首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.

Purpose

Soil properties are the main explanation to the different toxicities obtained in different soils due to their influence on chemical bioavailability and the test species performance itself. However, most prediction studies are centred on a few soil properties influencing bioavailability, while their direct effects on test species performance are usually neglected. In our study, we develop prediction models for the toxicity values obtained in a set of soils taking into account both the chemical concentration and their soil properties.

Materials and methods

The effects on the avoidance behaviour and on reproduction of the herbicide phenmedipham to the collembolan Folsomia candida is assessed in 12 natural soils and the Organisation for Economic Co-operation and Development (OECD) artificial soil. The toxicity outcomes in different soils are compared and explanatory models are constructed by generalised linear models (GLMs) using phenmedipham concentrations and soil properties.

Results and discussion

At identical phenmedipham concentrations, the effects on reproduction and the avoidance response observed in OECD soil were similar to those observed in natural soils, while effects on survival were clearly lower in this soil. The organic matter and silt content explained differences in the avoidance behaviour in different soils; for reproduction, there was a more complex pattern involving several soil properties.

Conclusions

Our results highlight the need for approaches taking into account all the soil properties as a whole, as a necessary step to improve the prediction of the toxicity of particular chemicals to any particular soil.  相似文献   

2.
Dynamic interactions of natural organic matter and organic compounds   总被引:2,自引:2,他引:0  

Purpose

This article reviews our current understanding about how organic chemicals and water interact dynamically with, and therefore coevolve with, soil and sediment natural organic matter (NOM). NOM can be regarded as a polymer-like phase that responds to the input of organic compounds in ways analogous to synthetic polymers.

Methods

Sorption selectivity of organic compounds is shown to result in part from the three-dimensional microstructure of NOM related to its glassy character. Sorption to NOM conforms to polymer theory by exhibiting isotherm shape and irreversible behaviors characteristic of the glassy organic physical state. The glassy state is a metastable state characterized by the presence of excess free volume (holes).

Results

In polymers and NOM, incoming molecules preferentially occupy holes due to the absence of a cavitation penalty. Incoming molecules can enlarge existing holes and create new holes that do not relax completely when the molecules leave. The physical changes in NOM induced by sorption result in hysteresis in the isotherm that persists indefinitely at ambient temperature.

Conclusions

Sorption selectivity and hysteresis have important implications for the fate and bioavailability of contaminants.  相似文献   

3.

Purpose

Biochars are increasingly recognized as effective, inexpensive, and environmentally friendly sorbents for abating organic contaminants. In this study, the sorption and competitive sorption characteristics of simazine (SZ), metsulfuron-methyl (ME), and tetracycline (TC) to corn straw biochars and soil were examined to understand the interactions of herbicides and antibiotics with biochars and the potential role of biochars as engineered sorbents.

Materials and methods

Biochars were obtained by pyrolyzing corn straw at 400, 500, and 600 °C for 6 h under oxygen-limited conditions and were characterized via elemental analysis, N2-BET surface area determination, 13C nuclear magnetic resonance spectroscopy, and Fourier transform infrared spectroscopy. Soil was collected from North Tanggu Farm in Tianjin, and its organic carbon, cation exchange capacity, and particle size distribution were analyzed. The batch sorption experiments were performed to obtain the sorption isotherms of SZ, ME, and TC to biochars and soil.

Results and discussion

The biochars that were pyrolyzed at higher temperatures had higher sorption affinities for SZ, ME, and TC, which may be due to the enhancement of hydrophobic interactions, charge transfer (ππ*) interactions, and pore-filling mechanism. The sorption affinities for these compounds to all biochars decreased in the order SZ?>?TC?>?ME, indicating that the neutral molecule with a stronger hydrophobicity is more easily adsorbed by biochars. For soil, the decrease of the sorption affinities followed the order TC?>?SZ?>?ME due to the high sorption affinity of TC with clays in the soil. Moreover, the sorption affinities of TC by biochars were lower than by soil, indicating that corn straw biochars may be not an ideal sorbent for the immobilization of TC. Biochars were much more effective in sorbing SZ and ME than soil, indicating that corn straw biochars can potentially prevent transport of the herbicides to surface and ground water. Nevertheless, the presence of TC significantly hinders biochar adsorption of SZ and ME, implying that the coexisting contaminants should be considered when developing biochars as engineered sorbents.

Conclusions

The observations in this study demonstrated that the sorption of organic contaminants by biochars is dependent on the properties of the biochars and the molecular structures of the contaminants. Corn straw biochars effectively retain SZ and ME and hinder their transportation to surface and ground water; however, the coexisting contaminants should be considered. Our results will be helpful for designing biochars as engineered sorbents for environmental applications.  相似文献   

