首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
选取云南省境内怒江流域北段作为研究区域,采用SSR分子标记技术,对研究区域内的22个紫茎泽兰种群的遗传多样性和种群遗传结构进行了实验分析。实验从60对SSR引物中筛选出3对多态性引物进行扩增,采用0/1法读取条带。3对SSR引物一共扩增出136个条带,共检测到38个特异性条带,每对SSR引物检测出的多态性条带平均为12.6。采用GenAlEx 6.2、Structure2.3.3、NTSYS-PC软件进行分析,得出:22个紫茎泽兰种群间遗传多样性较高,种群水平上的多态位点百分率(P)为71.21%,Shannon信息指数(I)为0.280,Nei基因多样性指数(H)为0.176,等位基因数(Na)为1.712,有效等位基因数(Ne)为1.280。通过UPGMA聚类和贝叶斯聚类分析均显示出三个区域的种群遗传差异。  相似文献   

2.
以野外已经灭绝的极小种群植物富民枳为对象,基于当前建立的种质资源收集圃开展群体遗传分析研究,探讨种质资源收集保存和野外回归的有效途径,为极小种群植物的拯救保护提供科学依据。利用毛细管电泳检测,从已发表的51个柑橘属SSR引物中,筛选出特异性高和多态性好的,对采集自10个种质资源收集地的170份富民枳样本进行遗传多样性分析,采用POPGENE、PIC_Calc、Populations、Fig Tree和Origin软件分别进行遗传参数估计、引物多态性信息含量计算、邻接树构建和聚类图的绘制。结果显示:SSR引物的多态性信息含量(PIC)平均为0.337 8;Shannon信息指数(I)平均为0.642 8;有效等位基因数(Ne)平均为1.798 7;Nei’s遗传多样性指数(Nei)平均为0.430 0;平均期望杂合度(He)为0.430 0;平均观测杂合度(Ho)为0.568 7。聚类分析显示,170个富民枳样本共聚类了65个分支末梢,属于同一个分支末梢的被默认为同等的遗传关系,我们称这65个样本为"有效样本"。综合评价结果表明:富民枳现存种质资源的遗传多样性水平较低,只有C2和C7在遗传水平上的保护是有效的,即有效样本量大于10,Shannon信息指数又达到该物种遗传多样性水平的90%以上。本研究结果为该物种有效的遗传管理奠定了理论基础。  相似文献   

3.
[目的]探讨基于微卫星标记分析刺槐叶瘿蚊遗传多样性指数与样本量的相关关系。[方法]设置了12个样本量梯度,选取11对微卫星引物分析了我国刺槐叶瘿蚊5个种群的遗传多样性指数。[结果]表明,样本量的大小与平均等位基因数(Na)呈显著正相关,与有效等位基因数(Ne)呈中度正相关,与观测杂合度(Ho)呈负相关,而与期望杂合度(He)、Nei’s遗传多样性指数(H)和多态信息含量(PIC)没有明显相关性。此外,当样本量小于25时,随着样本量的增加,有效等位基因数增幅明显,观测杂合度起伏变化较大,但当样本量大于30时,随着样本量的增加,上述两个指数增(降)幅度平缓。[结论]在利用微卫星DNA标记对我国刺槐叶瘿蚊种群的遗传多样性研究中,选取的最适样本量应为25~30,分析的最适遗传多样性指数应为期望杂合度、Nei’s遗传多样性指数和多态信息含量。该研究结果将为我们后续研究提供科学数据,并有助于分析其他入侵昆虫种群遗传结构的研究,同时可为其他双翅目昆虫的遗传多样性研究提供样本量参考。  相似文献   

