首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dietary supplementation of phospholipids seems to be extremely important to promote growth and survival in fish larvae. Several studies also suggest the importance of n-3 highly unsaturated fatty acids (HUFA) rich phospholipids to further enhance larval performance. In the present study, four different diets were formulated in order to compare the effect of total dietary polar lipid contents, of soya bean lecithin supplementation and of feeding n-3 HUFA in the form of neutral or polar lipids on ingestion and incorporation of labelled fatty acids in gilthead seabream larvae. These diets were prepared including radiolabelled fatty acids from palmitoyl phosphatidylcholine, glycerol trioleate, free oleic acid (FOA) and free eicosapentaenoic acid (FEPA) and were fed to 25 day-old larvae. The results of these experiments showed that the elevation of the dietary polar lipid levels significantly improved microdiet ingestion, regardless of the origins of the polar lipids. This effect caused an improved incorporation of phosphatidylcholine fatty acids to the larval polar and total lipids (TL) as the dietary polar lipids increased. Nevertheless, a better incorporation of fatty acids from dietary polar lipids in comparison with that of fatty acids from dietary triglycerides into larval lipids was found in gilthead seabream, whereas a better utilization of dietary triglycerides fatty acids than dietary free fatty acids could also be observed. Besides, the presence of n-3 HUFA rich neutral lipids (NL) significanlty increased the absorption efficiency of labelled oleic acid from dietary triglycerides, but the presence of n-3 HUFA rich polar lipids, particularly improved the incorporation of FEPA. This fatty acid was preferentially incorporated into larval polar lipids in comparison with FOA.  相似文献   

2.
The present study tested the effect of dietary lecithin and exogenous lipase on the incorporation of oleic acid in the tissue lipids of gilthead seabream larvae (Sparus aurata). Two of four microdiets were prepared by the addition of [14C]oleic acid as free fatty acid (FFA) to diets containing either 5% cuttlefish liver oil (CLO) or 5% soybean lecithin. Glycerol tri[1-14C]oleate was similarly incorporated in two other diets identical in lipid (4% cuttlefish liver oil, 1% soybean lecithin) and non-lipid composition but differed in that one contained a supplement of 0.05% porcine lipase. The effect of these diets was tested by following the incorporation of the label (dpm/mg larvae DBW) in the neutral and phospholipid fractions of seabream larvae at four different ages (21, 27, 32 and 45 days after hatching).A significant (p<0.05) effect of dietary lecithin on the incorporation of labelled FFA in both larval neutral and phospholipid fractions was demonstrated at all ages. This was particularly pronounced during early development (day 21) where fish fed the lecithin supplement incorporated 6.75 times more label than the diet containing [14C]oleic acid in CLO. The dietary lecithin enhancing effect diminished with age but was still significant at day 45 (2.17 times more label). In addition, the label was considerably higher in the phospholipid fraction compared to the neutral lipid, reflecting the high demand for membrane synthesis during rapid growth. Lecithin fed larvae demonstrated a higher consumption rate and efficiency of incorporation than fish consuming the cuttlefish liver oil diet, suggesting an emulsifying function for dietary phospholipid.In contrast, the supplementation with lipase showed a clear effect only in older fish where 45 day old larvae fed the lipase diet demonstrated a 3.42 times increase in radioactivity in their tissue lipids. This late lipase response may be the result of an insufficient level of dietary lecithin (M) and a short intestinal length being ineffective, in the early larval stages, in incorporating labelled free fatty acid from dietary glycerol tri[1-14C]oleate breakdown.  相似文献   

3.
A feeding trial was conducted to determine the effects of soy lecithin supplementation on production performance of juvenile channel catfish, Ictalurus punctatus (mean ± SE; 5.8 ± 0 g). The basal diet consisted of a practical dietary formulation for channel catfish, containing 4.3% endogenous phospholipids (PL) from dietary ingredients, to which supplemental PL from soybean lecithin were added. The study diets were 1 control and 2 experimental diets to which 0, 2, or 4% supplemental lecithin was added, respectively. Soy lecithin inclusion did not affect survival, growth, feed consumption, whole‐body total lipid, innate immune response, plasma cholesterol or triglyceride concentrations, or hepatosomatic index. Feed conversion (gain/intake) improved in fish fed 4% supplemental lecithin compared with 0% lecithin. Whole‐body crude protein was greater in fish fed 2% supplemental lecithin compared with 0% lecithin, while 4% supplemental lecithin was intermediate. Phosphatidylcholine (PC) content was greater in fish fed 2 or 4% lecithin than 0% lecithin. Plasma concentrations of PC were inversely proportional to dietary concentrations. Liver glycogen was greater in fish fed 0% lecithin compared with 2 or 4% lecithin. Liver lipid and phospholipid were lower in fish fed 0% lecithin than 2 or 4% lecithin. The dietary phospholipid requirement, if any, of juvenile channel catfish for growth and survival is less than or equal to 4.3% (1.5% PC) of the diet. Feed conversion is improved in channel catfish fed diets supplemented with 4% soy lecithin (7.2% phospholipid; 5.1% PC), which might offset additional costs due to phospholipid supplementation. Dietary soy lecithin inclusion altered plasma and liver lipid composition, but it is unknown whether these effects can alter the ability of juvenile catfish to survive and grow under various conditions.  相似文献   