4.
Biochars are adsorptive solids potentially of benefit to soil microbes by providing improved nutrient retention, a carbon substrate and contaminant adsorption. A 28-day incubation experiment gauged the interactive effects of biochar application and contaminants on the microbial biomass and respiration of a sandy loam soil. Soil was amended with 250 mg/kg phenol or p-nitrophenol (two toxic but nevertheless biodegradable organic contaminants) or 50 mg/kg cadmium or copper. Biochar application generally caused increased microbial respiration and biomass relative to non-amended controls. Of the heavy metal-amended soils, Cu effected significant reductions in microbial biomass carbon and basal respiration, which were improved with concurrent biochar amendment. The biochar’s functional groups are likely to have mitigated the metals’ negative effects via complexation and sorption, while the soil’s proportion of negative pH-dependent sites was increased by the pH rise induced by biochar application, allowing more cationic retention. Organic contaminant-spiked soils had higher microbial biomass-specific respiration without biochar amendment, indicating that surviving microbes utilised the compounds and necromass as substrates. Paranitrophenol proved to be particularly toxic without biochar application, causing marked reductions in the microbial quotient and biomass carbon. Remarkably, concurrent biochar and pNP application led to hugely increased microbial biomass carbon and nitrogen, significantly higher than those in contaminant-free replicates. It is likely this arose from biochar sorbing the contaminant and allowing its microbial utilisation as a carbon and nitrogen source, stimulating growth. Biochar application is a highly promising strategy for reducing the soil microbial toxicity of heavy metals and aromatic organic contaminants, particularly p-nitrophenol.  相似文献   

5.

Background, aim, and scope

Restoration of lakes and reservoirs with extensive cyanobacterial water bloom often requires evaluation of the sediment quality. Next to the chemical analysis of known pollutants, sediment bioassays should be employed to assess toxicity of the present contaminants and to make predictions of associated risk. Brno reservoir in the Czech Republic is a typical example of water bodies with long-term problems concerning cyanobacterial water blooms. Comprehensive assessment of reservoir sediment quality was conducted since successful reservoir restoration might require sediment removal. An important part of this survey focused on an examination of the utility of Tubifex tubifex and its sublethal biochemical markers for the assessment of direct sediment toxicity.

Materials and methods

This complex study included chemical analysis of contaminants (heavy metals, organic pollutants), ecotoxicity testing of sediment elutriates (tests with Daphnia magna, Pseudomonas putida, Sinapis alba, Scenedesmus subspicatus), and other parameters. We have tested in more detail the applicability of T. tubifex as a test organism for direct evaluation of contact sediment toxicity. Survival tests after 14 days of exposure were complemented by an assessment of parameters serving as biomarkers for sublethal effects [such as total glutathione content (GSH), activities of the enzymes glutathione transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR)]. The data matrix was subjected to multivariate analysis to interpret relationships between different parameters and possible differences among locations.

Results

The multivariate statistical techniques helped to clearly identify the more contaminated upstream sites and separate them from the less contaminated and reference samples. The data document closer relationships of the detected sediment contamination with results of direct sediment exposure in the T. tubifex test regarding mortality but namely regarding the sublethal endpoints rather than the results obtained with other test organisms exposed to sediment elutriates. Aside from the reduction in T. tubifex survival, the sediments with organic pollution caused an increase in glutathione content and increased activities of glutathione S-transferase and glutathione peroxidase in the exposed T. tubifex worms.

Discussion

Results of our study confirm the suitability of T. tubifex for toxicity testing of raw waters and sediments. This longer-lasting direct contact test has proven more sensitive and appropriate to reflect a lower level of pollution than do the elutriate tests. Sensitive biochemical changes in T. tubifex, including an elevation in GSH levels and GST activities, reflect a general stimulation of detoxification metabolisms in the presence of xenobiotics. The results also suggest an important role of glutathione and related enzymes in detoxification processes and possible involvement of oxidative stress in toxicity mechanisms in benthic sediment-dwelling worms such as T. tubifex.

Conclusions

The complex assessment has identified the more contaminated samples with locally increased concentration of organic pollutants and significant ecotoxicity. The direct sediment contact test with T. tubifex and especially the biochemical parameters corresponded better to the lower level of pollution than the other tests with sediment elutriates. Despite its greater time and cost demands, the direct sediment contact test can provide a more realistic picture of exposure.

Recommendations and perspectives

Sediment bioassays should always be included as an integral part of the sediment quality assessment. The direct contact tests also take into account the more hydrophobic pollutants that are not easily available for the water elution but can still be accessible to the organisms. The T. tubifex test is a suitable option for contact sediment toxicity tests also because these animals show measurable sublethal biochemical changes that can be associated with this exposure.  相似文献   

6.

Purpose

Sorption of xenobiotics in soils and especially to soil organic matter (SOM) determines their mobility and bioavailability in ecosystems. However, SOM as the major sorbent may be altered in its physicochemical properties upon changes in boundary conditions such as hydration. Hence, the goal of this study was to determine the influence of soil hydration on physicochemical properties of SOM and the resulting effects on sorption of xenobiotics.

Materials and methods

Samples of a Histosol with 51?% SOM were adjusted to five water contents from 10 to 75?% (w/w based on dry soil mass) and aged for water contact times of 0?weeks to 3?years. The hydrated samples were characterized with respect to thermal properties of SOM and of the incorporated water via differential scanning calorimetry and with respect to hydration-induced swelling via 1H-NMR relaxometry, and the sessile drop method was applied to determine their soil?Cwater contact angle. Sorption kinetics and isotherms of naphthalene-2-ol in the pre-treated peat samples were determined in batch experiments.

