首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 143 毫秒
1.
Assessment of ecological flow or water level for water bodies is important for the protection of degraded or degrading ecosystems caused by water shortage in arid regions, and it has become a key issue in water resources planning. In the past several decades, many methods have been proposed to assess ecological flow for rivers and ecological water level for lakes or wetlands. To balance water uses by human and ecosystems, we proposed a general multi-objective programming model to determine minimum ecological flow or water level for inland water bodies, where two objectives are water index for human and habitat index for ecosystems, respectively. Using the weighted sum method for multi-objective optimization, minimum ecological flow or water level can be determined from the breakpoint in the water index–habitat index curve, which is similar to the slope method to determine minimum ecological flow from wetted perimeter–discharge curve. However, the general multi-objective programming model is superior to the slope method in its physical meaning and calculation method. This model provides a general analysis method for ecological water uses of different inland water bodies, and can be used to define minimum ecological flow or water level by choosing appropriate water and habitat indices. Several commonly used flow or water level assessment methods were found to be special cases of the general model, including the wetted perimeter method and the multi-objective physical habitat simulation method for ecological river flow, the inundated forest width method for regeneration flow of floodplain forest and the lake surface area method for ecological lake level. These methods were applied to determine minimum ecological flow or water level for two representative rivers and a lake in northern Xinjiang of China, including minimum ecological flow for the Ertix River, minimum regeneration flow for floodplain forest along the midstream of Kaxgar River, and minimum ecological lake level for the Ebinur Lake. The results illustrated the versatility of the general model, and can provide references for water resources planning and ecosystem protection for these rivers and lake.  相似文献   

2.
Based on the analyses of environmental proxy data in lake sediments and instrumental records of Xinjiang in northwest China,the Holocene climate and hydrological variability and its environmental responses were studied in different time scales and regions. The results showed that the Holocene climate variability had obvious differences between the north and south of Xinjiang. In northern Xinjiang,the Holocene climate was dry in the early period,humid in the middle period,and then changed to dry in the late period. However,the climate transition times were not consistent in different regions. In southern Xinjiang,although there were many different types of climate change patterns inferred from different catchments,the warm and wet climate was recorded in most lake sediments in the middle Holocene. According to comparisons of some millennium scale records in lake sediments,the climate was warm and dry in the past 100 years. It can be concluded the climate showed a trend of aridity in Holocene. Especially in recent 50 years,the lake area has been shrinking rapidly because of the population growth and social economic development,which brings some environmental problems. Lake level and area changes were sensitively affected by the climate variation in geological history of Xinjiang and the lake level will continue to shrink because of the drought climate and strengthened human activities.  相似文献   

3.
Qinghai Lake is the largest saline lake in China.The change in the lake volume is an indicator of the variation in water resources and their response to climate change on the Qinghai-Tibetan Plateau(QTP)in China.The present study quantitatively evaluated the effects of climate change and land use/cover change(LUCC)on the lake volume of the Qinghai Lake in China from 1958 to 2018,which is crucial for water resources management in the Qinghai Lake Basin.To explore the effects of climate change and LUCC on the Qinghai Lake volume,we analyzed the lake level observation data and multi-period land use/land cover(LULC)data by using an improved lake volume estimation method and Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.Our results showed that the lake level decreased at the rate of 0.08 m/a from 1958 to 2004 and increased at the rate of 0.16 m/a from 2004 to 2018.The lake volume decreased by 105.40×108 m3 from 1958 to 2004,with the rate of 2.24×108 m3/a,whereas it increased by 74.02×108 m3 from 2004 to 2018,with the rate of 4.66×108 m3/a.Further,the climate of the Qinghai Lake Basin changed from warm-dry to warm-humid.From 1958 to 2018,the increase in precipitation and the decrease in evaporation controlled the change of the lake volume,which were the main climatic factors affecting the lake volume change.From 1977 to 2018,the measured water yield showed an"increase-decrease-increase"fluctuation in the Qinghai Lake Basin.The effects of climate change and LUCC on the measured water yield were obviously different.From 1977 to 2018,the contribution rate of LUCC was -0.76% and that of climate change was 100.76%;the corresponding rates were 8.57% and 91.43% from 1977 to 2004,respectively,and -4.25% and 104.25% from 2004 to 2018,respectively.Quantitative analysis of the effects and contribution rates of climate change and LUCC on the Qinghai Lake volume revealed the scientific significance of climate change and LUCC,as well as their individual and combined effects in the Qinghai Lake Basin and on the QTP.This study can contribute to the water resources management and regional sustainable development of the Qinghai Lake Basin.  相似文献   

