首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of anti- Paramoeba antibodies produced in sheep on Paramoeba sp., the causative agent of amoebic gill disease (AGD), was tested. Incubation of Paramoeba sp. with antiserum at a concentration of 20% or more effectively coated the Paramoeba with antibodies. The antiserum had no effect on Paramoeba sp. survival in vitro or on its ability to cause AGD in Atlantic salmon.  相似文献   

2.
Atlantic salmon, S almo salar L., were exposed to different concentrations of Paramoeba sp. The lowest concentration which induced amoebic gill disease (AGD) was 230 Paramoeba sp. L–1 and the severity of infection increased with increasing concentration. The concentration of Paramoeba sp. positively correlated with the number of gill lesions ( R 2 > 0.7). This study provides evidence that Paramoeba sp. is the causative agent of AGD and describes an experimental model that enables the severity of the induced disease to be controlled.  相似文献   

3.
4.
Atlantic salmon were exposed to amoebic gill disease (AGD) immediately following their acclimatization to sea water (group 1), or following a 2 week period of maintenance in sea water (group 2). Three fish from each group were sampled on days 0, 1, 2, 4, 7, 14 and 28 post-infection. Characteristic gill lesions began to occur between days 2 and 4, and dramatically increased by day 7. The number of gill lesions on fish from group 2 was significantly higher than on fish from group 1 on days 7 and 14 ( P <0.001), but the two groups did not differ in any other parameter. Histologically, Paramoeba sp., the aetiological agent of AGD, could be seen on the gills of fish as soon as 1 day post-exposure, attached to healthy-appearing gills. Gill pathology in the form of hyperplasia and lamellar fusion followed shortly. AGD infection was accompanied by a significant increase in the number of gill mucous cells ( P =0.002). Different methods for the diagnosis of AGD are discussed.  相似文献   

5.
Amoebic gill disease (AGD) in farmed Atlantic salmon is caused by the amoeba Paramoeba perurans. The recent establishment of in vitro culture techniques for P. perurans has provided a valuable tool for studying the parasite in detail. In this study, flow cytometry was used to generate clonal cultures from single‐sorted amoeba, and these were used to successfully establish AGD in experimental Atlantic salmon. The clonal cultures displayed differences in virulence, based on gill scores. The P. perurans load on gills, determined by qPCR analysis, showed a positive relationship with gill score, and with clonal virulence, indicating that the ability of amoebae to proliferate and/or remain attached on gills may play a role in virulence. Gill scores based on gross signs and histopathological analysis were in agreement. No association between level of gill score and specific gill arch was observed. It was found that for fish with lower gill scores based on histopathological examination, gross examination and qPCR analysis of gills from the same fish were less successful in detecting lesions and amoebae, respectively.  相似文献   

6.
A study of microfauna, associated with pathological changes in the gills of Atlantic salmon, Salmo salar L., was conducted over 2001-2002. Monthly samples of 1(+) salmon smolts were taken, protozoan populations were quantified and gill health was assessed histologically. Protozoan densities were correlated with pathological changes, in order to determine their possible role in lesions in the gills. The most severe gill tissue changes were observed in summer/autumn and the least in spring. A diverse polyphyletic protozoan community was observed colonizing the gills, including Neoparamoeba sp., other amoebae, scuticociliates, Ichthyobodo-like flagellates, trichodinid ciliates and prostomatean ciliates. The earlier gill tissue changes in the gill were not always associated with the presence of these microorganisms, whereas amoebae (other than Neoparamoeba sp.), Ichthyobodo-like flagellates and trichodinid ciliates correlated with augmenting gill lesions. Neoparamoeba sp. was present, but its abundance did not correlate with the disease. This study suggests that a diversity of protozoans including Ichthyobodo-like flagellates, trichodinid ciliates and amoebae other than Neoparamoeba sp. are involved in the aetiology of amoebic gill disease in the Irish situation.  相似文献   

