首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Amoebic gill disease (AGD), caused by the protozoan Neoparamoeba pemaquidensis (Page, 1987) is the most important disease affecting salmon farms in Tasmania. Reservoirs for this protozoan parasite are largely unknown. This study investigated wild fish as a potential reservoir of N. pemaquidensis . A total of 325 wild fish, comprising 12 different fish species, were caught from and around salmon farms and examined for the presence of AGD. None of the wild fish were infected with AGD. In a laboratory trial, seahorse, Hippocampus abdominalis , greenback flounder, Rhombosolea tapirina, and Atlantic salmon, Salmo salar, were challenged with N. pemaquidensis . Neoparamoeba pemaquidensis was detected on the gills on 10 of 15 (66.7%) flounder, nine of 24 (37.5%) seahorses, and six of six (100%) Atlantic salmon. However, paramoebae positive flounder and seahorse lacked the characteristic AGD gill pathology. It is concluded that AGD does not appear in wild fish and wild fish do not seem to be a reservoir of the pathogen.  相似文献   

2.
Local fishermen in several areas of Norway assert that salmon farms have caused the wild migrating cod to change their migratory behaviour, so that they no longer enter their natural spawning grounds in the fjords. If the asserted changes in behaviour of wild cod populations can be linked to establishment of salmon farms, water-soluble odorants are then possible candidates to explain such a connection. Chemical stimulants are important to the individual fish's conception of the surrounding environment. High density stocks of fish in a farm are expected to release large amounts of waterborne information. The present laboratory experiments were conducted to test behavioural responses in Atlantic cod exposed to water containing metabolites and waste from farmed salmon. The trials were conducted on single fish in a multiple chamber preference system. The results show that migrating wild Atlantic cod chose to spend more time in chambers without addition of water from the salmon tank, regardless of their maturation status, and even at very low concentrations (0.2%). The avoidance is probably due to presence of chemical compounds with olfactory properties from salmon, since anosmic cod did not elicit such response. Farmed cod, on the other hand, does not avoid water from the salmon tank, and stationary wild cod caught nearby a fish farm had a less pronounced response as compared to wild migrating cod. The response seen is not species specific, as wild migrating cod responded similar to water from a tank holding farmed cod as to water from salmon. These results do not preclude fishermen's observations that cod change their behaviour in areas with fish farming activity. Such a change in behaviour could be a response to water-soluble odorants, but needs to be validated and detailed in further laboratory experiments as well as in nature before any conclusions can be made.  相似文献   

3.
Previous studies have indicated that when Atlantic salmon, Salmo salar L., are exposed to Neoparamoeba sp. the fish produce anti-Neoparamoeba sp. antibodies. It appears unlikely that these antibodies elicit any specific protection against amoebic gill disease (AGD) as fish with demonstrable activities have been affected by AGD. Experiments were conducted on Atlantic salmon cultured throughout Tasmania to assess the natural production of antibodies towards Neoparamoeba sp. Fish were sampled from areas where AGD was prevalent and from areas where there had been no reported cases. An enzyme-linked immunosorbent assay (ELISA) was used to measure anti-Neoparamoeba sp. antibody activities in serum. All fish from sea water had antibody activities greater than the negative control fish, including fish from areas with no reported cases of AGD. Time trial samples indicated that time after transfer to sea water did not appear to be a significant (P > 0.05) factor in antibody activity, however location was (P < 0.05). There was no agreement (corrected kappa value, 0.16) between the ELISA result and the isolation of Neoparamoeba sp. from the gills of the same fish. The results suggest that Atlantic salmon in seawater culture in Tasmania produce anti-Neoparamoeba sp. antibodies regardless of infection history, suggesting the presence of Neoparamoeba sp. in the environment.  相似文献   