4.
建立稳定可靠的SSR-PCR反应体系、筛选具有多态性SSR引物,是木本油料植物光皮树分子标记辅助育种与良种选育的重要基础研究。为给SSR标记技术在光皮树遗传图谱构建、亲缘关系鉴定及分子育种等方面的应用研究奠定基础,利用"Cf-05"正反向引物,采用L16(45)正交试验设计和单因素试验相结合的研究方法,对影响光皮树SSR-PCR反应体系的主要因素(模板DNA、引物、d NTPs、Mg~(2+)、Taq聚合酶浓度及退火温度)进行了试验分析。试验结果表明,光皮树SSR-PCR总体积为15μL的最佳反应体系为:模板DNA用量37.5 ng,正反向引物浓度均为0.6μmol·L~(-1),d NTPs浓度为0.3 mmol·L~(-1),Mg~(2+)的浓度为1.5 mmol·L~(-1),Taq聚合酶用量为1.5 U,最佳退火温度为50℃。运用优化了的光皮树SSR-PCR反应体系,可从71对引物中筛选获得11对能适用于光皮树的SSR引物。研究结果表明,试验所建立的反应体系可进一步用于光皮树SSR遗传多样性分析、遗传图谱构建和分子标记辅助育种等方面的研究中。  相似文献   

5.
[目的]优化相关序列扩增多态性(SRAP)体系内的不同组分,建立适用于红椿SRAP分子标记的反应体系,并进一步从SRAP引物组合中筛选出稳定、多态性好的引物组合,为红椿遗传多样性研究奠定试验基础。[方法]针对SRAP-PCR反应体系中5个因素各设置8个水平,先利用单因素试验确定浓度梯度,后在确定的梯度范围内选定4个水平,按照正交试验L16(45)进行优化,结合正交直观分析法和新复极差法对各因素进行优化筛选。[结果]确定最优体系为总体系25μL,模板DNA 25 ng,上下游引物各0.3μmol·L~(-1),Taq DNA聚合酶1U,Mg2+2.5 mmol·L~(-1),d NTP 0.3 mmol·L~(-1)。利用稳定的SRAP-PCR体系,从1 505对SRAP引物组合中筛选出30对优质引物组合。[结论]通过不同种源红椿基因组DNA的重复验证,获得了稳定清晰、多态性较强的扩增条带,表明所确定的最优体系稳定可靠,适用性较强,可用于不同种源红椿遗传多样性研究的后续实验。  相似文献   

6.
白皮松天然群体遗传多样性的EST-SSR分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨白皮松群体间遗传变异规律,使用7对EST-SSR引物对分布区内21个白皮松天然群体的遗传多样性及遗传分化水平进行了研究。结果表明:7对引物在21个白皮松天然群体的663个单株中共检测到14个多态性位点。各群体间有效等位基因数(Ne)、Shannon’s信息指数(I)、观测杂合度(Ho)、期望杂合度(He)、Nei’s期望杂合度(Nei’s)分别为1.156 5 1.601 9、0.133 5 0.492 5、0.138 4 0.397 3、0.0860 0.342 8、0.084 6 0.337 4。白皮松群体间遗传分化系数(Fst)平均为0.215 2,基因流(Nm)值平均为0.911 9,群体间基因交流总体较少,遗传分化较大。白皮松多样性水平在分布区内呈规律性变化,多样性分布的中心区域主要在西部、南部,具有从西向东,从南向北依次减少的趋势。  相似文献   

7.
[目的]本研究旨在建立红椿SSR-PCR最佳反应体系,并筛选适于红椿SSR分析的高多态性引物。[方法]通过L16(45)正交试验设计,确立红椿SSR-PCR最佳反应体系;利用优化后的体系对来自楝科植物的135对SSR引物,在6个不同的红椿居群中进行扩增,筛出能有效扩增的引物并进一步筛选出适于红椿的高多态性引物。[结果](1)10μL基于荧光d UTP的SSR-PCR体系中包含:10×buffer 1.0μL,Taq酶(5 U·μL-1)0.1μL,Mg Cl2(25mmol·L-1)0.8μL,d NTP(200 mmol·L-1)0.025μL,荧光d UTP(1 nmol·μL-1)0.01μL,引物(10 mmol·L-1)0.8μL,DNA模板45 ng剩余用dd H2O补足;(2)筛选出29对能有效扩增的引物,复选后获得了12对适于红椿SSR分析的高多态性引物。[结论]建立了SSR-PCR最佳反应体系并筛选出高多态性引物,为红椿的分子标记等遗传学研究提供了基础。  相似文献   

