si) content in agricultural soils in Japan and to investigate the determining factors of this content, we collected 180 soil samples from the surface layer of paddies and upland fields in Japan and determined their available Si contents. A phosphate buffer (PB; 0.02 M, pH 6.9) or an acetate buffer (AB; 0.1 M, pH 4.0) was used to extract available Si from the soil samples, and the Si concentrations in the extracts were determined by inductively coupled plasma-atomic emissions spectroscopy (ICP-AES). The total Si content and selected physicochemical properties were also determined for the soil samples. The median values of the available Si contents by the PB and AB methods were 48.8 and 79.7 mg kg?1 and corresponded to 0.017% and 0.027% of the total Si content, respectively. The overall data showed log-normal distributions. The available Si content of the upland soils was significantly higher than that of the paddy soils by both the PB (p < 0.01) and AB methods (p < 0.05). The available Si contents by the PB and AB methods had a significant positive correlation (p < 0.01) and they had significant negative correlation with the total Si content (p < 0.01). The values of the available Si contents by the PB and AB methods correlated positively with the pH, total carbon (C) content, and dithionite-citrate bicarbonate extractable iron (Fed) and aluminum (Ald), acid oxalate extractable iron (Feo) and aluminum (Alo), Fed-Feo and Alo+1/2Feo values (p < 0.01). A multi-regression analysis indicated that pH, amorphous minerals and crystalline iron (Fe) oxides were the dominant determining factors of available Si in the soils, and these three variables explained approximately two thirds of the variation of available Si content in agricultural soils in Japan. In terms of soil type, Terrestrial Regosols, Dark Red soils and Andosols had relatively high available Si contents, whereas Sand-dune Regosols, Red soils and Gray Lowland soils had relatively low contents. In terms of region, the soils in the Kanto and Okinawa regions had relatively high available Si contents and those in the Kinki, Shikoku and Chugoku regions had relatively low contents. In conclusion, the available Si content and its determining factors for agricultural soils in Japan were quantitatively elucidated, and this will contribute to the establishment of rational soil management?—including the application of silicate materials, taking into account the Si-supplying power of the relevant soils—for sustainable and productive agriculture in Japan.  相似文献   

15.
Abstract

Hardsetting soil properties are undesirable in agricultural soils because they hamper moisture movement and soil aeration. The soils of the floodplain of Niger River in eastern Nigeria hardsets upon drying, following dispersion, puddling, and slaking during the waterlogged period. Ten soil samples collected from a depth of 0–20 cm were analyzed for their properties. The soils are classified as Fluvaquentic Eutropepts or Dystric Gleysol (FAO). The objective was to investigate the influence of some soil properties on water‐dispersible clay (WDC) of the soils, which is the precursor of the hardsetting process. The total clay content (TC) correlated significantly with WDC (r=0.94??), whereas the water‐dispersible silt (WDSi) was higher than its corresponding total silt content. The WDC showed a positive correlation with dithionite extractable Fe (Fed), Al (Ald), and oxalate extractable Fe (Feo) (r=0.75?, 0.89??, and 0.76? respectively). Exchangeable Mg2+ correlated significantly with WDSi (r=0.70). Principal component analysis of the soil variables indicates that 15 soil components, which influence WDC as hardsetting properties, were reduced to 5 orthogonal components. The parameters that influence hardsetting properties are exchangeable Na+, K+, Ca2+, Mg2+, Fed, Alo, and Feo. Other soil properties are kaolinite, smectite, illite, and WDC, including soil organic carbon (OC), electrical conductivity (EC), and ESP. Therefore, those soil properties, which explain hardsetting characteristics most, are exchangeable Na+, Fed, OC, Mg2+, and Alo. There are negative consequences on the erodibility, runoff, infiltration and tillage of the soils at both submerged and dry conditions due to clay dispersion, low OC, and hardsetting behavior of the soil.  相似文献   

16.
Abstract

Characteristics of Brown Forest soils developed under different bio-climatic conditions from low to high eleyations in the Kinki District were studied with special reference to their pedogenetic processes. The Brown Forest soils at high elevations were characterized by a lower bulk density, higher capacities to adsorb organic matter, phosphate, and moisture, which were correlated with the ratio of the amorphous content to the clay content (the value of the ratio of (Feo + Alo)/clay), as compared to those at low elevations. Considering the fact that the value of the (Feo + Alo)/clay ratio was not correlated with the volcanic glass index, the formation of an amorphous fraction at high elevations was considered to proceed according to the following mechanism.

Low temperature at high elevations (above 700 m) may retard the crystallization of oxide minerals. The amorphous oxides with variable positive charge thus formed may adsorb organic matter, confering a darker color and high moisture and high phosphate retention capacities to the subsoil. Adsorbed organic matter stabilizes these amorphous oxides, thus enhancing the amorphous properties and inhibiting crystallization. A1 translocation due to the weak podzolization may contribute to the increase of the content of amorphous materials.