4.
ABSTRACT

In the hatchery production of aquatic animals for aquaculture, livefoods such as diatoms; rotifer, Brachionus plicatilis and brine shrimp, Artemia salina, have been used throughout the world. However, such production requires large facilities, maintenance expenses, and labor to produce a desired amount of live foods constantly and reliably. Also, the nutritive value of planktonic organisms is occasionally variable, indicating that the dietary quality of these live foods varies with the content of n-3 highly unsaturated fatty acid (n-3 HUFA). Therefore it is necessary to develop microparticulate diets as a substitute for live foods to further increase theproductivity of seed for fish culture. The nutritional components of microparticulate diets for fish larvae should be determined on the basis of requirements of the larval fish for proteins and amino acids, lipids and fatty acids, carbohydrates, vitamins, and minerals. Moreover, the efficient development of microparticulate diets for the fish larvae has promoted the improvement of nutritional requirement studies. The present reviewconcerning the nutrition of marine fish larvae focuses on the proteins, amino acids, peptides, fatty acids, phospholipids, depigmentation of flatfish, stress tolerance of lipids, incorporation of HUFA in neural tissues, HUFA in egg and larvae, HUFA enrichment of live food, carbohydrates, vitamins, energy source during embryo and larval stages, enzyme supplement in microparticulate diets, and application of microparticulate diets inaquaculture.  相似文献   

5.
The objective of this study was to evaluate three products derived from krill as sources of essential fatty acids, protein and, particularly, phospholipids in microdiets for larval gilthead seabream (Sparus aurata). Their effect on larval performance, biochemical composition and histological development was investigated. The addition of krill phospholipids, rich in highly unsaturated fatty acids, improved larval sea bream growth in terms of weight and length, enhanced hepatic utilization of dietary lipids and reduced the incidence of enterocyte injuries. These results confirm the higher nutritional value of marine phospholipids for the early development of marine fish larvae in comparison with soybean phospholipids.  相似文献   

6.
The effects of cholesterol and lecithin on growth and body composition of juvenile hybrid striped bass ( Morone chrysops  ×  M. saxatilis ) were investigated by feeding juvenile hybrids (initial weight 5.0 g) diets containing cholesterol at either 0 or 1% and lecithin at either 0, 2, 4, or 6% in a 2 × 4 factorial design. Each of the eight diets was fed to fish in triplicate 38-L aquaria maintained as a brackish water recirculating system for 8 weeks. Weight gain, feed efficiency, muscle ratio and hepatosomatic index were not significantly ( P  > 0.05) affected by dietary supplementation of cholesterol or lecithin. Supplementation of the diet with lecithin at 4 and 6% significantly ( P  < 0.05) decreased intraperitoneal fat accumulation regardless of dietary cholesterol level. Neither muscle nor liver lipid levels were significantly altered by dietary supplementation of cholesterol or lecithin although both liver and plasma lipid classes were affected. Dietary cholesterol decreased concentrations of liver and plasma free fatty acids and liver phospholipids while increasing concentrations of liver triglycerides and plasma phospholipids. Dietary lecithin did not consistently affect plasma and liver lipid classes although changes in phospholipid levels approaching significance ( P =0.0502 and P =0.0513, respectively) were observed. Thus it is concluded that dietary supplementation with cholesterol or lecithin had no substantial beneficial effects on growth or body composition of juvenile hybrid striped bass.  相似文献   