4.
Piscine mycobacteriosis causes losses in a number of fish species both in the wild and in aquaculture worldwide. Mycobacterium salmoniphilum infections have on several occasions been reported in farmed Atlantic salmon, Salmo salar L. The present study tested and confirmed the susceptibility of Atlantic cod, Gadus morhua L., an important yet relatively novel aquaculture species, to infection with M. salmoniphilum. Atlantic cod injected intraperitoneally with a suspension of this bacterium were maintained together with cohabitant (COH) fish in a flow-through marine water system at 10-11 °C. The fish were supervised daily and samples taken at 2, 7, 14, 23, 34 and 53 weeks post-infection and examined pathologically, bacteriologically and using molecular biology. Injected mycobacteria were re-isolated in high concentrations from both injected and COH fish groups. Death attributable to mycobacterial infection was observed in both injected (47%) and COH (28%) fish groups. Extensive development of granuloma in visceral organs, mainly the mesenteries, spleen, kidney and liver (lesser extent) and at later stages of the infection in heart tissues and gills, was observed in both injected and COH fish. Granulomas underwent a temporal progression of distinct morphological stages, culminating in well-circumscribed lesions surrounded by normal or healing tissue. Acid-fast bacilli were detected in both granulomas and non-granulomatous tissues. This study confirms that Atlantic cod is highly susceptible to M. salmoniphilum infection and that this bacterial species may be a threat to cod both in the wild and in the aquaculture.  相似文献   

5.
The reproductive success of Lepeophtheirus salmonis settled on host and non‐host fish has been compared. Triplicate single species tanks of Atlantic salmon, marine three‐spined sticklebacks, saithe and Atlantic cod were exposed to 10 adult female L. salmonis per tank (n=30 lice per species). Adult female L. salmonis settlement and egg string production occurred only on salmon and cod, with no egg production occurring on saithe and three‐spined sticklebacks. The number of eggs in egg strings, hatching success of eggs and the survival of all larval stages to the copepodid stage were severely affected by the species of fish on which female L. salmonis had settled. L. salmonis settled on cod produced significantly fewer eggs, lower hatching rates and lower survival rates of larvae than females on Atlantic salmon. The production of egg strings by L. salmonis females infecting cod, which successfully hatch and moult through to the infective copepodid stage, albeit in small numbers, is discussed in terms of the implications to aquaculture and salmon and cod farming scenarios.  相似文献   

6.
The aquatic orthomyxovirus infectious salmon anaemia virus (ISAV) causes a severe disease in farmed Atlantic salmon, Salmo salar L. Although some ISA outbreaks are caused by horizontal transmission of virus between farms, the source and reservoir of the virus is largely unknown and a wild host has been hypothesized. Atlantic salmon are farmed in open net‐pens, allowing transmission of pathogens from wild fish and the surrounding environment to the farmed fish. In this study, a large number of fish species were investigated for ISAV host potential. For orthomyxoviruses, a specific receptor binding is the first requirement for infection; thus, the fish species were investigated for the presence of the ISAV receptor. The receptor was found to be widely distributed across the fish species. All salmonids expressed the receptor. However, only some of the cod‐like and perch‐like fish did, and all flat fish were negative. In the majority of the positive species, the receptor was found on endothelial cells and/or on red blood cells. The study forms a basis for further investigations and opens up the possibility for screening species to determine whether a wild host of ISAV exists.  相似文献   

7.
Wild and farmed Atlantic salmon ( Salmo salar L.) and Atlantic cod ( Gadus morhua L.) were collected to assess changes in mercury with size in wild vs. farmed fish. Mercury concentrations were compared with Health Canada and United States Environmental Protection Agency consumption guidelines. Lipid dilution of mercury was examined by comparing lipid-extracted (LE) and non-lipid-extracted (NLE) flesh samples in both farmed and wild fish. Mercury concentrations in the flesh and liver of farmed salmon were significantly lower than concentrations in wild salmon of similar fork length ( P <0.001), possibly due to growth dilution in rapidly growing farmed fish. Mercury concentrations were higher in LE tissue compared with NLE ( P <0.05), suggesting lipid dilution of mercury in farmed fish with a high lipid content. Farmed cod, which do not grow more rapidly than wild cod, did not have significantly different flesh and liver concentrations compared with wild cod of similar fork length ( P >0.05). Between species of farmed fish, cod had significantly higher mercury concentrations than salmon ( P <0.05), but neither farmed nor wild salmon mercury concentrations exceeded federal consumption guidelines. These results suggest that rapid growth rates and a high lipid content may play important roles in regulating concentrations of contaminants such as mercury.  相似文献   