8.
侧柏种源遗传多样性分析   总被引:3,自引:0,他引:3  
应用AFLP技术对17省市的18个侧柏种源进行遗传多样性分析。选用的8个引物共扩增出多态性带1613条,占92.91%;平均有效等位基因数1.1993,平均Nei's基因多样性指数0.1239,Shannon's信息指数0.1949,揭示侧柏具有丰富的遗传多样性,其中中部种源遗传多样性低于南、北部种源。AMOVA分析表明侧柏种源遗传分化大,74.86%的遗传变异主要存在种源内,11.12%存在区域间,14.02%存在于区域内种源间,其分布的间断性、地理隔离以及低水平基因流(Nm=1.4372)是导致其种源间分化的主要因素。应用Nei(1972)遗传距离进行非加权组平均法(UPGMA)聚类分析,结果显示纬度相近的种源聚在一起,把18个种源划分为北部、中部、南部和山东4个种源区。Mantel检验也证实种源间的遗传距离与地理距离呈正相关。  相似文献   

9.
大别山不同龄级映山红种群遗传多样性的SSR分析   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]利用SSR标记比较大别山黄狮寨不同年龄级映山红(Rhododendron simsii Planch.)种群的遗传多样性及遗传结构,探究映山红不同世代间遗传多样性的变化规律,为大别山野生映山红资源的合理利用和高效保护提供科学依据。[方法]按照基径大小和丛枝多少将大别山黄狮寨典型映山红种群划分为老树、成树、小树、幼苗4个年龄级,筛选出12对多态性强的SSR引物用于PCR扩增,扩增产物经6%变性聚丙烯酰胺凝胶电泳检测并银染。构建"0/1"矩阵,利用POPGENE 32. 0软件分析种群遗传多样性。基于Nei's遗传距离,采用软件MEGA5. 0进行UPGMA聚类。[结果]不同龄级的映山红遗传多样性差别较大,幼苗和老树种群多样性最差,小树种群多样性最丰富。12个微卫星标记观测等位基因数为3~9个,平均5. 08;有效等位基因数为2. 254 9 6. 129 7,平均3. 460 5;观察杂合度HO和期望杂合度HE分别为0. 676 4~0. 881 2和0. 607 7~0. 690 7。Shannon信息指数(I)以小树群体最高,成树次之,幼苗最低。近交系数Fis为-0. 638 3~0. 174 4,平均为-0. 294 6;总近交系数Fit为-0. 615 1~0. 270 6,平均为-0. 162 1,表明各龄级种群内主要繁殖方式为杂交。分子方差分析(AMOVA)表明89. 76%的遗传变异存在于年龄级内,仅10. 24%存在于年龄级间。基因流水平高,仅1个位点Nm 1。遗传一致度最高的为小树和成树种群。[结论]大别山黄狮寨映山红种群遗传多样性丰富,种群间中度分化,遗传变异主要存在于年龄级内。  相似文献   

10.
为找出可以加快刨花润楠苗木生长速度的生长调节剂,采用不同植物生长调节剂(PP_(333)、NAA、GA_3)及其不同浓度(0、60、120、240、480mg L~(-1))对刨花润楠幼苗进行叶面喷施试验,测定各处理后的苗高生长量,结果表明:PP_(333)阻碍苗木正常高生长,其余各种浓度的GA_3、NAA都有促进刨花润楠的苗木生长,以浓度240 mg L~(-1)GA_3或浓度480mg L~(-1) GA_3促进刨花润楠苗高生长作用最显著,浓度240mg L~(-1) NAA次之。  相似文献   