7.
仔稚鱼的极性脂——磷脂研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
总结了饲料磷脂对仔稚鱼在成活率、生长、抗御外部压力的耐受性以及畸形鱼发生率等方面的重要作用。饲料中缺乏磷脂对仔稚鱼的影响比对幼鱼的影响更明显 ,仔稚鱼饲料中的磷脂含量应高于幼鱼饲料中磷脂的含量。仔稚鱼对饲料磷脂中的磷脂酰胆碱和磷脂酰肌醇的需要量占饲料的 1%~ 3% (干重 )。用磷脂作为必需脂肪酸和能量的来源在仔稚鱼中的消化率高于中性脂的消化率。饲料磷脂可以增强仔稚鱼体内的脂类运输能力  相似文献   

8.
Recent advances in lipid nutrition in fish larvae   总被引:14,自引:2,他引:14  
Due to the importance of dietary lipid utilization for larval rearing success, increasing attention has been paid during the last years to different aspects of larval lipid nutrition such as digestion, absorption, transport and metabolism, which are frequently studied by different research groups. The present study reviews the published information on these aspects, including some recent results obtained in our laboratory, that contribute to a better understanding of larval lipid nutrition.Neutral lipase activity was found in the digesta of larval gilthead seabream as early as first feeding, followed by a significant increase which reached up 8 times the initial levels at day 15 and was clearly influenced by the fatty acid composition of dietary lipids. Accordingly, the capacity for lipid absorption by the intestinal epithelium has been also observed at the onset of exogenous feeding, although the specific location in the different digestive tract segments differ with species. Whereas the capacity to absorb lipid increases with development in live prey-fed larvae, this improvemment is delayed in larvae fed formulated diet. Increasing dietary phosphatidyl cholines levels enhanced lipid absorption regardless of whether it is of soybean or marine origin, but the latter improved hepatic lipid utilization. Enzymatic, histological and biochemical evidences suggest that marine fish larvae are able to effectively digest and absorb n-3 HUFA-rich triacylglycerols, but feeding with phosphoacylglycerols, particularly if they are rich in n-3 HUFA, would enhance phosphoacylglycerols digestion and specially lipid transport alowing a better n-3 HUFA incorporation into larval membrane lipids and promoting fish growth. Although the essentiality of n-3 HUFA for larval marine fish has been studied extensively, only recently has the importance of dietary arachidonic acid in the larvae of few species been recognised. Evidences for competitive interactions among these essential fatty acids suggest that besides a minimum dietary requirement for each essential fatty acid, their relative ratios must also be considered.  相似文献   

9.
The present study investigated the interaction of dietary medium-chain fatty acids (MCFA) and phospholipids (PL) on survival, growth and lipid metabolism in common carp larvae. Nine diets based on casein and dextrin and with a variable lipid part were tested in triplicate for 22 days post first feeding. The 3×3 design consisted of three triacylglycerols (3% of diet) combined with three different lipid supplements. Tested triacylglycerols were triolein (TOL), tricaprylin (TC8) and tricaproin (TC6), and lipid supplements were 2% soybean oil (low-fat diets without PL), 2% soybean lecithin (low-fat diets with 2% PL) or both 2% soybean lecithin and 6% TOL (high-fat diets with 2% PL).

In the first step, both TC6 and TC8 resulted in improved survival and growth rates compared to TOL, irrespective of the PL supply. In the second step, TC8 decreased survival and growth rates, whereas the difference between TC6 and TOL became less. Histological signs of impaired intestinal absorption of neutral lipids were evidenced in larvae fed TOL without PL and also in high-fat diets with 2% PL. The latter diets also resulted in poorer growth rates compared to low-fat diets with 2% PL. These results suggest that the quantitative PL requirement of larvae increases as the dietary level of long-chain triacylglycerols increases. Larvae fed TC6 or TC8 showed enlarged liver and hepatocyte volume and a decreased level of body neutral lipids. Based on β-hydroxybutyrate (β-HBA) measurements in whole larvae, TC8 was found to be more ketogenic than TC6. TC6 and TC8 affected differently the fatty acid profile of larval body neutral lipids. TC6 did not induce the appearance of MCFA, whereas TC8 feeding resulted in a low level of 8:0 and relatively high levels of 10:0 (3.8% of total fatty acids). Neither 8:0 nor 10:0 were found in larval polar lipids.