7.
An unusual form of bacterial gill disease (BGD) was identified which affected five species of cultured salmonids from Canada (i.e. rainbow trout, chinook salmon and Atlantic salmon), Norway (i.e. brown trout) and Chile (i.e. coho salmon). All outbreaks occurred at low water temperatures (< 10 °C) and with clinical presentations distinct from classical BGD, which is caused by Flavobacterium branchiophilum. In contrast to classical BGD, fish did not show marked respiratory distress with flaring of the opercula, the animals did not orientate at the surface of the water column near inflow water or at the margins of the tanks, and the feed response of the fish was varied. While mortality was increased, it was not precipitous as in classical BGD. Eight outbreaks were examined in greater detail using histopathology, scanning electron microscopy, bacteriology and immunohistochemistry. Large numbers of small bacterial rods were seen adhering to the lamellar epithelium of affected gills from all outbreaks. Histologically, the lamellar epithelium appeared swollen, often with evidence of single cell degeneration and exfoliation. In more severe instances, the formation of lamellar synechiae was seen, usually associated with sequestration of bacteria between fused lamellae. By contrast with typical BGD, overt epithelial hyperplasia, lamellar fusion and filamental clubbing were not common sequelae to infection; instead, the end result was shortened and somewhat stubby lamellae covered with swollen epithelial cells. The predominant bacterium recovered from affected gills was a small, Gram-negative, motile, fluorescent pigment-producing rod that shared phenotypic characteristics with Pseudomonas fluorescens. Polyclonal antisera prepared against three representative isolates indicated a weak antigenic similarity among them. Immunohistochemistry corroborated this finding, in that the antisera reacted strongly with gill sections containing the homologous bacteria, but not against morphologically similar bacteria in heterologous sections. A Gram-negative, yellow pigmented bacterium (YPB), identified as Flavobacterium psychrophilum, was also recovered, but only from the gills in the Ontario outbreaks. Antiserum prepared against this YPB indicated an antigenic similarity among isolates recovered from the Ontario outbreaks, but immunohistochemistry failed to recognize antigenically related bacteria on the gills of fish from the other outbreaks. Based on the unusual clinical presentation and the histopathological appearance of the gills, in conjunction with the absence of filamentous bacteria associated with and recovered from affected gills, the present authors have called this condition ‘atypical bacterial gill disease’ or ABGD.  相似文献   

8.
Amoebic gill disease (AGD) caused by the ectoparasite Paramoeba perurans affects several cultured marine fish species worldwide. In this study, the morphology and ultrastructure of P. perurans in vitro and in vivo was investigated using scanning and transmission electron microscopy (SEM and TEM, respectively). Amoebae cultures contained several different morphologies ranging from a distinct rounded cell structure and polymorphic cells with pseudopodia of different lengths and shapes. SEM studies of the gills of AGD‐affected Atlantic salmon, Salmo salar L., revealed the presence of enlarged swellings in affected gill filaments and fusion of adjacent lamellae. Spherical amoebae appeared to embed within the epithelium, and subsequently leave hemispherical indentations with visible fenestrations in the basolateral surface following their departure. These fenestrated structures corresponded to the presence of pseudopodia which could be seen by TEM to penetrate into the epithelium. The membrane–membrane interface contained an amorphous and slightly fibrous matrix. This suggests the existence of cellular glycocalyces and a role for extracellular products in mediating pathological changes in amoebic gill disease.  相似文献   

9.
Amoebic gill disease (AGD), caused by the protozoan Neoparamoeba pemaquidensis (Page, 1987) is the most important disease affecting salmon farms in Tasmania. Reservoirs for this protozoan parasite are largely unknown. This study investigated wild fish as a potential reservoir of N. pemaquidensis . A total of 325 wild fish, comprising 12 different fish species, were caught from and around salmon farms and examined for the presence of AGD. None of the wild fish were infected with AGD. In a laboratory trial, seahorse, Hippocampus abdominalis , greenback flounder, Rhombosolea tapirina, and Atlantic salmon, Salmo salar, were challenged with N. pemaquidensis . Neoparamoeba pemaquidensis was detected on the gills on 10 of 15 (66.7%) flounder, nine of 24 (37.5%) seahorses, and six of six (100%) Atlantic salmon. However, paramoebae positive flounder and seahorse lacked the characteristic AGD gill pathology. It is concluded that AGD does not appear in wild fish and wild fish do not seem to be a reservoir of the pathogen.  相似文献   

10.
Levamisole, a known T-cell stimulator and immunomodulator in mammals, has been demonstrated to enhance resistance to amoebic gill disease in Atlantic salmon, Salmo salar L. When used in fresh water baths, dose rates of 1.25, 2.5 and 5 ppm levamisole stimulated resistance to reinfection with Paramoeba sp. that was evident from 2–3 weeks post-treatment. It is proposed that this response is related to enhancement of the non-specific immune system.  相似文献   

11.
Abstract. A method has been developed to maintain gills from rainbow trout, Salmo gairdneri Richardson, in vitro. The gill organ cultures were used to examine the cytotoxic capacities of Mycoplasma mobile 163 K, isolated from the gills of a tench, Tinea tinea L. Histological investigations using light and electron microscopy showed that M. mobile causes heavy damage to the gill epithelium characterized by cytoplasmic vacuolization, peripheral orientation of the condensed nuclear chromatin, separation of the epithelial cells from each other and from the basal membrane, desquamation of the epithelial layer, shrinkage of the cytoplasmic net structure, and a swollen and bleb–like appearance of the apical area of the secondary lamella. The gill organ culture appears to be a suitable model to investigate the cell injuring capacity of M. mobile and may also be applicable to the study of the pathogenic properties of other microorganisms or viruses of fish.  相似文献   