4.
In recent decades, the control of floods is an efficient management practice for the rehabilitation of rangelands in most arid and semiarid areas. To evaluate the benefits, we used the Landscape Function Analysis (LFA) method to assess the function of patches and qualitative capability of a rangeland ecosystem in Gareh Bygone region, Fars province, southwestern Iran. Landscape functionality depends on soil, water and nutrient (collectively called "resources") conservation and use within a given ecosystem. Many landscapes are naturally heterogeneous in terms of resource control and possess patches, where resources tend to accumulate, and inter-patches. Assessing rangeland health and function of landscape patches in response to environment and management can give rise to correct management decisions for qualitative improvement of the ecosystem. Therefore, our study area was divided into two parts, i.e. water spreading and control parts, and sampling was done using LFA method in each part separately. Structural parameters, including the number, length and width of patches, and the mean length of inter-patches, were determined by the method to characterize the functional status of the monitoring sites. For each patch/inter-patch type identified in the transect organization log, we recorded its soil surface properties classified according to the Soil Surface Assessment Method. The density, canopy cover and composition of plants were then assessed. The results showed that the number of ecological patches and their dimensions were significantly increased in the water spreading site. Soil stability and the values of nutrient cycling indices were increased but the infiltration values were decreased in the water spreading site. It could be related to the effect of suspended materials transported by floods to the soils in the study area. The improvement of ecological patches and rangeland ecosystem was achieved where water spreading systems were practiced. Therefore it can be concluded that water spreading as a management plan plays an important role in arid land ecosystem functionality.  相似文献   

5.
Owing to global climatic changes and human activities,the lakes have changed dramatically in the Junggar Basin of Xinjiang in recent 50 years. Based on the remote sensing images from Beijing Satellite No.1 in 2006 together with the measured topographical data in 1999 and other data since the 1950s,this paper analyzes mainly the features of landforms around the Manas Lake and the changes of feeding sources of the lake. The results are as follows:(1) Tectonic movement brought about the fundamental geomorphological basis for lacustrine evolution,and the Manas Lake is one of small lakes broken up from the Old Manas Lake due to tectonic movement and drought climate; the Manas Lake had existed before the Manas River flowed into it in 1915. The geomorphologic evidences for evolution of the Manas Lake include:(a) Diluvial fans and old channels at the north of the lake indicate that the rivers originating from the north mountains of the Junggar Basin had fed the Old Manas Lake and now still feed the lake as seasonal rivers; (b) The Old Manas Lake was fed by many rivers originating from the mountains,except for the Manas River,from the evidence of small lakes around the Manas Lake,old channels,alluvial fans,etc.; (c) The elevations of the alluvial and diluvial fans are near to the 280 m a.s.l. and all of the small lakes and lacustrine plains are within the range of the 280 m a.s.l.,which may prove that the elevation of the Old Manas Lake was about 280 m a.s.l.; (d) Core analysis of the Manas Lake area also indicates that the Manas Lake has existed since Late Pleistocene epoch. (2) Analysis on the feeding relations between the lakes and the lacustrine evolution shows that human activities are one of main driving forces of the lacustrine evolution in recent 50 years,and it is the precondition of restoring and maintaining the lacutrine wetlands in the study area to satisfy the feeding of the Baiyang and Manas rivers to the Manas Lake.  相似文献   

6.
Over-exploitation of groundwater for irrigation can result in drastic reduction in groundwater level in Jodhpur district of western Rajasthan, India. In this study, we used the long-term trend analysis of seasonal groundwater level data to predict the future groundwater scenario in 33 villages of Jodhpur district, assessed the impact of water harvesting structures on groundwater recharge and explored the non-equilibrium between groundwater recharge and irrigation draft in the study area. Analysis of groundwater level data from 26 observation wells in 33 villages in the pre-monsoon period showed that groundwater level decreased continuously at the rate of 2.07 m/a. With this declining rate, most of the tube wells(including the well with the maximum depth of 193 m) are predicted to become completely dry by 2050. Behavior of temporal groundwater level data in the study period(from 2004 to 2012) can be explained by different geospatial maps, prepared using Arc GIS software. Statistical analysis of the interpolated maps showed that the area with the maximum positive groundwater recharge occupied 63.14% of the total area during 2010–2011 and the area with the maximum irrigation draft accounted for 56.21% of the total area during 2011–2012. Higher groundwater recharge is attributed to the increase in rainfall and the better aquifer condition. Spatial distribution for the changes of average groundwater recharge and draft(2008–2009 and 2011–2012) showed that 68.50% recharge area was in positive change and 45.75% draft area was in negative change. It was observed that the area of the irrigation draft exceeded that of the groundwater recharge in most of the years. In spite of the construction of several shallow water harvesting structures in 2009–2010, sandstone aquifer zones showed meager impact on groundwater recharge. The best-fit line for the deviation between average groundwater fluctuation due to recharge and irrigation draft with time can be represented by the polynomial curve. Thus, over-exploitation of groundwater for agricultural crops has result in non-equilibrium between groundwater recharge and irrigation draft.  相似文献   