Results and discussion

SOM matrix rigidity varied with the water content and increased with water contact time. An initial minimum in SOM rigidity at ~30?% water content became maximum after ~20?weeks, also resulting in the strongest resistance towards water infiltration. We argue that the anomalies at 30?% water content are related to the critical water content for the formation of freezable water w crit in the peat samples, which was 26.2?±?0.3?%. Conditions for water-assisted molecular bridging were assumably optimal at 30?% water content. Whereas parameters of naphthalene-2-ol sorption reflecting the sorbed amount were mainly altered by the wetting properties of SOM, sorption linearity and hysteresis were influenced by the anomalies in peat matrix properties at a water content around 30?%.

Conclusions

The study revealed that the interplay of SOM and water led to highly variable and complex changes in SOM physicochemical properties. These properties may serve as a predictor for sorption of xenobiotics in soil at varying hydration conditions enabling a more precise assessment of the environmental fate of xenobiotics.  相似文献   

7.

Purpose

The effect of pollutants in soil microorganisms is an important issue in order to understand their toxic effects in the environment, as well as for developing adequate bioremediation strategies. In this sense, the main objective of this study was to assess the involvement of the indigenous microbiota of an acidic forest Mediterranean soil by artificial pollution with heavy metals, and to detect and isolate resistant microorganisms that could be useful for bioremediation.

Materials and methods

Samples from a previously unpolluted acidic forest soil were amended with Cr(VI), Cd(II) or Pb(II) at total amounts ranging from 0.1 to 5,000 mg?kg?1. These soil microcosms were incubated under controlled laboratory conditions for 28 days. Soluble fractions of metals were determined from aqueous extracts. Both activity and composition of the microbial community were assessed, respectively, by respirometric assays and molecular analysis (polymerase chain reaction denaturing gradient gel electrophoresis). The isolation of metal-resistant microorganisms was attempted by culture plating from microcosms incubated with high concentrations of metals. Isolated strains were tested in cultures with minimal medium to check for their metal resistance and their capacity to reduce the presence of toxic Cr(VI).

Results and discussion

A decrease in the soil respirometric activity and changes in the microbial community composition were detected from 10/100 mg?kg?1 Cr and 1,000 mg?kg?1 Cd and Pb. Presumably resistant bacterial and fungal populations developed in most of these polluted microcosms; however, the microbiota was severely impaired at the highest additions of Cr. Even though Cr was the most damaging metal in soil microcosms, if the soluble fractions of metals are considered instead of their total added amounts, the comparison among their toxic effects suggests a similar potential toxicity of Cr and Pb. Isolated multiresistant microorganisms were related mainly to Actinobacteria, Firmicutes and Ascomycota. Some of them showed the capacity to reduce Cr(VI) concentrations between 54 % and 70 % of the initial value. These strains were affiliated to several species of Streptomyces and Bacillus.

Conclusions

The combination of respirometric assays with molecular methods has been useful to assess the effect of metals on the soil microbial community, which can greatly be explained by their differential bioavailability. Cultivation-dependent and -independent approaches have proved the presence and development of multiresistant microorganisms in a previously unpolluted soil. Due to their properties, some of the isolated strains are potentially useful for soil bioremediation.  相似文献   

8.

Purpose

The purposes of this study were to understand the sorption?Cdesorption characteristics of propachlor in three types of soils with added solid organic matters and the effect of solid organic matters on propachlor mobilization in soil microstructures.

Materials and methods

Three soil types, Eutric gleysols (EG), Hap udic cambisols (HUC), and Haplic alisol (HA), along with the lakebed sludge (SL) and pig manure compost (PMC), were used in the study. The sorption and desorption experiments were carried out using the standard batch equilibration method. Soil column leaching was performed with soil samples packed into PVC columns. Soil thin-layer chromatography was performed using soils and water mixture spread on a 0.5?C0.7-mm thick layer over 20?×?10-cm glass plates.

Results and discussion

Propachlor was shown to be more mobile in EG and HUC than in HA. Application of PMC and SL to soils affected the propachlor mobilization in the soils. Using batch experiment, soil column, and soil thin-layer chromatography, we showed that addition of SL and PMC increased the sorption and decreased desorption of propachlor in the soils. Addition of PMC and SL reduced the total concentration of propachlor in the soil leachate and migration of propachlor in the soil profiles. Physicochemical properties of the three soils were analyzed and showed that the content of organic carbon (in percentage) was higher in Haplic alisol than in Eutric gleysols and Hap udic cambisols.

Conclusion

The soil organic matter played critical roles in modifying the absorption and mobility of organic chemicals (e.g., herbicide and contaminants) in soil ecosystem.  相似文献   

9.

Purpose

The main objective of the present study was to evaluate the toxicity of two reference chemicals, Carbendazim and Phenmedipham, for the compostworm Eisenia andrei (effects of Carbendazim) and the potworm Enchytraeus crypticus (effects of Phenmedipham) in 12 Mediterranean soils with contrasting soil properties. The observed toxicity was also compared to that obtained for OECD standard soil, used as a control.