12.
Intracellular inclusions containing chlamydia‐like organisms are frequently observed in the gill epithelial cells of Atlantic salmon, Salmo salar L., cultured in fresh water in Ireland. In this study, the causative agent was identified in four separate freshwater sites, using 16s rRNA sequencing, as ‘Candidatus Clavochlamydia salmonicola’. Histopathology and real‐time (RT) PCR were used to further assess infections. The prevalence of infection ranged from 75–100% between sites and infection intensity was highly variable. No significant lesions were associated with these infections. As a diagnostic tool, RT‐PCR proved marginally more sensitive than histopathology. The fate of ‘Candidatus Clavochlamydia salmonicola’ in Atlantic salmon post‐seawater transfer was investigated in a 12‐week marine longitudinal study. Both RT‐PCR and histopathological examination indicate that the organism disappears from the gills 4–6 weeks post‐transfer.  相似文献   

13.
A 2-year study was carried out on amoebic gill disease (AGD) involving monthly samples of 1+ Atlantic salmon, Salmo salar L., smolts, histological assessment of the gills and analysis of environmental data. Gill pathology was seen before amoebae could be detected microscopically. These changes in gill integrity were associated with marine environmental conditions, particularly elevated ammonium, nitrite and chlorophyll levels. The results suggest that the environmental changes predispose salmon to colonization by amoebae and ciliates. High densities of histophagous scuticociliates were observed in the gills during periods of advanced gill pathology. A number of different amoebae were observed in close association with gill pathology. Neoparamoeba was not seen in high densities, nor was it associated with gill pathology, indicating that Neoparamoeba may not be the primary agent of the AGD in Irish salmonid culture.  相似文献   

14.
Previous studies have indicated that when Atlantic salmon, Salmo salar L., are exposed to Neoparamoeba sp. the fish produce anti-Neoparamoeba sp. antibodies. It appears unlikely that these antibodies elicit any specific protection against amoebic gill disease (AGD) as fish with demonstrable activities have been affected by AGD. Experiments were conducted on Atlantic salmon cultured throughout Tasmania to assess the natural production of antibodies towards Neoparamoeba sp. Fish were sampled from areas where AGD was prevalent and from areas where there had been no reported cases. An enzyme-linked immunosorbent assay (ELISA) was used to measure anti-Neoparamoeba sp. antibody activities in serum. All fish from sea water had antibody activities greater than the negative control fish, including fish from areas with no reported cases of AGD. Time trial samples indicated that time after transfer to sea water did not appear to be a significant (P > 0.05) factor in antibody activity, however location was (P < 0.05). There was no agreement (corrected kappa value, 0.16) between the ELISA result and the isolation of Neoparamoeba sp. from the gills of the same fish. The results suggest that Atlantic salmon in seawater culture in Tasmania produce anti-Neoparamoeba sp. antibodies regardless of infection history, suggesting the presence of Neoparamoeba sp. in the environment.  相似文献   

15.
本研究运用光学显微镜、扫描电镜以及透射电镜技术研究了南海北部黄鳍金枪鱼(Thunnus albacares)幼鱼和成鱼鳃的显微组织结构、鳃表面超微结构和鳃小片内部超微结构特点。结果表明, 黄鳍金枪鱼鳃丝顶端弯曲, 鳃弓、 鳃丝和鳃耙表面具有不同类型的细胞。表面超微结构研究显示黄鳍金枪鱼的鳃具有高的片层密度、独特的斜向血流模式以及鳃的融合特性, 幼鱼和成鱼鳃结构之间存在显著不同。鳃小片内部超微结构研究显示鳃扁平上皮细胞覆盖于鳃丝和鳃小片表面, 顶端存在微绒毛或微脊结构, 相对幼鱼, 成鱼具有高的细胞质密度; 离子细胞主要分布于鳃小片以及鳃小片基部, 幼鱼离子细胞顶端开口为微绒毛, 成鱼为小坑状。本研究阐明了黄鳍金枪鱼幼鱼和成鱼鳃的组织结构, 丰富了黄鳍金枪鱼鳃的基础生物学资料, 为研究高速游泳鱼类鳃的形态特征与其高速游泳习性之间的关系提供了参考。  相似文献   