11.
苦楝SSR-PCR反应体系优化及引物筛选   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]借鉴以往楝属文献报道的SSR引物,筛选高度多态性、稳定性高、重复性好的苦楝SSR引物,为苦楝遗传图谱构建、QTL定位和分子标记辅助选择育种等研究领域应用奠定基础.[方法]本研究采用单因素法和正交试验设计进行SSR-PCR反应体系优化,并利用该体系以8个不同种源的苦楝基因组DNA为模板,从135对候选SSR引物中进行引物筛选.[结果]苦楝SSR-PCR最优反应体系为:1.0 μL 50 ng·μL-1模板DNA,1.2 μL 100 μmol·L-1引物,1.0 μL 10 mmol·L-1 dNTPs,0.8 μL 25 mmol·L-1 Mg2+,0.15 μL 5 U·μL-1 Taq酶,1.5 μL 10×Buffer,补ddH2O至15 μL;最终筛选出15对具有高度多态性、稳定性高、重复性好的SSR引物.[结论]本研究成功优化了苦楝SSR-PCR反应体系,并成功筛选出15对适用于苦楝的SSR引物.  相似文献   

12.
在单因素试验基础上,采用正交试验优化影响观光木SSR-PCR扩增的5种主要影响因素,获得最佳反应体系(10μL)为:Mg2+1.0 mmol,d NTP 0.20 mmol,引物0.25μmol,Taq DNA聚合酶0.75 U,模板DNA 60ng。利用优化SSR-PCR扩增体系,从12对引物中筛选出5对多态性高、重复性好的引物。这为进一步开展观光木种群遗传多样性研究奠定了前期实验基础。  相似文献   

13.
基于SSR标记的西藏光核桃群体遗传多样性和遗传结构分析   总被引:1,自引:0,他引:1  
【目的】利用SSR标记深入研究西藏光核桃的遗传多样性及遗传结构,揭示其遗传结构与地理分布、海拔梯度等的相关性,为西藏光核桃资源的有效利用与科学保护提供理论依据。【方法】利用25对SSR引物,分析西藏地区21个光核桃天然群体420份个体的遗传多样性和遗传结构。应用Gen Al Ex 6.501、Arlequin v3.1、NTSYS pc version 2.10、STRUCTURE、STRUCTURE Harvester、CLUMP和Distruct等软件进行遗传参数估算、主坐标分析、遗传变异分析、聚类图构建及遗传结构分析。【结果】基于25个SSR分子标记的遗传多样性分析表明,西藏光核桃群体遗传多样性和近亲繁殖水平适中,其平均等位基因数(Na)、有效等位基因数(Ne)、期望杂合度(He)、观察杂合度(Ho)、Shannon’s信息指数(I)和近交系数(F)分别为3.8、2.5、0.52、0.44、0.95和0.17,其中,P17群体遗传多样性最高(Ne=4.7,He=0.63,Ho=0.56,I=1.57),而P18群体遗传多样性最低(Ne=1.7,He=0.30,Ho=0.22,I=0.49)。西藏光核桃的贝叶斯遗传结构分析(STRUCTURE)与遗传距离的主坐标分析(PCo A)、UPGMA聚类分析结果基本一致,均将供试420份光核桃个体划分为3个类群,其分组结果具有明显的地理区域特性。Mantel检测显示遗传距离与地理距离(r=0.50,P0.01)、海拔梯度(r=0.61,P0.01)呈显著正相关。分子方差分析(AMOVA)显示,16.3%的遗传变异来自群体间,群体间的遗传分化水平为中等,而大部分遗传变异(83.7%)来自群体内。【结论】西藏光核桃遗传多样性适中,群体间存在地理隔离效应和海拔梯度的遗传变异,其遗传分化程度较高,这可能源于西藏光核桃生境片段化、海拔梯度的影响以及山脉阻隔引起的地理隔离效应。西藏光核桃受人为干扰较严重,且个体间的近亲繁殖较频繁,若不及时采取保护措施,其遗传多样性将会逐渐降低。基于遗传结构分析,确定西藏光核桃3个保护单元,并建议限制人为活动对其破坏,实施就地保护的同时,促进不同居群间的基因交流,保护西藏光核桃的遗传多样性。  相似文献   