Materials and methods

The soils were selected to be representative for the Mediterranean region and to cover a broad range of soil properties. The evaluated endpoints were avoidance behavior and reproduction. Soils were also assembled in two groups according to their pedological properties.

Results and discussion

Toxicity benchmarks (AC50s) obtained for E. andrei avoidance behavior in carbendazim-contaminated soils were generally higher for sandy soils with low pH. The toxic effects on the reproduction of the compostworms were similar in the six tested soils, indicating a low influence of soil properties. The avoidance response of E. crypticus towards Phenmedipham was generally highly variable in all tested soils. Even though, a higher toxicity was observed for more acidic soils. The EC50s for reproduction of the latter species varied by a factor of 9 and Phenmedipham toxicity also tended to be increasing in soils with lower pH, except for the soils with extreme organic matter content (0.6 and 5.8%).

Conclusions

A soil effect on chemical toxicity was clearly confirmed, highlighting the influence that test soils can have in site-specific ecological risk assessment. Despite some relationships between soil properties and toxicity were outlined, a clear and statistically significant prediction of chemical toxicity could not be established. The range of soil properties was probably narrow to give clearer and more consistent insights on their influence. For the four groups of tests, the toxicity observed for OECD soil was either similar, lower, or generally higher if compared with Mediterranean soils. Moreover, it did represent neither the organic matter content found in Mediterranean soils nor their textural classes.  相似文献   

10.

Purpose

Chlorpyrifos can be effectively adsorbed by drinking water treatment residuals (WTR), ubiquitous and non-hazardous by-products of potable water production. The major metabolite 3,5,6-trichloro-2-pyridinol (TCP) was found to be much more mobile and toxic than its parent chlorpyrifos. To assess the feasibility of WTR amendment for attenuation of chlorpyrifos and TCP pollution, the sorption/desorption and degradation behavior of chlorpyrifos and TCP in WTR-amended agricultural soils was examined in the present study.

Materials and methods

Two representative agricultural soils were sampled from southern and northern China, respectively. The soils were amended with WTR at the rates of 0, 2, 5, and 10 % (w/w). Batch sorption/desorption test were applied to investigate the sorption/desorption characteristics of chlorpyrifos and TCP in WTR-amended soils. The influence of WTR amendment on chlorpyrifos degradation and TCP formation was evaluated using the incubation test, and its effect on the soil bacterial abundance was further studied through DNA extraction and PCR amplification.

Results and discussion

Results showed that WTR amendment (0–10 %, w/w) significantly enhanced the retention capacity of chlorpyrifos and TCP in both soils examined (P < 0.05). Fractionation analyses further demonstrated that the bioavailability of chlorpyrifos was considerably reduced by WTR amendment, resulting in a decreased chlorpyrifos degradation rate. The WTR amendment also significantly reduced the mobility of TCP formed in chlorpyrifos-contaminated soils (P < 0.001). The chlorpyrifos toxicity to soil bacteria community was largely mitigated following WTR amendment, resulting in increased total bacterial abundance.

Conclusions

Results obtained in the present study indicate a great deal of potential for the beneficial reuse of WTR as soil amendments for chlorpyrifos and TCP pollution control.
  相似文献   

11.

Purpose

Wetlands are a popular tool to treat/polish wastewater by reducing nutrient loading into the environment. In addition to nutrients, organic contaminants, such as pharmaceuticals and personal care products (PPCPs), are commonly detected in treated wastewater. Treatment wetlands may reduce concentrations of PPCPs before the treated effluent enters rivers and streams. Oxygen status may greatly affect the attenuation of PPCPs in wetland sediments by influencing microbial makeup and activity. An understanding of the effect of redox conditions on the degradation of PPCPs and the factors influencing PPCP sorption to wetland sediments is needed to maximize PPCP removal in treatment wetlands.

Materials and methods

Three wetland sediments from the San Diego Creek and Newport Bay watershed in Southern California, USA, were incubated under aerobic and anaerobic conditions to assess the degradation of several regularly occurring PPCPs and their phase distribution as a function of time.

Results and discussion

Under aerobic conditions, ibuprofen, N,N-diethyl-meta-toluamide (DEET), and gemfibrozil generally had half-life values around 20?days, while the half-life of carbamazepine was substantially longer (between 165 and 264?days). The anaerobic half-lives of gemfibrozil and ibuprofen increased by factors of 11?C34 and carbamazepine increased by factors of 1.5?C2.5. There was no detectable anaerobic degradation of DEET. The apparent phase distribution coefficient increased over time for DEET, carbamazepine and gemfibrozil, indicating that sorption of PPCPs to wetland sediments may be more limited than that predicted using equilibrium sorption coefficient values.

Conclusions

Knowledge of the capacity of wetland sediments for degrading and sorbing PPCPs is vital to the design of treatment wetlands. Degradation of the selected PPCPs was enhanced under aerobic conditions as compared to anaerobic conditions. Sorption to sediments increased with contact time, indicating that longer hydraulic retention will increase wetland capabilities for removing PPCPs.  相似文献   

12.