8.
In 2016, the Norwegian health monitoring programme for wild salmonids conducted a real‐time PCR‐based screening for salmon gill poxvirus (SGPV) in anadromous Arctic char (Salvelinus alpinus L.), anadromous and non‐anadromous Atlantic salmon (Salmo salar L.) and trout (Salmo trutta L.). SGPV was widely distributed in wild Atlantic salmon returning from marine migration. In addition, characteristic gill lesions, including apoptosis, were detected in this species. A low amount of SGPV DNA, as indicated by high Ct‐values, was detected in anadromous trout, but only in fish cohabiting with SGPV‐positive salmon. SGPV was not detected in trout and salmon from non‐anadromous water courses, and thus seems to be primarily linked to the marine environment. This could indicate that trout are not a natural host for the virus. SGPV was not detected in Arctic char but, due to a low sample size, these results are inconclusive. The use of freshwater from anadromous water sources may constitute a risk of introducing SGPV to aquaculture facilities. Moreover, SGPV‐infected Atlantic salmon farms will hold considerable potential for virus propagation and spillback to wild populations. This interaction should therefore be further investigated.  相似文献   

9.
Previous work in our laboratory defined a method of inducing laboratory‐based amoebic gill disease (AGD) in Atlantic salmon, Salmo salar L. Gills of AGD‐affected fish were scraped and the debris placed into fish‐holding systems, eliciting AGD in naïve Atlantic salmon. While this method is consistently successful in inducing AGD, variability in the kinetics and severity of infections has been observed. It is believed that the infections are influenced by inherently variable viability of post‐harvest amoeba trophozoites. Here, a new method of experimental induction of AGD is presented that redefines the infection model including the minimum infective dose. Amoebae were partially purified from the gills of AGD‐affected Atlantic salmon. Trophozoites were characterized by light microscopy and immunocytochemistry and designated Neoparamoeba sp., possibly Neoparamoeba pemaquidensis. Cells were placed into experimental infection systems ranging in concentration from 0 to 500 cells L?1. AGD was detected by gross and histological examination in fish held in all systems inoculated with amoebae. The number of gross and histological AGD lesions per gill was proportional to the inoculating concentration of amoebae indicating that the severity of disease is a function of amoeba density in the water column. The implications of these observations are discussed in the context of the existing AGD literature base as well as Atlantic salmon farming in south‐eastern Tasmania.  相似文献   

10.
Amoebic gill disease (AGD) is a significant disease of Atlantic salmon farmed in South East Tasmania. The commercial treatment for the disease is a freshwater bath for up to 4 h. Previous studies have shown that the chemical composition of the freshwater, in particular total water hardness, affects the efficacy of the treatment. The aim of this study was to determine if other water chemistry parameters, such as dissolved organic carbon (DOC), interact with total water hardness to affect treatment success. Firstly, the relative survival of isolated gill amoebae incubated for up to 3 h with hard or soft water (346.0 and 34.6 mg L?1 CaCO3 respectively) with low or high concentrations of humic or tannic acid (5 and 50 mg L?1 respectively) was determined. Secondly, fish with AGD were bathed for 2.5 h in hard or soft water (249.3 and 35.3 mg L?1 CaCO3) containing either 5 or 20 mg L?1 humic acid. The number of viable amoebae surviving on the gills and number of gill lesions were determined. It was found that the concentration of DOC used in this study that represents the levels commonly found around SE Tasmania is unlikely to have any commercial significance in the reduction in amoebae on the gills of Atlantic salmon. However, this study provided further support that freshwater selected for bathing AGD‐affected salmonids should be chosen primarily on its total water hardness.  相似文献   

