首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and documents recommendations for control of preanalytical, analytical, and postanalytical factors related to urinalysis, cytology, and clinical chemistry in veterinary laboratories and is adapted from sections 1.1 and 2.2 (clinical chemistry), 1.3 and 2.5 (urinalysis), 1.4 and 2.6 (cytology), and 3 (postanalytical factors important in veterinary clinical pathology) of these guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts.  相似文献   

2.
In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and provides recommendations for control of preanalytical and analytical factors related to hematology for mammalian and nonmammalian species, hemostasis testing, and crossmatching and is adapted from sections 1.1 and 2.3 (mammalian hematology), 1.2 and 2.4 (nonmammalian hematology), 1.5 and 2.7 (hemostasis testing), and 1.6 and 2.8 (crossmatching) of the complete guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts.  相似文献   

3.
Reference intervals (RI) are an integral component of laboratory diagnostic testing and clinical decision‐making and represent estimated distributions of reference values (RV) from healthy populations of comparable individuals. Because decisions to pursue diagnoses or initiate treatment are often based on values falling outside RI, the collection and analysis of RV should be approached with diligence. This report is a condensation of the ASVCP 2011 consensus guidelines for determination of de novo RI in veterinary species, which mirror the 2008 Clinical Laboratory and Standards Institute (CLSI) recommendations, but with language and examples specific to veterinary species. Newer topics include robust methods for calculating RI from small sample sizes and procedures for outlier detection adapted to data quality. Because collecting sufficient reference samples is challenging, this document also provides recommendations for determining multicenter RI and for transference and validation of RI from other sources (eg, manufacturers). Advice for use and interpretation of subject‐based RI is included, as these RI are an alternative to population‐based RI when sample size or inter‐individual variation is high. Finally, generation of decision limits, which distinguish between populations according to a predefined query (eg, diseased or non‐diseased), is described. Adoption of these guidelines by the entire veterinary community will improve communication and dissemination of expected clinical laboratory values in a variety of animal species and will provide a template for publications on RI. This and other reports from the Quality Assurance and Laboratory Standards (QALS) committee are intended to promote quality laboratory practices in laboratories serving both clinical and research veterinarians.  相似文献   

4.
The purpose of this paper by the Regulatory Affairs Committee (RAC) of the American Society for Veterinary Clinical Pathology (ASVCP) is to review the current regulatory guidances (eg, guidelines) and published recommendations for best practices in veterinary toxicologic clinical pathology, particularly in the pharmaceutical and biotechnology industries, and to utilize the combined experience of ASVCP RAC to provide updated recommendations. Discussion points include (1) instrumentation, validation, and sample collection, (2) routine laboratory variables, (3) cytologic laboratory variables, (4) data interpretation and reporting (including peer review, reference intervals and statistics), and (5) roles and responsibilities of clinical pathologists and laboratory personnel. Revision and improvement of current practices should be in alignment with evolving regulatory guidance documents, new technology, and expanding understanding and utility of clinical pathology. These recommendations provide a contemporary guide for the refinement of veterinary toxicologic clinical pathology best practices.  相似文献   

5.
6.
Portable blood glucose meters (PBGM, glucometers) are a convenient, cost effective, and quick means to assess patient blood glucose concentration. The number of commercially available PBGM is constantly increasing, making it challenging to determine whether certain glucometers may have benefits over others for veterinary testing. The challenge in selection of an appropriate glucometer from a quality perspective is compounded by the variety of analytic methods used to quantify glucose concentrations and disparate statistical analysis in many published studies. These guidelines were developed as part of the ASVCP QALS committee response to establish recommendations to improve the quality of testing using point‐of‐care testing (POCT) handheld and benchtop devices in veterinary medicine. They are intended for clinical pathologists and laboratory professionals to provide them with background knowledge and specific recommendations for quality assurance (QA) and quality control (QC), and to serve as a resource to assist the provision of advice to veterinarians and technicians to improve the quality of results obtained when using PBGM. These guidelines are not intended to be all‐inclusive; rather they provide a minimum standard for management of PBGM in the veterinary setting.  相似文献   

7.
Point‐of‐care testing (POCT) refers to any laboratory testing performed outside the conventional reference laboratory and implies close proximity to patients. Instrumental POCT systems consist of small, handheld or benchtop analyzers. These have potential utility in many veterinary settings, including private clinics, academic veterinary medical centers, the community (eg, remote area veterinary medical teams), and for research applications in academia, government, and industry. Concern about the quality of veterinary in‐clinic testing has been expressed in published veterinary literature; however, little guidance focusing on POCT is available. Recognizing this void, the ASVCP formed a subcommittee in 2009 charged with developing quality assurance (QA) guidelines for veterinary POCT. Guidelines were developed through literature review and a consensus process. Major recommendations include (1) taking a formalized approach to POCT within the facility, (2) use of written policies, standard operating procedures, forms, and logs, (3) operator training, including periodic assessment of skills, (4) assessment of instrument analytical performance and use of both statistical quality control and external quality assessment programs, (5) use of properly established or validated reference intervals, (6) and ensuring accurate patient results reporting. Where possible, given instrument analytical performance, use of a validated 13s control rule for interpretation of control data is recommended. These guidelines are aimed at veterinarians and veterinary technicians seeking to improve management of POCT in their clinical or research setting, and address QA of small chemistry and hematology instruments. These guidelines are not intended to be all‐inclusive; rather, they provide a minimum standard for maintenance of POCT instruments in the veterinary setting.  相似文献   