Purpose

The aim of this study was to evaluate the effectiveness of mining, industrial and agricultural solid by-products in the in situ immobilisation of soil cadmium (Cd) based on soybean plant Cd content, soil pH, Cd extractability, bioavailability, leachability and Cd distribution in soils.

Materials and methods

The experiment was conducted as a field experiment in Cd-polluted-soil, wherein four by-products, including fly ash, spent mushroom substrate, silkworm excrement and limestone, were tested individually and in combination. The total Cd in soybean and the soil/by-products samples were determined. The Cd contents in the contaminated soil were analysed by the diffusive gradients in thin-film technique, the toxicity characteristic leaching procedure and four chemical methods. Changes in the fractions of Cd were determined following the Tessier method.

Results and discussion

The results showed that all the additions of the by-products increased the soil pH significantly and simultaneously decreased Cd mobility, bioavailability and leachability, particularly weakened the rate of Cd2+ ion transport from soil to solution. The by-products caused 23.5–76.4% of the exchangeable (EX) fraction of Cd to immobilised Cd fractions which include carbonates bound (CA), Fe-Mn oxides bound (OX), organic matter bound and residual fractions. The mobile faction of Cd was reduced from 33.7 to 16.8–27.8% for the amendments addition, respectively. Limestone was the most effective in immobilising the soil Cd among all the treatments, followed by fly ash. Soil pH observed significantly negative correlations with the Cd concentration in extractability, bioavailability and leachability. Soil pH had positive correlations with the percentages of CA-Cd and OX-Cd, but negatively correlated with the percentages of EX-Cd and the sum of EX-Cd and CA-Cd.

Conclusions

By-products addition increased the soil pH and decreased Cd mobility, bioavailability and leachability. The addition of limestone and fly ash exhibited higher efficiency than the other five additions. The combined additions had better performance on Cd extractability and soil pH than the corresponding single treatment, which decreased more concentrations of mobile, bioavailable and leachable Cd. This study offered four potentially cost-effective amendments singly or jointly for Cd immobilisation, reducing the potential hazards associated with excess Cd and the waste-disposal pressure and promoting a resource-saving development strategy.  相似文献   

13.

Purpose

During the late 1950s and early 1960s, industrial waste material highly enriched with various contaminants (e.g., heavy metals, polycyclic aromatic hydrocarbons (PAHs)) was dumped in the inner Bay of Mecklenburg, western Baltic Sea. Between 2002 and 2004, a research program was initiated using chemical analysis in combination with bioanalytical techniques to assess the extent and variability in contamination at this dump site (DS). The data were compared to a reference area (RS) with similar environmental conditions, which is representative of the western Baltic Sea.

Materials and methods

Twelve PAHs were investigated to assess their ecological hazard, as they were identified as major pollutants in the dumped material. In addition to analyzing the actual PAH contamination status in the sediments, PAHs measured in the soft tissue of Arctica islandica were also used as an indicator of contaminant bioaccumulation. A biotest battery was applied to determine the toxic effects of contaminants in the sediment.

Results and discussion

Significantly elevated PAH concentrations (sum of 12 PAHs) of ~3,000 ng g?1 dw and higher bioaccumulation factors (BAFs) were determined in the soft body tissue of A. islandica collected at DS (t test, p?=?0.025). The results also showed that the sediment PAH contamination was significantly higher at DS (1,952–5,466 ng g?1 dw) than at RS (1,384–2,315 ng g?1 dw). The results revealed a major heterogeneity in the PAH concentration at DS due to an attempt to cover the toxic material with clean clay. This resulted in a more heterogeneous distribution of the dump material rather than covering it up completely. However, not all relevant contaminants were included in this study, not only because it is too costly to determine them all but also because unidentified contaminants present at concentrations below the limit of detection cannot be measured. Bioassays were used to fill this gap in the hazard assessment in a cost-effective way by investigating the possible effects of sediment contamination on benthic organisms. The results showed a high variability and magnitude of growth and luminescence inhibition. Bacterial contact tests with marine organisms showed a high toxicity response (>80 % inhibition) from DS sediments. In contrast, the luminescent bacteria test (Vibrio fischeri) showed equivalent effects of sediments from both DS and RS.

Conclusions

The spatial distribution of toxicity in DS, the bioaccumulation in mussels and the analytical evidence of PAH pollution clearly show that the dumped material still represents a potential risk even after 60 years.  相似文献   

14.

Purpose

The sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) to three different artificial soil mixtures was investigated. Artificial soils serve as model systems for improving understanding of sorption phenomena.

Materials and methods

The soils consisted of quartz, ferrihydrite, illite, montmorillonite, and charcoal. In a previous study, several selected mixtures had been inoculated with organic matter, and microbial aging (incubation) had been performed for different periods of time (3, 12, and 18?months) before conducting the sorption experiments. The effect of this pre-incubation time on the sorption behavior was determined. Interaction of MCPA with soil surfaces was monitored by aqueous phase sorption experiments, using high-performance liquid chromatography/ultraviolet and in selected cases Fourier-transformed infrared spectroscopy.