11.
Thousands of Scottish wild fish were screened for pathogens by Marine Scotland Science. A systematic review of published and unpublished data on six key pathogens (Renibacterium salmoninarum, Aeromonas salmonicida, IPNV, ISAV, SAV and VHSV) found in Scottish wild and farmed fish was undertaken. Despite many reported cases in farmed fish, there was a limited number of positive samples from Scottish wild fish, however, there was evidence for interactions between wild and farmed fish. A slightly elevated IPNV prevalence was reported in wild marine fish caught close to Atlantic salmon, Salmo salar L., farms that had undergone clinical IPN. Salmonid alphavirus was isolated from wild marine fish caught near Atlantic salmon farms with a SAV infection history. Isolations of VHSV were made from cleaner wrasse (Labridae) used on Scottish Atlantic salmon farms and VHSV was detected in local wild marine fish. However, these pathogens have been detected in wild marine fish caught remotely from aquaculture sites. These data suggest that despite the large number of samples taken, there is limited evidence for clinical disease in wild fish due to these pathogens (although BKD and furunculosis historically occurred) and they are likely to have had a minimal impact on Scottish wild fish.  相似文献   

12.
Amoebic gill disease (AGD) of cultured salmonids in Tasmania is caused by the amphizoic parasitic amoeba Neoparamoeba pemaquidensis. The freshwater tolerance of amoebae isolated from the gills of AGD-affected salmon (predominantly N. pemaquidensis) was tested in vitro using a trypan blue exclusion assay. Amoebae exposed to water containing high concentrations of Ca2+ or Mg2+ (200 mg l−1) showed high levels of survival up to 3 h of exposure. Exposure to water containing elevated Na+, choline chloride or water at different pH all had no significant survival of amoebae. Exposure of amoebae to different concentrations of chlorine dioxide, chloramine-T or hydrogen peroxide in artificially hard water demonstrated that chloramine-T and hydrogen peroxide were the most efficacious at killing amoebae in vitro. This work suggests that the hardness of freshwater may be an important factor for the survival of marine amoebae (predominantly N. pemaquidensis) on the gills of AGD-affected salmon and have significant implications with regard to the efficacy of freshwater bathing practices for the control of AGD on farms. Additionally, chloramine-T and hydrogen peroxide appear to be efficacious at killing marine gill amoebae in vitro and may be useful for the control of AGD in farmed Atlantic salmon.  相似文献   

13.
Atlantic salmon were exposed to amoebic gill disease (AGD) immediately following their acclimatization to sea water (group 1), or following a 2 week period of maintenance in sea water (group 2). Three fish from each group were sampled on days 0, 1, 2, 4, 7, 14 and 28 post-infection. Characteristic gill lesions began to occur between days 2 and 4, and dramatically increased by day 7. The number of gill lesions on fish from group 2 was significantly higher than on fish from group 1 on days 7 and 14 ( P <0.001), but the two groups did not differ in any other parameter. Histologically, Paramoeba sp., the aetiological agent of AGD, could be seen on the gills of fish as soon as 1 day post-exposure, attached to healthy-appearing gills. Gill pathology in the form of hyperplasia and lamellar fusion followed shortly. AGD infection was accompanied by a significant increase in the number of gill mucous cells ( P =0.002). Different methods for the diagnosis of AGD are discussed.  相似文献   

14.
Fish gills are heavily exposed to the external milieu and may react against irritants with different cellular responses. We describe variations in mucous cell counts in gills from healthy Atlantic salmon (Salmo salar) presmolts in five recirculating aquaculture system (RAS) farms and one flow‐through farm. Based on certain criteria, mucous cells were histologically quantified in a defined lamellar region of the gills and the counts were analysed. Immunohistochemistry (IHC) was used to investigate epithelial responses. The median number of total mucous cells in the defined region was 59 per fish. Between the farms, the medians varied from 31 to 101 with the lowest in the flow‐through farm. A regression model was fitted with “total mucous cells” as the dependent variable and with “fish length” and “fish farm” as independent variables. The proportion of variation in mucous cell counts explained by the model was twice as high when “fish farm” was included compared to only “fish length.” IHC revealed proliferative responses in coherence with high mucous cell numbers. Conclusively, the variation in mucous cell counts depends on combined farm‐related factors. Establishing a baseline for mucous cell counts is fundamental in the development of high‐throughput monitoring programmes of gill health in farmed fish.  相似文献   