14.
研究不同核桃品种的遗传多样性,为今后新品种的培育和种质创新提供理论依据,以西北农林科技大学资源苗圃的18个核桃品种(包括3个实生优系)嫩叶做材料,选用SSR分子标记技术对其进行了遗传多样性研究。建立了最适PCR反应体系,从27对引物中筛选出多态性强重复性好的12对引物,共检测出174条条带,其中91条呈现多态性,多态性条带的比例平均为67.82%,平均每条引物扩增出多态性位点9.8个。新疆2号与辽宁4号的相似系数最大(0.803 6),青林和西林2号最小(0.159 4)。多态信息含量(PIC)变化范围在0.742 2~0.896 2,平均值为0.815 0,其值均大于0.500 0。基于遗传相似性系数的UPGMA聚类结果表明,在遗传相似系数阈值为0.39左右可将供试品种分成4大类。以上说明12条引物扩增的位点均表现出高度多态,同时表明供试样品遗传资源非常丰富,可作为育种来源。  相似文献   

15.
为从分子水平探讨杉木(Cunninghamia lanceolata)种源空间遗传变异模式,采用ISSR分子标记对杉木全分布区内的40个种源进行遗传多样性分析。结果显示:9条ISSR引物共检测出133条带,其中122条多态性条带,多态条带百分率(PPB)为91.73%,各种源PPB和Shannon表型多样性指数(HPOP)分别为37.46%~55.75%和0.201 5~0.344 5,物种水平多态性条带百分率和Shannon信息指数(HSP)分别为89.86%和0.565 5;分子方差分析(AMOVA)揭示,种源间遗传分化系数(ΦST)为0.4651,这表明杉木种源具有较高的遗传多样性,种源间遗传分化较大。UPGMA法聚类表明,参试的40个杉木种源可分为7地理种源区。  相似文献   

16.
运用随机扩增多态DNA(RAPD)技术,对黄心夜合[Michelia martinii(Levl.)Levl.]自然分布区的6个自然种群遗传多样性进行了研究。从100个随机引物中筛选出能产生清晰、稳定的多态性标记引物18个,共检测出110个位点,其中多态性位点为96个,占87.27%;在物种水平上,有效等位基因数目(Ne),Nei’s基因多样性系数(He)和Shannon表型多样性指数(I)分别为1.735 2,0.416 3和0.597 1;总的遗传变异量(Ht)为0.339 8,其中居群内遗传变异量(Hs)为0.258 7,各居群间的遗传分化系数(Gst)达到0.323 1.应用UPGMA法对遗传距离进行聚类分析并构建树系图,结果表明:黄心夜合自然种群具有较高的遗传多样性,其种群间的遗传差异与其地理分布有关。  相似文献   

17.
本研究利用13对SSR引物对120份(105份国外引进、15份我国新疆)欧洲黑杨基因资源进行了遗传多态性分析,共检测出171个等位基因,每个多态性位点检测到7~19个等位基因,平均为13.2,多态信息指数为0.396~0.909,平均为0.808;遗传距离为0~0.456 4.欧洲黑杨基因种源具有丰富的遗传多样性.通过UPGMA等类分析,将120份材料划分为8类,地理分布较近的材料基本聚在一起,表明遗传距离与地理距离相关性强.  相似文献   