Results and discussion

The sorption behavior showed large differences between differently aged soils; Freundlich and linear sorption model fits (with sorption constants K f , 1/n exponents, and K d values, respectively) were given for pH?=?3 and the unbuffered pH of ??7. The largest extent of sorption from diluted solutions was found on the surfaces with a pre-incubation time of 3?months. Sorption increased at acidic pH values.

Conclusions

Regarding the influence of aging of artificial soils, the following conclusions were drawn: young artificial soils exhibit stronger sorption at lower concentrations, with a larger K f value than aged soils. A correlation with organic carbon content was not confirmed. Thus, the sorption characteristics of the soils are more influenced by the aging of the organic carbon than by the organic carbon content itself.  相似文献   

15.

Purpose

Enhancing desorption of hydrophobic organic contaminants from soils is a promising approach for the effective remediation of soils contaminated with organic compounds. The desorption efficiency of chemical reagent, such as surfactant, should be evaluated. In this study, the effect of mixed anionic–nonionic surfactants sodium dodecylbenzene sulfonate (SDBS)–Tween 80 on the distribution of polycyclic aromatic hydrocarbons in soil–water system was evaluated.

Materials and methods

Batch desorption experiments were employed to evaluate the distribution of polycyclic aromatic hydrocarbons (PAHs) and surfactants in soil–water system. PAHs and SDBS were determined by high-performance liquid chromatography, Tween 80 by spectrophotometry, and total organic carbon with a carbon analyzer.

Results and discussion

Sorption of PAHs to soil was increased at low surfactant concentration due to the effective partition phase on soil formed by sorbed surfactants. The mixture of anionic and nonionic surfactants decreased the sorption of surfactants to soil, increasing the effective surfactant concentration in solution and thus decreasing the sorption of PAHs on soil. Anionic–nonionic mixed surfactant showed better performance on desorption of PAHs from soil than single surfactant. The greatest desorption efficiency was achieved with low proportions of SDBS (SDBS/Tween80?=?1:9).

Conclusions

SDBS–Tween 80 mixed surfactant showed the highest desorption rate with low proportion of SDBS, which indicated that the addition of relative low amount of anionic surfactant could significantly promote the desorption efficiency of PAHs by nonionic surfactants. Results obtained from this study did provide useful information in surfactant-enhanced remediation of soil and subsurface contaminated by hydrophobic organic compounds.  相似文献   

16.

-

Part I: Determination and identification of organic pollutants Part II: Results of the biotest battery and development of a biotest index

-

Preamble. This series of two papers presents the results of an interdisciplinary research project (ISIS) dealing with bioassay-directed fractionation of marine sediment extracts. Part I presents the extraction and fractionation procedure as well as the results of chemical analysis, including non-target analysis of sediments. Part II describes the results of the biotest battery in relation to chemicals possibly causing parts of the observed effects. A biotest index is used to compare the toxicities of the samples.

-

AUTHORS / AFFILIATIONS Ninja Reineke (3), Werner Wosniok (4), Dirk Danischewski (1), Heinrich Hühnerfuss (3), Angelika Kinder (5), Arne Sierts-Herrmann (5), Norbert Theobald (2), Hans-Heinrich Vahl (6), Michael Vobach (1), Johannes Westendorf (6) and Hans Steinhart (5).

-

(1) Federal Research Centre for Fisheries, Institute for Fishery Ecology, Palmaille 9, 22767 Hamburg, Germany (2) Federal Maritime and Hydrographic Agency, Bernhard-Nochtstr. 78, 20359 Hamburg, Germany (3) University of Hamburg, Institute for Organic Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany (4) University of Bremen, Institute of Statistics, Bibliothekstr. 1, 28334 Bremen, Germany (5) University of Hamburg, Institute for Food Chemistry, Grindelallee 117, 20146 Hamburg, Germany (6) University of Hamburg, University Hospital Hamburg-Eppendorf, Department for Toxicology, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany (7) Eurofins Wiertz-Eggert-Jörissen, Stenzelring 14b, 21107 Hamburg, Germany

Goal, Scope and Background

The ecological relevance of contaminants in mixtures is difficult to assess, because of possible interactions and due to lacking toxicity data for many substances present in environmental samples. Marine sediment extracts, which contain a mixture of environmental contaminants in low concentrations, were the object of this study. The extracts were investigated with a set of different biotests in order to identify the compound or the substance class responsible for the toxicity. For this goal, a combination of biotests, biotest-directed fractionation and chemical analysis has been applied. Further on, a strategy for the development of a biotest index to describe the toxicity of the fractions without a prior ranking of the test results is proposed. This article (Part II) focuses on the biological results of the approach.

Methods

The toxicological potential of organic extracts of sediments from the North Sea and the Baltic Sea was analyzed in a bioassay-directed fractionation procedure with a set of biotests: luciferase reporter gene assays on hormone receptor and Ah receptor, arabinose resistance test, fish embryo test (Danio rerio), comet assay, acetylcholinesterase inhibition test, heat-shock protein 70 induction, oxidative stress and luminescence inhibition test (Vibrio fischeri). The test results provided the basis for the calculation of a biotest index by factor analysis to compare the toxicity of the samples and fractions.