15.
Abstract. The normally free-living amoeba Paramoeba sp. is associated with epithelial hyperplasia on the gills of Atlantic salmon, Salmo salar L., in Tasmania. Gill-attached paramoebae were significantly larger than cultured ones. Unlike cultured paramoebae, gill-attached ones had small electron-dense, cytoplasmic deposits and small surface projections at the host-parasite interface. Examination of sequential samples of Tasmanian salmon gills from spring to summer indicated that pathological changes in the gill filaments were associated only with the presence of Paramoeba ; the parasite was also associated with necrosis of surface epithelial cells, and cytoplasmic processes passed into and between surface cells of hyperplastic gill epithelium. The evidence points to the paramoebae as primary opportunistic pathogens causing mechanical and possibly chemical damage. Based on size and ultrastructure, the Paramoeba sp. most closely resembles P. pemaquidensis Page.  相似文献   

16.
17.
Amoebic gill disease (AGD) in farmed Atlantic salmon is caused by the amoeba Paramoeba perurans. The recent establishment of in vitro culture techniques for P. perurans has provided a valuable tool for studying the parasite in detail. In this study, flow cytometry was used to generate clonal cultures from single‐sorted amoeba, and these were used to successfully establish AGD in experimental Atlantic salmon. The clonal cultures displayed differences in virulence, based on gill scores. The P. perurans load on gills, determined by qPCR analysis, showed a positive relationship with gill score, and with clonal virulence, indicating that the ability of amoebae to proliferate and/or remain attached on gills may play a role in virulence. Gill scores based on gross signs and histopathological analysis were in agreement. No association between level of gill score and specific gill arch was observed. It was found that for fish with lower gill scores based on histopathological examination, gross examination and qPCR analysis of gills from the same fish were less successful in detecting lesions and amoebae, respectively.  相似文献   

18.
This study examined the osmoregulatory capability of Murray cod, Maccullochella peelii peelii, affected by chronic ulcerative dermatopathy (CUD) in intensive aquaculture. This condition appears to arise only in facilities utilizing groundwater, with the causative agent suggested to be a water-borne factor. Healthy Murray cod (~ 700 g) were transferred to a CUD-affected farm to monitor the progression of the syndrome and began to show signs of CUD after approximately five months. In order to evaluate possible effects of CUD on osmoregulation; plasma electrolyte concentrations, osmolality, and Na+,K+-ATPase activities were measured, and gill histology and immunohistochemistry were analyzed. Plasma electrolyte concentrations and osmolality of CUD-affected Murray cod were consistent with reference values determined for non CUD-affected fish. A greater number of gill mucous cells were observed in Murray cod cultured at the CUD-affected farm compared to non CUD-affected fish. We also found an un-identified cell type that was present solely in the gills of CUD-affected Murray cod. Gill Na+,K+-ATPase activity was significantly higher in severely CUD-affected Murray cod compared to individuals transferred to the CUD-affected farm. While there appeared to be some minor changes in the gills of CUD-affected fish, this study demonstrated that Murray cod were able to effectively osmoregulate, although, perhaps at an energetic cost.  相似文献   

19.
The structure and morphometry of the gills of the marine teleost, red drum, have been studied. The present analysis of gas exchange area of fish gills is one of the most intensive and the results are compared to less intense averaging methods. Based on the gill area estimates, red drum falls into the category of a fish of intermediate activity. Its gill clearly has an exchange area less than that of the tunas, but is slightly greater than that of trout or bass. The three components that contribute to total exchange area (filament length, lamellar density, and area of individual lamellae) are not all greater in species with a greater total exchange area. The best correlate is total filament length.  相似文献   

20.
Spontaneous mortality of seemingly healthy, farmed Atlantic salmon (Salmo salar L) is an increasing problem in Norwegian aquaculture. In this study, we present a morphological study of the previously undescribed syndrome of arteriosclerosis of the ventral aorta and epicarditis of the adjacent bulbus arteriosus found in farmed Atlantic salmon, with wild‐captured fish as a control group. Both the ventral aorta and epicardium are vital for correct arterial compliance and vascular resistance in the respiratory capillaries of the gills. We discuss the possible implications of ventral aorta arteriosclerosis and epicarditis for blood vascular health and in particular for the increasing frequency of spontaneous gill bleeding in farmed salmon. As both these conditions primarily occur in farmed salmon, we suggest that they should be considered pathological.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号