16.
运用石蜡切片技术和扫描电镜技术对稀有鮈鲫(Gobiocypris rarus)鳃结构进行观察,并采用浓度为2 mg/L的Cd Cl_2水溶液对稀有鮈鲫进行急性毒理实验。结果显示:稀有鮈鲫具4对鳃,由鳃耙、鳃弓、鳃丝及鳃小片组成。鳃的各个部位表面均有上皮细胞覆盖;鳃耙和鳃弓具味蕾,鳃弓上还具不同类型的黏液细胞;相邻鳃小片的上皮细胞间也分布有黏液细胞,在鳃小片基部有氯细胞着生。鳃丝表面有不规则凹陷和微嵴,具沟、坑、孔等结构;鳃小片两面均呈凹凸状。在2 mg/L的Cd Cl_2水溶液暴露下,鳃受到损伤,发生鳃小片充血呈球状,鳃上皮水肿、脱落,黏液细胞增多等现象;并随时间延长受损程度加重。  相似文献   

17.
Amoebic gill disease (AGD) has been attributed to infection by Neoparamoeba sp. The causal mechanisms for AGD lesion development and the primary pathogenic role of Neoparamoeba sp. require elucidation. Three groups of Atlantic salmon were exposed to viable gill isolated amoebae, to sonicated amoebae, or to sea water containing viable amoebae without direct contact with gill epithelia. Fish were removed 8 days post-exposure and the gills assessed histologically for AGD. AGD occurred only when fish were exposed to viable trophozoites. Consequently, in an accompanying experiment, infection was evaluated histologically at 12, 24 and 48 h post-exposure in three groups of salmon, one group being mechanically injured 12 h prior to exposure. A progressive host response and significant increase (P < 0.001) in the numbers of attached amoebae was apparent over the 48-h duration in undamaged hemibranchs in both treatment groups. There were no significant differences to mucous cell populations. Attachment of Neoparamoeba sp. to damaged gill filaments was significantly reduced (P < 0.05) by 48 h post-exposure. These data further confirm and describe the primary pathogenic role of Neoparamoeba sp. and the early host response in AGD. Preliminary evidence suggests that lesions resulting from physical gill damage are not preferentially colonized by Neoparamoeba sp.  相似文献   

18.
This study surveyed conditions in the gills of wild marine fish in Tasmania to determine potential interactions between wild and cultured fish. Wild marine fish of 12 species were captured from three Atlantic salmon farm sites and three reference sites around Tasmania. The survey concentrated on three species, red cod, Pseudophycis bachus, sand flathead, Platycephalus bassensis, and jack mackerel, Trachurus declivus. Seventy-six per cent of salmon pens contained wild fish species. The number of species found in a pen ranged from one to nine and the number of individuals ranged from one to 23. Trichodinids were prevalent and occurred on seven of the 13 species examined. Trichodina occurred on the gills of all but one specimen of red cod. Monogenean gill flukes were observed on all three major species sampled and were abundant on sand flathead. Other parasites and conditions observed in the survey included metacercariae of digenean trematodes, epitheliocystis and cysts of unknown origin. Infestations of trichodinids on red cod and monogenean gill flukes on sand flathead were significantly more intense at farm sites than at reference sites. Atlantic salmon sampled at the same time from the farms were only affected by amoebic gill disease and isopods.  相似文献   

19.
苏氏Mang鲶鳃超微结构观察   总被引:2,自引:0,他引:2       下载免费PDF全文
方展强 《水产学报》2001,25(6):489-491,T002
对苏氏Mang鲶鳃结构进行扫描和透射电镜观察。Mang鲶鳃丝末端膨大呈杓状结构,每一鳃丝两侧具有许多呈褶状的鳃小片,相邻两鳃丝上的鳃小片紧密镶嵌排列。鳃弓和鳃耙表面分布众多味蕾。鳃丝呼吸面上皮细胞薄,高度血管化,形成呼吸面隆起,非呼吸面由微脊细胞彼此相连,间缝具分泌细胞开口。鳃小片由单层或数层外上皮细胞和由基膜相隔的柱状细胞及其围在血管腔的凸缘构成,氯细胞多分布在鳃小片基部,并有开口通外,还探讨了Mang鲶鳃丝和鳃小片特殊的结构与功能。  相似文献   

20.
苏氏鲢鲶鳃超微结构观察   总被引:10,自引:0,他引:10  
对苏氏鲢鲶鳃结构进行扫描和透射电镜观察.鲢鲶鳃丝末端膨大呈杓状结构,每一鳃丝两侧具许多呈褶状的鳃小片,相邻两鳃丝上的鳃小片紧密镶嵌排列.鳃弓和鳃耙表面分布众多味蕾.鳃丝呼吸面上皮细胞薄,高度血管化,形成呼吸面隆起;非呼吸面由微脊细胞彼此相连,间缝具分泌细胞开口.鳃小片由单层或数层外上皮细胞和由基膜相隔的柱状细胞及其围在血管腔的凸缘构成,氯细胞多分布在鳃小片基部,并有开口通外.还探讨了鲢鲶鳃丝和鳃小片特殊的结构与功能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号