Results and Discussion

Results of 11 biotests on different fractionation levels of the samples were described and discussed with regard to the occurrence of contaminants and their toxic potentials. Polychlorinated biphenyls, polycyclic aromatic hydrocarbons, quinones, brominated indoles and brominated phenols were in the focus of interest. A biotest index was constructed to compare the toxic responses in the samples and to group the biotest results.

Conclusion

The procedure presented in this study is well suited for bioassay-directed fractionation of marine sediment extracts. However, in relatively low contaminated samples, high enrichment factors and sufficient fractionation is necessary to allow identification of low concentrations of contaminants which is required to link effects and possible causes. In the present case, the relation between substances and effects was difficult to uncover due to relatively low concentrations of pollutants compared to the biogenic matrix and to the remaining complexity of the fractions. The results, with respect to the brominated phenols and indoles in the samples, highlight the successful use of bioassay directed fractionation in the case of high concentrations and high toxicity.

Recommendation and Outlook

In general, it has been shown that a marine risk assessment requires focusing on the input of diffuse sources and taking into account the fact of mixture toxicity. Effects resulting from biogenic substances will make the assessment of the influence of anthropogenic substances even more difficult.  相似文献   

17.

-

Part 2: Investigation of Polycyclic Musks in Soils and PlantsPart 1: Behaviour of Polycyclic Musks in Sewage Sludge of Different Treatment Plants in Summer and Winter

-

Preamble. In Part 1 of the study, screening tests were performed to investigate the occurrence of PCM in sewage sludges. For a preliminary risk assessment, further information is needed about their behaviour in the terrestrial environment. Hence Part 2 examined the adsorption of PCMs to soil, their dissipation and leaching in soil and their uptake in plants.

Goal, Scope and Background

Polycyclic Musks (PCMs) enter the terrestrial environment via the use of sewage sludge as fertilizer. After entry into soil, they can be taken up by plants or move into the groundwater body. However, until now no overall risk assessment for polycyclic musks is available. For a preliminary risk assessment further information is needed about their behaviour in the soil environment. Therefore, Part 2 of the study (Part 1, see J Soils Sediments, OnlineFirst ) examined the adsorption of PCMs to soil, their dissipation and leaching in soil and their uptake by plants.

Methods

Analytical methods for the determination of HHCB and AHTN in soil and plant samples were developed and applied. The adsorption/desorption studies were performed according to OECD guideline 106 and draft guideline 121 using three soils. Dissipation (aerobic degradation) was examined according to BBA guideline 4-1 in three soils over a test period of 37 weeks under controlled conditions. Leaching experiments in soil columns were performed using columns of 14 cm Ø and 30 cm filling height for a test period of 48 hours. Finally the uptake of PCMs by lettuce and carrots was studied in laboratory and outdoor experiments.

Results

The adsorption/desorption studies resulted in Koc values between 4200 and 7900 for HHCB and between 4800 and 13600 for AHTN showing strong sorption to the soils investigated. The dissipation of the PCMs occurred very slowly with elimination rates after 37 weeks of approx. 50% and 25% for HHCB and AHTN, respectively. The leaching experiments showed leaching rates of < 0.001% for HHCB and AHTN during a test period of 48 hours. The slight leaching is presumably due to ‘preferential flow'. The transfer factors (ratio of concentrations in the plant to concentrations in the soil ) for HHCB in lettuce and carrot leaves determined in plant uptake experiments were as low as 0.003. For HHCB in carrot roots however high transfer factors of 0.095 for a humic and 0.48 for a loamy soil were obtained. The high uptake may be caused by partitioning of the HHCB into the essential oil cells of the carrot roots.

Discussion

The polycyclic musk compounds HHCB and AHTN showed high adsorption to soil. A desorption phenomenon occurred after three desorption steps. High adsorption influences the slow degradation kinetic. Comparable investigations into the degradation behaviour show the same results, whereas other authors observed a faster degradation. We assume a dependency on microbial consortia, which can vary as a function of the substrate and adaptation of the microbial population. Leaching tests were carried out in our study, but not by other studies. The results reflect the adsorption into the soil matrix.

Conclusions

The results show that PCMs are widespread contaminants in sewage sludge and should be considered in a risk assessment as potential contaminants of sewage sludge destined for agricultural use. When applied to soil they may remain in the upper soil layers due to their high sorption, low degradability and low leaching behaviour. Uptake by some plants like carrot roots may be relevant.

Recommendations and Perspective

. This study examined the adsorption of PCMs to soil, their dissipation and leaching in soil and their uptake into plants. For a qualitative risk assessment more data on adsorption /desorption, and degradation in soils under different soil conditions needs to be generated. Also, further studies have to be carried out to gain a better understanding of plant uptake of PCMs, especially HHCB and AHTN.
  相似文献   

18.

Purpose

Acute whole-sediment bioassay with the estuarine and marine amphipod Corophium volutator (Pallas) is widely used to assess toxicity of sediments. According to the guidelines DIN EN ISO 16712, mortality is the determined toxic endpoint. Additionally, the reburrowing ability of the surviving organisms of this acute toxicity test in fresh uncontaminated sediment is suggested as the sublethal endpoint, but insufficient information (e.g., exact measurement protocols) on this endpoint is provided, thus confounding factors and the interpretation of the results. The aim of this study was to provide information on burrowing activity as a sublethal endpoint.