18.
不同种源红椿SRAP标记的遗传多样性分析   总被引:3,自引:0,他引:3  
[目的]由于过度采伐和天然更新能力较差等原因,红椿天然林分和林木的数量日益减少。深入研究红椿不同种源的遗传多样性,揭示其群体结构分布,可为其种质资源保护和选择育种提供理论依据。[方法]利用相关序列多态性分子标记(SRAP)对来自中国的29个种源及1个澳大利亚种源进行遗传多样性分析。各种源地选取母树30株,株距50 m以上。澳大利亚种源取自华南农业大学红椿资源收集圃。利用POPGENE1.32,NTSYSpc2.1,Gen AIEx 6.5和STRUCTRUE 2.3进行遗传参数估计、聚类图构建、主坐标分析、地理隔离模式构建及遗传结构分析。[结果]24对SRAP引物组合共扩增出505条多态性条带,引物的多态信息含量(PIC)均值为0.41;30个红椿种源间的Nei’s基因多样性指数平均为0.377 0;种源内Shannon’s信息指数(I)变动幅度为0.157 5~0.467 5,种源间均值为0.556 9。分子方差分析(AMOVA)得出,在总的遗传变异中,79.26%的遗传分化存在于种源间,种源内分化仅占20.74%,表明红椿的遗传分化主要来源于种源间,红椿良种选育应首先开展种源选择。STRUCTURE分析将30个红椿种源分成2大组群,趋势呈现为华东与华中种源为一组,西南、华南与澳大利亚的种源为另一组;Mantel检测显示,中国红椿种源存在地理隔离模式(IBD)。非加权平均法(UPGMA)聚类分析将红椿30个种源划分为4大类:第Ⅰ类包括14个种源,主要是来自华中和华东地区的种源;广东乐昌种源独立成为一类,形成第Ⅱ类;第Ⅲ类包括13个种源,主要是来自西南和华南的种源;广东云浮种源和澳大利亚多瑞格的种源组成第Ⅳ类。主坐标分析(PCo A)得到的结果与聚类分析结果相似。[结论]红椿分布地区生境片段化,使各群体在空间上相对隔离、基因交换频率低、流动程度小,从而导致地理变异。聚类分析与主坐标分析的结果与地理分布格局基本吻合。在红椿保护和管理的过程中,在对原有生境进行保护的同时,要加强人工繁育技术研究,并注意最大限度地保护红椿的遗传多样性。  相似文献   

19.
该研究利用荧光SSR标记构建了9个柳树新品种的指纹图谱。11对SSR标记共检测到56条等位片段,每个位点等位基因数3—8不等,平均为5.1个。观测杂合度(Ho)变化范围为0.333 3—1.000 0,平均为0.687 5;期望杂合度(He)变化范围为0.477 1—0.882 4,平均为0.626 3;多态信息量(PIC)变化范围为0.421 2—0.813 4,平均为0.605 9。优选的3对核心引物中,SALeSSR0086与SALeSSR0733组合、SALeSSR0086与SALeSSR0920组合可完全区分9个柳树新品种。聚类结果显示,9个柳树新品种遗传相似系数在0.605 9与0.910 7之间。该研究建立的荧光SSR基因分型体系高效、准确,不仅能为柳树品种鉴定和新品种保护提供科学理论依据,也能为柳树进一步育种工作奠定坚实的基础。  相似文献   

20.
木荷为我国亚热带地区主要的珍贵优质阔叶用材树种和生态防护树种.利用筛选的14对多态性强的SSR引物,对木荷1代育种群体中来自15个产地133个亲本进行遗传多样性分析,为其优异种质资源保存、杂交亲本选配及新种质创制提供科学依据.结果表明:14对引物共扩增86个位点,每对引物检测到的等位基因数(Na)变异范围为2~11个,平均等位基因数(Na)为6.14个,平均有效等位基因数(Ne)为3.23个,平均观察杂合度(Ho)为0.572 0,平均Shannon信息指数(I)和平均Nei's基因多样性指数(Nei)分别为1.224 7和0.599 0,说明木荷1代育种群体具有丰富的遗传多样性,其中,福建建瓯产地遗传多样性最高,浙江遂昌产地遗传多样性最低.木荷1代育种群体中成对亲本间遗传距离为0.023 3~1.633 8,平均为0.6067.不同产地遗传多样性与纬度呈显著的负相关关系(r=-0.5162,p=0.048 9).通过UPGMA聚类,可将133个育种亲本分成3个类群,其中,类群3又分为4个亚类群.木荷亲本选配时,应充分考虑优树的产地来源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号