7.
Lake area is an important indicator for climate change and its relationship with climatic factors is critical for understanding the mechanisms that control lake level changes. In this study, lake area changes and their relations to precipitation were investigated using multi-temporal Landsat Thermatic Mapper(TM) and Enhanced Thermatic Mapper plus(ETM+) images collected from 10 different regions of Mongolia since the late 1980 s. A linear-regression analysis was applied to examine the relationship between precipitation and lake area change for each region and across different regions of Mongolia. The relationships were interpreted in terms of regional climate regime and hydromorphological characteristics. A total of 165 lakes with areas greater than 10 hm2 were identified from the Landsat images, which were aggregated for each region to estimate the regional lake area. Temporal lake area variability was larger in the Gobi regions, where small lakes are densely distributed. The regression analyses indicated that the regional patterns of precipitation-driven lake area changes varied considerably(R2=0.028–0.950), depending on regional climate regime and hydromorphological characteristics. Generally, the lake area change in the hot-and-dry Gobi regions showed higher correlations with precipitation change. The precedent two-month precipitation was the best determining factor of lake area change across Mongolia. Our results indicate the usefulness of regression analysis based on satellite-derived multi-temporal lake area data to identify regions where factors other than precipitation might play important roles in determining lake area change.  相似文献   

8.
<正> The Qinghai Lake, the largest closed interior saline lake in China with the area of296611 km~2 and the altitude of 3000m, is located in the northeast of Tibet Plateau. It is sofar from industrial area that it is in the natural to semi-naturnal state. This means it isweakly influenced by human activities. So, the lake is a good place to investigateenvironmental and climatic changes. In fact, during last hundreds of years the water level  相似文献   

9.
Lake surface water temperature(SWT) is an important indicator of lake state relative to its water chemistry and aquatic ecosystem,in addition to being an important regional climate indicator.However,few literatures involving spatial-temporal changes of lake SWT in the Qinghai-Tibet Plateau,including Qinghai Lake,are available.Our objective is to study the spatial-temporal changes in SWT of Qinghai Lake from 2001 to 2010,using Moderate-resolution Imaging Spectroradiometer(MODIS) data.Based on each pixel,we calculated the temporal SWT variations and long-term trends,compared the spatial patterns of annual average SWT in different years,and mapped and analyzed the seasonal cycles of the spatial patterns of SWT.The results revealed that the differences between the average daily SWT and air temperature during the temperature decreasing phase were relatively larger than those during the temperature increasing phase.The increasing rate of the annual average SWT during the study period was about 0.01℃/a,followed by an increasing rate of about 0.05℃/a in annual average air temperature.The annual average SWT from 2001 to 2010 showed similar spatial patterns,while the SWT spatial changes from January to December demonstrated an interesting seasonal reversion pattern.The high-temperature area transformed stepwise from the south to the north regions and then back to the south region from January to December,whereas the low-temperature area demonstrated a reversed annual cyclical trace.The spatial-temporal patterns of SWTs were shaped by the topography of the lake basin and the distribution of drainages.  相似文献   

10.
Understanding the relationship between the changes in lake water volume and climate change can provide valuable information to the recharge sources of lake water. This is particularly true in arid areas such as the Badain Jaran Sand Sea, an ecologically sensitive area, where the recharge sources of lakes are heatedly debated. In this study, we determined the areas of 50 lakes(representing 70% of the total permanent lakes in this sand sea) in 1967, 1975, 1990, 2000 and 2010 by analyzing remote-sensing images using image processing and Ar GIS software. In general, the total lake area decreased from 1967 to 1990, remained almost unchanged from 1990 to 2000, and increased from 2000 to 2010. Analysis of the relationship between these changes and the contemporaneous changes in annual mean temperature and annual precipitation in the surrounding areas suggests that temperature has significantly affected the lake area, but that the influence of precipitation was minor. These results tend to support the palaeo-water recharge hypothesis for lakes of the Badain Jaran Sand Sea, considering the fact that the distribution and area of lakes are closely related to precipitation and the size of mega-dunes, but the contemporaneous precipitation can hardly balance the lake water.  相似文献   