Materials and methods

Amphipod tests were carried out in the laboratory, and the burrowing behavior was examined in a size- and gender-specific manner. For sediment testing, only animals of the same size were used in a defined sex ratio because it was found that female animals buried themselves faster than males and that smaller animals burrowed faster than bigger organisms. Statistical analyses were applied to determine whether burrowing time and ability differ significantly between sexes and sizes. Finally, tests were run to discern whether the burrowing ability could be a more sensitive endpoint than mortality.

Results and discussion

When the burrowing ability was examined in toxicity tests with contaminated sediment, the test organisms were affected in a dose-dependent manner. With rising concentrations of the contaminated sediment in a sublethal testing following the sediment exposure over 10 days, fewer animals buried themselves into the sediment.

Conclusions

The burrowing behavior can be used as an additional endpoint. For the tested sediment, burrowing was found to be more sensitive than the mortality. Guidance on the measurement protocol for this additional endpoint was developed. Under the test conditions examined, burrowing ability is an appropriate sublethal endpoint to supplement the toxicity test procedure.  相似文献   

19.

Purpose

Sewage sludge and biosolid application to land is a common approach to fertilise soils, but sewage-derived contaminants like the antimicrobial agent triclosan, and heavy metals zinc and copper, are known to affect soil microbial communities. In this study, the tolerance to triclosan was examined for soil microbial communities chronically pre-exposed to one of two heavy metals (Cu or Zn) and the antimicrobial triclosan. This was investigated in two different soil types.

Materials and methods

The impacts of chronic exposure of copper, zinc and triclosan as individual compounds or in mixtures on soil microbial communities were assessed in soils collected from two sites. The first was a Horotiu sandy loam with ample carbon and nitrogen levels and the second was a Templeton silt loam with very low carbon and nitrogen levels. The end points used to characterise the response of the soil microbial community were biomass, metabolic activity and pollution-induced community tolerance (PICT) to triclosan (using Biolog EcoPlates). In addition, metabolic activities for individual substrates were examined and those that significantly changed with the applied treatments were identified.

Results and discussion

Exposure to mixtures of both triclosan and copper in the Horotiu sandy loam reduced microbial biomass, increased metabolic activity and reduced microbial tolerance to triclosan. The decrease in soil microbial tolerance correlated with an increased metabolic activity for N-acetyl-d-glucosamine providing a potential link between triclosan exposure and nitrogen mineralisation. Exposure to both triclosan and high zinc levels decreased microbial biomass in the Horotiu sandy loam but did not have an effect on microbial tolerance to triclosan. In the finer-textured and less fertile Templeton soil, microbial tolerance to triclosan and the microbial biomass were not impacted by copper/triclosan or zinc/triclosan mixtures.

Conclusions

Mixture effects could become a cause for concern when soil microbial communities are exposed to triclosan in fertile soils with copper concentrations in excess of 50 mg kg?1 and could be especially important in the more coarsely textured soils. Current regulations for soil contaminants only consider the risk and effects of single contaminants. Greater protection of soil resources could result from considering mixture effects and soil types.
  相似文献   

20.

Purpose

Copper (Cu) contamination has been increasing in land ecosystems due to economic development activities. Excessive amount of Cu in soils is toxic to both plants and microorganisms. Biochar (BC) is known to immobilize soil Cu. The objectives of this research were to investigate the effects of chicken-manure-derived BC (CMB) on Cu immobilization, and growth of native metallophyte Oenothera picensis in a Cu-contaminated soil.

Materials and methods

A Cu-contaminated sandy soil (338 mg Cu kg?1) was spiked and equilibrated with additional Cu (0, 100, and 500 mg Cu kg?1). The spiked soil was then amended with CMB (0, 5, and 10 % w/w) and incubated for 2 weeks. The metallophyte was grown on these treatments under greenhouse conditions for 3 months. Pore water solutions were collected from the plant pots every 30 days. After the harvest, soil and pore water pH, soil Cu fractions, pore water Cu concentration, soil microbial activity, plant biomass weight, and Cu concentration in plant parts were determined.

Results and discussion

The CMB increased the pH of soils and soil pore water, and probably also soil major nutrients. It reduced the exchangeable fraction of Cu but increased its organic matter and residual fractions. At the same time, it decreased the Cu concentration in the soil pore water. The CMB increased basal respiration and dehydrogenase activity. The CMB application produced up to three and seven times more root and shoot biomass, respectively. In addition, shoots accumulated lesser Cu than control but roots did more. Plants survived in soil that was spiked with 500 mg Cu kg?1, only when CMB dose was 10 %.

Conclusions

The CMB affected the Cu uptake in plant by altering the mobility, bioavailability, and spatial distribution of Cu in soils. The increase in available nutrients and decrease in Cu toxicity facilitated plant growth. The increased microbial activity probably also promoted the plant growth and reduced the Cu bioavailability. Therefore, CMB can be used to remediate Cu-contaminated soils.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号