This study confirmed the essentiality of PL in common carp larval diets and underlines differences in the utilization of TC6 and TC8, which both initially stimulate growth during the first week, but only temporarily in the case of TC8.  相似文献   


10.
The aim of the present study was to determine the optimum dietary levels of soybean lecithin (SBL) for seabream (Sparus aurata) larvae, and its influence on production performance and digestive enzymes activity. Larvae were fed five formulated microdiets with five levels of SBL. Complete replacement of live preys with the experimental microdiets for seabream larvae at 16 dph produced over 55% survival rates, particularly in fish fed with the highest levels of SBL. Moreover, increase in dietary SBL up to 80 g kg−1 significantly improved larval growth, leading to high final total length and body weight. An increase in alkaline phosphatase activity with the elevation up to 80 g kg−1 SBL was also found denoting a better maturation of the digestive system. Besides, there was a stimulatory effect of dietary SBL on PLA2 activity. Finally, increasing dietary SBL lead to better utilization of dietary highly unsaturated fatty acid, as it was reflected in their higher content in both neutral and polar lipid of the larvae. In summary, elevation of dietary SBL up to 80 g kg−1 in microdiets for seabream significantly improved digestive enzymes activities, enterocyte maturation, utilization and deposition of dietary essential fatty acids and larval growth, as a consequence of a better digestion, absorption, transport and deposition of dietary nutrients.  相似文献   

11.
The objective of the present study was to compare the effectiveness of dietary marine phospholipids (MPL) obtained from krill and soybean lecithin (SBL) on the rearing performance and development of seabream (Sparus aurata) larvae. Larvae were fed from 16 to 44 day posthatching (dph) five formulated microdiets with three different levels (50, 70 and 90 g kg–1) of phospholipids (PL) obtained either from an MPL or from a SBL source. Larvae‐fed MPL show a higher survival, stress resistance and growth than those‐fed SBL, regardless the dietary PL level. Overall, the increase in MPL up to 70 g kg–1 total PL in diet was enough to improve larval gilthead seabream performance, whereas even the highest SBL inclusion level (90 g kg–1 PL) was not able to provide a similar success in larval growth or survival. Inclusion of SBL markedly increased the peroxidation risk as denoted by the higher TBARs in larvae, as well as a higher expression of CAT, GPX and SOD genes. Moreover, SBL tends to produce larvae with a lower number of mineralized vertebrae and a lower expression of osteocalcin, osteopontin and BMP4 genes. Finally, increasing dietary MPL or SBL lead to a better assimilation of polyunsaturated fatty acids in the larvae, n‐3HUFA (especially 20:5n‐3) or n‐6 fatty acids (especially 18:2n‐6), respectively. In conclusion, MPL had a higher effectiveness in promoting survival, growth and skeletal mineralization of gilthead seabream larvae in comparison with SBL.  相似文献   

12.
Diets incorporating different levels of corn gluten meal replacement using biofuel algae or Spirulina protein at 0%, 25%, 50%, 75% and 100% were evaluated for larval/juvenile stage of Nile tilapia (Oreochromis niloticus). Fish averaging 0.02 g were divided into groups of 50. There were three replicates per every dietary treatment that were fed one of six diets for 11 weeks. Corn gluten protein was replaced with algae on the protein basis. All diets were supplemented with 1.5% lysine and 0.5% methionine. The experimental diets were formulated to contain 37 ± 2.8% protein and 14 ± 4.3% lipid in the form of fish oil and soybean lecithin (phospholipids source). The results indicated that algae positively affected feed consumption and fish growth up to the 50% replacement and then performance was depressed. Significant differences in concentration of individual minerals (Al, Fe, Zn and Cu) in the whole fish body were found. Mineral composition of algae might have affected growth when diets which contained more than 75% of plant protein were replaced with microalgae. These findings suggest that up to 50% of dietary corn gluten meal protein can be replaced with microalgae which significantly enhance fish growth.  相似文献   

13.
Essential fatty acid requirements of cultured marine fish larvae   总被引:14,自引:1,他引:14  
Feeding of marine fish larvae is, in most cases, limited to the administration of two species of live prey. This reduction in the range of food available for the cultured larvae may occasionally lead to nutritional imbalances or deficiencies. A large amount of research has been recently devoted to the study of the essential fatty acid requirements of marine fish larvae. Studies on the biochemical composition of developing eggs and larvae, as well as the comparison of the patterns of loss and conservation during starvation, pointed out the importance of n-3 HUFA and arachidonic acid as essential fatty acids for larvae of marine fish. The biochemical composition of marine fish larvae, in terms of lipid content and fatty acid composition of total and polar lipids, is modified by dietary levels of essential fatty acids. Larval growth, survival and activity have also been reported to be affected by dietary levels of essential fatty acids. In addition, some pathological signs, such as hydrops or abnormal pigmentation, have been related to essential fatty acid deficiency in these fish. Based on these effects, the essential fatty acid requirements of marine larval fish have been reported to range between 0.3 and 55 g kg?1 n-3 HUFA on a dry weight basis, suggesting that quantitative requirements of fish larvae may differ from those of juveniles or adults. But quantitative requirements for larvae of the same species reported by various authors are often contradictory. These differences are discussed in relation to the dietary lipid content, ratio 20:5n-3/22:6n-3 and culture conditions used.  相似文献   