11.
新疆艾比湖湖面动态变化及其影响研究   总被引:5,自引:1,他引:4  
艾比湖是新疆典型的平原区湖泊,随着近50年来流域气候和人类扰动双重影响下,艾比湖湖面相应呈现出动态变化的态势。由于其地理区位独特,艾比湖湖面变化所引发的区域性生态环境问题,已成为关系到新疆社会经济可持续发展全局的紧迫问题。本文以艾比湖为研究靶区,从年内与年际尺度对湖面变化进行研究,并在剖析湖面动态变化原因的基础上,系统地分析了湖面动态变化的生态环境效应及其影响[1,2]。指出要维护艾比湖地区良好的生态环境,必须对艾比湖最优运行水位加以研究,通过最优运行水位模型的构建来确定具体优化管理方案,以确保艾比湖流域生态环境与社会经济的和谐发展。  相似文献   

12.
Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China, but the spatial patterns and driving mechanisms of water quality in lakes so far remain unclear. This study aimed to identify the spatial changes in water quality and the driving factors of seven lakes (Juyanhai Lake, Ulansuhai Lake, Hongjiannao Lake, Daihai Lake, Chagannaoer Lake, Hulun Lake, and Wulannuoer Lake) across the longitudinal axis (from the west to the east) of Inner Mongolia. Large-scale research was conducted using the comprehensive trophic level index (TLI (Σ)), multivariate statistics, and spatial analysis methods. The results showed that most lakes in Inner Mongolia were weakly alkaline. Total dissolved solids and salinity of lake water showed obvious zonation characteristics. Nitrogen and phosphorus were identified as the main pollutants in lakes, with high average concentrations of total nitrogen and total phosphorus being of 4.05 and 0.21 mg/L, respectively. The values of TLI (Σ) ranged from 49.14 to 71.77, indicating varying degrees of lake eutrophication, and phosphorus was the main driver of lake eutrophication. The lakes of Inner Mongolia could be categorized into lakes to the west of Daihai Lake and lakes to the east of Daihai Lake in terms of salinity and TLI (Σ). The salinity levels of lakes to the west of Daihai Lake exceeded those of lakes to the east of Daihai Lake, whereas the opposite trend was observed for lake trophic level. The intensity and mode of anthropogenic activities were the driving factors of the spatial patterns of lake water quality. It is recommended to control the impact of anthropogenic activities on the water quality of lakes in Inner Mongolia to improve lake ecological environment. These findings provide a more thorough understanding of the driving mechanism of the spatial patterns of water quality in lakes of Inner Mongolia, which can be used to develop strategies for lake ecosystem protection and water resources management in this region.  相似文献   

13.
艾比湖水位变化对湖滨湿地盐渍化的影响研究   总被引:1,自引:0,他引:1  
通过比较2000~2005年艾比湖水域及湖滨盐渍化土地的变化特点,分析了艾比湖水位变化对湖滨湿地盐渍化的影响机制和影响方式。发现个别年份艾比湖水位上升所形成的大水面虽然可以在短时间内覆盖原有的盐渍化土地而使盐渍化总面积减少,但水位急剧上升同时也是导致湖滨土地盐渍化面积扩大、程度加剧的根本原因。要想减轻艾比湖湿地盐渍化程度加重所带来的危害,保证艾比湖拥有一个稳定的水位是根本的出路。  相似文献   

14.
亚洲中部干旱区的湖泊   总被引:20,自引:8,他引:12  
采用系统论的观点,对亚洲中部的干旱区湖泊(包括咸海、巴尔喀什湖、博斯腾湖、艾比湖、玛纳斯湖、艾丁湖与罗布泊等)的水分循环与其他物质循环进行综合研究,其结果不仅丰富了生态循环的理论,而且深刻地揭示了干旱区湖泊与湿润区湖泊截然不同的特征;表现出水分循环的独特性、形态测量学的复杂性、风生湖流的奇特性与泥沙运行的规律性以及内陆湖水化学特征和别具一格的水生态循环系统等。干旱区湖泊作为陆地水圈的组成部分,他是一个完整的生态系统。他由湖泊中的生物和水两大亚系统组成,相互作用而又相互联系。尽管大陆性气候严酷和强烈,风生湖流强劲(有时还多亏他的作用),蒸发量大,但内陆湖能生存数千年,即在现代时间尺度上是无IL尽的。  相似文献   