Characterization of the B horizons in forest soils in Japan, in terms of the values of the ratios of (Feo + Alo)/clay, (Fed-Feo)/Fet, and Alo/Ald, (CEC -ECEQ/CEC and STPT-ZPC, suggested that forest soils might be classified into four groups.  相似文献   

17.
Knowledge of phosphorus(P) sorption dynamics across different soil types could direct agronomic and environmental management of P. The objective of this study was to predict P isotherm parameters for a national soil population using data of routine laboratory tests. Langmuir and Freundlich sorption parameters were calculated from two different ranges(0–25 and 0–50 mg P L~(-1)) using an archive of representative agricultural soil types from Ireland.Multiple linear regression(MLR) identified labile forms of aluminium(Al) and iron(Fe), organic matter(OM), cation exchange capacity(CEC), and clay as significant drivers. Langmuir and Freundlich sorption capacities, Freundlich affinity constant, and Langmuir buffer capacity were predicted reliably, with R~2 of independent validation 0.9. Sorption isotherm parameters were predicted from P sorbed at a single concentration of 50 mg P L~(-1)(S_(50)). An MLR prediction of P sorption maximum in the 0–50 mg P L~(-1) range was achieved, to an accurate standard, using S_(50), OM, and Mehlich-3 Fe(R~2 of independent calibration and validation being 0.91 and 0.95, respectively). Using Giles' four shapes of isotherms(C, L, H, and S), L non-strict-and C-shaped isotherm curves accounted for 64% and 27% of the soils, respectively. Hierarchical clustering identified a separation of isotherm curves influenced by two ranges of Mehlich-3 Al. Soils with a low range of Mehlich-3 Al(2.5–698 mg kg~(-1)) had no incidence of rapid sorption(C shape). Single point indices, Al, or available soil data make the regression approach a feasible way of predicting Langmuir parameters that could be included with standard agronomic soil P testing.  相似文献   

18.
Organic matter (OM) is the most critical factor in controlling the sorption-desorption of SMZ in soil, however, few studies have explored the effects of OM removal on these important behaviors among different soils. Batch experiments were conducted to investigate the sorption and desorption characteristics of SMZ in three different soils: fluvo-aquic soil (FS), paddy soil (PS), and red soil (RS). The SMZ sorption in the evaluated soils was dominated by physisorption. The SMZ sorption capacities of FS and PS, which had a relatively higher OM content than RS, were higher than that of RS. The SMZ sorption in FS was dominated by linear partitioning. In contrast, the SMZ sorption in PS and RS was mainly nonlinear surface adsorption. After OM removal, the SMZ sorption capacity was significantly reduced in FS but increased in PS and RS. Furthermore, OM removal restrained the sorption intensity of SMZ in soils. Relatively higher OM and clay contents inhibited the SMZ desorption in FS and PS. The strong negative desorption hysteresis of SMZ in the three soils indicated that SMZ was able to move into the soil solution, thereby posing a risk to humans. Taken together, the findings of this study showed that OM indeed plays an important role during SMZ sorption-desorption in soil.  相似文献   

19.
Abstract

In nineteen surface horizons of red Mediterranean soils from various locations of Greece, phosphorus (P) sorption experiments were conducted and the sorption characteristics were studied in relation to soil properties. Phosphate sorption data were fitted both to the Langmuir and Freundlich equations. From these equations, the following P sorption parameters were determined from the Freundlich equation, X = ACn, the parameters A (the phosphate sorbed at C = 1 mg P/L), n (the P sorption intensity), the P sorption index (PS = X/log C) and maximum P sorption (Xmfr). From the Langmuir equation, C/X = 1/KXm + C/Xm, the parameters K (showing the bonding energy), maximum P sorption (Xmla), the quantity of P adsorbed at a standard concentration of 0.2 mg P/L (P0.2), and P maximum buffering capacity (PMBC). The Freundlich parameter A was strongly correlated to the clay and sesquioxides ("free”; iron and aluminum oxides and amorphous iron oxides) content. Seventy‐four percent of the variance of this parameter was explained by clay and “free”; iron (Fe) content. The Freundlich parameter n was significantly correlated with pH and amorphous iron oxides content, while 52% of its variance was explained by amorphous Fe and dithionite extrac‐table aluminum (Al). The P sorption maxima calculated from the Freundlich equation were in general lower than those calculated by the Langmuir equation. Both these parameters were strongly correlated with clay and more slightly with sesquioxides content. About 50% of their variance was explained by clay content of the soils. The P sorption index was strongly correlated with the clay content and less strongly with dithionite‐extractable Fe and Al. The P‐buffering capacity calculated from the data of Langmuir equation was also strongly correlated with these two parameters. In addition, clay content and dithionite‐extractable Fe and Al were well correlated to the amounts of P required to obtain an equilibrium concentration of 0.2 mg P/L while 61% of the variation of this parameter was explained by the clay and the dithionite‐extractable Fe content. From these findings, it seems that for the red Mediterranean soils from Greece, P sorption is affected by clay content and iron and aluminum oxide contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号