14.
The aim of this paper is to provide explanations of how dietary phospholipid (PL) globally improves fish larval development, including growth and survival, digestive functions and skeletal development, and to propose optimal PL levels and sources in fish larval diets. Dietary incorporation of 8–12% PL related to dry matter (d.m.) promotes growth and enhanced survival in various species. Marine source PL, incorporating highly unsaturated fatty acids, was most efficient than soybean lecithin. This beneficial effect was explained by an enhancement in digestive functions, assessed by digestive enzyme activities and histomorphology. Nevertheless, 1.5–2.5% highly unsaturated fatty acids related to diet d.m. supplied by PL improved growth, survival and skeletal development, while 5% induced different skeletal deformities. The high incidence of deformities was associated with the down-regulation of genes involved in development, such as RXRα, RARα, RARβ and BMP-4, observed in the early stages in larvae fed a high highly unsaturated fatty acids level.  相似文献   

15.
This study investigates the effects of dietary lipid and protein levels in the growth, feed utilization and body composition of meagre (Argyrosomus regius). Triplicate groups of juvenile fish (23.4 ± 4.9 g average weight ± SD) were fed four isolipidic diets (17.5% crude lipids) containing 40, 45, 50 and 54% of protein, while in a separate experiment, fish (21.8 ± 3.7 g average weight ± SD) were fed four isonitrogenous (50% crude protein, dry matter) each containing 12, 15, 17 or 20% of crude lipids. In the protein requirement experiment, the increase in crude protein in the diet from 40 up to 50% positively affected SGR (Specific growth rate) and FCR (Feed conversion ratio). The increase in crude lipids in the diet from 12 up to 17% showed a tendency for improvement in SGR and FCR. In both experiments, the fastest growing fish exhibited higher lipid depots. Overall, the present investigation showed that juvenile meagre has an estimated protein requirement of 50% and it does not seem to require high dietary lipid levels.  相似文献   

16.
The composition of fatty acids was determined in neutral lipids and phospholipids from cultured herring reared on a diet based on squid muscle. The phospholipids retained the fatty acid pattern characteristic of marine fish. In contrast, the fatty acids of neutral lipids tended to reflect the fatty acid spectrum in the diet, and were very different from the characteristic pattern of herring oils. It was concluded that the cultured herring had little ability to modify dietary fatty acids and that the enzymes of phospholipid metabolism possess considerable specificity for certain fatty acids.  相似文献   

17.
A 60-day feeding experiment was carried out on juvenile Iranian sturgeon (Acipenser persicus) to evaluate the effects of different percentages of canola oil and fish oil containing n-3 highly unsaturated fatty acids (n-3 HUFA) on fish growth and fatty acid composition. The requirement for n-3 HUFA of juvenile Iranian sturgeon (48.4 ± 1.98 g) was studied by feeding the fish with various diets containing six different percentage of n-3 HUFA ranging from 1.56 to 17.25 (% of total fatty acids). Neither the weight gain, feed conversion ratio, condition factor, specific growth rate nor the protein efficiency ratio showed any significant differences between the dietary treatments nor in the body composition of juvenile Iranian sturgeon (P > 0.05); also there were no significant difference with respect to the effect of the dietary treatment (P > 0.05) on the blood parameters, for the content of plasma protein, glucose, cholesterol, and triglyceride. The fatty acid composition of the carcass of the Iranian sturgeon fed with the diets containing various levels of n-3 HUFA was reflected by the dietary fatty acid composition. The content of n-3 HUFA in the fish increased with an increase in dietary n-3 HUFA levels. The results indicate that the dietary n-3 HUFA had no effect on the growth of juvenile Iranian sturgeon.  相似文献   