15.
新疆平原湖泊最优运行水位评价指标体系初探   总被引:1,自引:0,他引:1  
上世纪中叶以来,在人类活动和气候变化的双重影响下,新疆大多数平原湖泊咸化、萎缩甚至干涸,湖泊生态环境严重恶化。近十年以来,在全球气候普遍变暖的情况下,新疆气候逐渐向暖湿转变[1],气温升高、降水增加,部分湖泊水域又呈扩大趋势,给湖泊水资源的可持续利用带来新的挑战。如何确定湖泊最优运行水位,是实现湖泊水资源可持续利用的首要问题。本文旨在通过总结与分析影响新疆平原湖泊水位的因素及湖泊水位变化对湖区生态环境和社会济发展的影响,来构建新疆平原湖泊最优运行水位的评价指标体系。  相似文献   

16.
Changing climatic conditions and extensive human activities have influenced the global water cycle. In recent years, significant changes in climate and land use have degraded the watershed ecosystem of the Ebinur Lake Basin in Xinjiang, Northwest China. In this paper, variations of runoff, temperature, precipitation, reference evapotranspiration, lake area, socio-economic water usage, groundwater level and water quality in the Ebinur Lake Basin from 1961 to 2015 were systematically analyzed by the Mann-Kendall test methods(M-K) mutation test, the cumulative levelling method, the climate-sensitive method and land-use change index. In addition, we evaluated the effects of human activities on land use change and water quality. The results reveal that there was a significant increase in temperature and precipitation from 1961 to 2015, despite a decrease in reference evapotranspiration. The Wenquan station was not significantly affected by human activities as it is situated at a higher altitude. Runoff at this station increased significantly with climate warming. In contrast, runoff at the Jinghe station was severely affected by numerous human activities. Runoff decreased without obvious fluctuations. The contributions of climate change to runoff variation at the Jinghe and Wenquan stations were 46.87% and 58.94%, respectively; and the contributions of human activities were 53.13% and 41.06%, respectively. Land-use patterns in the basin have changed significantly between 1990 and 2015: urban and rural constructed lands, saline-alkali land, bare land, cultivated land, and forest land have expanded, while areas under grassland, lake, ice/snow and river/channel have declined. Human activities have dramatically intensified land degradation and desertification. From 1961 to 2015, both the inflow into the Ebinur Lake and the area of the lake have declined year by year; groundwater levels have dropped significantly, and the water quality has deteriorated during the study period. In the oasis irrigation area below the runoff pass, human activities mainly influenced the utilization mode and quantity of water resources. Changes in the hydrology and quantity of water resources were driven primarily by the continuous expansion of cultivated land and oasis, as well as the growth of population and the construction of hydraulic engineering projects. After 2015, the effects of some ecological protection projects were observed. However, there was no obvious sign of ecological improvement in the basin, and some environmental problems continue to persist. On this basis, this study recommends that the expansion of oasis should be limited according to the carrying capacity of the local water bodies. Moreover, in order to ensure the ecological security of the basin, it is necessary to determine the optimal oasis area for sustainable development and improve the efficiency of water resources exploitation and utilization.  相似文献   

17.
艾比湖最低生态水位研究   总被引:2,自引:1,他引:1  
艾比湖最低生态水位的研究对解决流域生态退化问题具有重要现实意义。参考前人所提出的几种确定湖泊最低生态水位的方法,结合艾比湖流域实际情况对艾比湖最低生态水位进行了分析和计算,计算结果表明:艾比湖最低生态水位的范围为191.4m,相应湖面面积为570km2,从保护艾比湖湿地自然保护区的角度看,确定的最低生态水位合理。  相似文献   

18.
艾比湖湿地泥炭土壤养分特征分析   总被引:2,自引:0,他引:2  
以新疆艾比湖湿地泥炭土壤为研究对象,结合分析化学的手段,对泥炭土壤中的有机质、碱解氮、速效钾、有效磷等养分含量、空间分布特征进行测定与统计分析。结果表明:土壤有机质、碱解氮含量呈现出较强的表聚性,养分含量中有机质含量较高;其它养分含量较低;泥炭土壤中表层土壤有机质与碱解氮、速效钾、有效磷存在显著相关性,泥炭深层土壤的有机质与碱解氮、有效磷相关性较强;空间变异特征显示,土壤各养分指标均表现为中等空间变异特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号