18.
An 8-wk feeding trial was conducted with a 3 ± 4 factorial design for evaluating the nutritional relationship between phospholipids (lecithin at 0, 1.5% or 3% of diet) and choline chloride (0, 1,000, 2,000, or 4,000 mg/kg diet) in juvenile Litopenaeus vannamei . In addition, diets with five graded levels of choline chloride (0, 500, 1,000, 2,000, and 4,000 mg/kg) without supplemental phospholipids or cholesterol were fed for determining the dietary choline requirement. Overall survival was 99% with no difference among the dietary treatments. The choline requirement was estimated to be 871 mg/kg diet without dietary phospholipids. No choline requirement was evident when lecithin was provided at 1.5% and 3% of diet. Shrimp growth significantly increased with incremental dietary phospholipids regardless of choline chloride level. These results indicate that lecithin could effectively provide choline. Conversely, synthesis of phospholipids from choline could not meet the phospholipids requirement of shrimp. Both dietary lecithin and choline chloride supplementation reduced lipid in shrimp muscle. However, only lecithin supplementation increased lipid in hepatopancreas, and dietary choline chloride decreased the level of other phospholipids (except phosphatidylcholine) in shrimp muscle.  相似文献   

19.
We investigated the effects of soybean phosphatidylcholine (PtCho) on the growth, fatty acid (FA) profile, and body composition of juvenile Caspian brown trout. Juvenile trout, initial average weight 0.8 ± 0.12 g, were fed semi-purified formulated diets supplemented with 2, 4, and 6% PtCho for 5 weeks. Results showed that fish with diets containing 4 or 6% PtCho had significantly greater growth. The FA profiles of both the polar lipids (PL) and neutral lipids (NL) in juvenile tissues were influenced by dietary FA, although the effects of PtCho supplementation were more marked for PL than for NL. Fish fed PtCho in the diet also had higher levels of 18:2n-6, 20:4n-6 and n-6, and significantly lower levels of docosahexaenoic acid and eicosapentaenoic acid in both PL and NL. The lipid contents of whole-body tissues and liver were positively affected by PtCho percentage in the diet. Specific growth rate, hepatosomatic index, visceralsomatic index, and protein efficiency ratio were also significantly influenced by dietary PtCho. The results of our study indicate that dietary PtCho has a growth-promoting effect and that juvenile Caspian brown trout have a relatively moderate PtCho requirement (at least 4% dry weight of the diet).  相似文献   

20.
Five purified diets containing AA (20:4n-6) at 0.02–0.78% dry weight and DHA (22:6n-3) at 0.93–0.17% dry weight were fed to duplicate groups of juvenile turbot (Scophthalmus maximus) of initial weight 0.87 g for a period of 11 weeks. The dietary DHA:AA ratio ranged from 62 to 0.2. Incorporation of AA into liver phospholipids increased with increasing dietary AA input. Phospholipids from fish fed diets containing 0.02, 0.06 and 0.11% of dry weight as AA generally contained less AA compared to fish fed fish oil while those fed diets containing 0.35 and 0.78% of dry weight as AA had higher AA levels in their phospholipids. The highest levels of AA were found in PI but the greatest percentage increase in AA incorporation was in PE and PC. Brain phospholipid fatty acid compositions were less altered by dietary treatment than those of liver but DHA content of PC and PE in brain was substantially lower in fish fed 0.93% pure DHA compared to those fed fish oil. This suggests that dietary DHA must exceed 1% of dry weight to satisfy the requirements of the developing neural system in juvenile turbot. In both tissues, (20:5n-3) concentration was inversely related to both dietary and tissue PI AA concentration. Similar dietary induced changes in AA, EPA and DHA concentrations occurred in the phospholipids of heart, gill and kidney. PGE2 and 6-ketoPGF1 were measured in homogenates of heart, brain, gill and kidney. In general, fish fed the lowest dietary AA levels had reduced levels of prostaglandins in their tissue homogenates while those fed the highest level of AA had increased prostaglandin levels, compared to fish fed fish oil. In brains, the PGE2 concentration was only significantly increased in fish fed the highest dietary AA.Abbreviations AA arachidonic acid - DHA docosahexaenoic acid - EFA essential fatty acid - EPA eicosapentaenoic acid - HPTLC high performance thin-layer chromatography - HUFA highly unsaturated fatty acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PGE prostaglandin E - PGE prostaglandin E - PI phosphatidylinositol - PS phosphatidylserine - PUFA polyunsaturated fatty acid - TLC thin-layer chromatography  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号