8.
BACKGROUND: The Education Committee of the American Society for Veterinary Clinical Pathology (ASVCP) identified a need for improved structure and guidance in training residents in clinical pathology. To begin to meet this need, guidelines for training in clinical chemistry were published in 2003. OBJECTIVE: The goal of this report is to define learning objectives and competencies in hematology, including coagulation and immunohematology. METHODS: These guidelines were developed and written with the input of ASVCP Education Committee members and peer experts. RESULTS: The primary objectives of training in hematology are: 1) to accrue a thorough, extensive, and relevant knowledge base of the types, principles, and properties of hematology tests and concepts of pathophysiology in animals; 2) to develop abilities to reason, think critically, communicate effectively, and exercise judgment in hematologic data interpretation and investigative problem-solving; and 3) to acquire technical and statistical skills important in hematology and laboratory operations. We also provide options and ideas for training activities and identify hematology resources useful for clinical pathology faculty and staff, training program coordinators, and residents. CONCLUSIONS: The guidelines define expected competencies that will help ensure proficiency, leadership, and the advancement of knowledge in veterinary hematology and provide a useful framework for didactic and clinical activities in resident-training programs. The learning objectives can readily be adapted to institutional and individual needs, interests, goals, and resources.  相似文献   

9.
This document is the consensus of the American Association of Veterinary Laboratory Diagnosticians (AAVLD) Subcommittee on Standardization of Immunohistochemistry on a set of guidelines for immunohistochemistry (IHC) testing in veterinary laboratories. Immunohistochemistry is a powerful ancillary methodology frequently used in many veterinary laboratories for both diagnostic and research purposes. However, neither standardization nor validation of IHC tests has been completely achieved in veterinary medicine. This document addresses both issues. Topics covered include antibody selection, fixation, antigen retrieval, antibody incubation, antibody dilutions, tissue and reagent controls, buffers, and detection systems. The validation of an IHC test is addressed for both infectious diseases and neoplastic processes. In addition, storage and handling of IHC reagents, interpretation, quality control and assurance, and troubleshooting are also discussed. Proper standardization and validation of IHC will improve the quality of diagnostics in veterinary laboratories.  相似文献   

10.
血药浓度法生物等效性试验是兽药生物等效性研究的重要方法。为科学规范兽用化学药品生物等效性研究,保障兽药安全、有效、质量可控,在已发布实施的《兽用化学药品生物等效性试验指导原则》基础上,农业农村部兽药评审中心参考相关最新技术指导原则,结合国内兽药研究现状,修订发布了《兽用化学药品血药浓度法生物等效性试验技术指导原则》。本文针对该指导原则的适用范围、试验设计的内容进行阐述,旨在加强研发单位或相关临床试验机构对此指导原则的理解,对生物等效性试验的有效开展提供指导与帮助。  相似文献   

11.
Despite their key role in a wide range of fields relating to animal and public health, there is currently a lack of veterinary pathologists in Europe. In 1999, to help address the problem, the European College of Veterinary Pathologists (ECVP) and the European Society of Veterinary Pathology (ESVP) established a joint Education Committee. In this Special Article, Professor Anja Kipar and colleagues, all members of the committee, describe the ECVP/ESVP Summer Schools in Veterinary Pathology programme, which aims to provide high-quality research training for veterinary pathologists from all over Europe and beyond.  相似文献   

12.
As all laboratory equipment ages and contains components that may degrade with time, initial and periodically scheduled performance assessment is required to verify accurate and precise results over the life of the instrument. As veterinary patients may present to general practitioners and then to referral hospitals (both of which may each perform in‐clinic laboratory analyses using different instruments), and given that general practitioners may send samples to reference laboratories, there is a need for comparability of results across instruments and methods. Allowable total error (TEa) is a simple comparative quality concept used to define acceptable analytical performance. These guidelines are recommendations for determination and interpretation of TEa for commonly measured biochemical analytes in cats, dogs, and horses for equipment commonly used in veterinary diagnostic medicine. TEa values recommended herein are aimed at all veterinary settings, both private in‐clinic laboratories using point‐of‐care analyzers and larger reference laboratories using more complex equipment. They represent the largest TEa possible without generating laboratory variation that would impact clinical decision making. TEa can be used for (1) assessment of an individual instrument's analytical performance, which is of benefit if one uses this information during instrument selection or assessment of in‐clinic instrument performance, (2) Quality Control validation, and (3) as a measure of agreement or comparability of results from different laboratories (eg, between the in‐clinic analyzer and the reference laboratory). These guidelines define a straightforward approach to assessment of instrument analytical performance.  相似文献   

13.
Falconry is a long-standing tradition in the United Arab Emirates (UAE), and in 2016, falconry was included by UNESCO in the list of intangible cultural heritage of humanity. The health and wellness of falconry raptors is a priority for the local culture; plasma chemistry analysis plays an important role in monitoring, assessing, and managing diseases in avian patients. Imbalances of Cu, Mg, and Zn have been linked to several diseases in avian species; therefore, determining the reference intervals (RIs) of these minerals has important implications in the clinical management of falcons. We determined the RIs in plasma for Cu, Mg, and Zn in captive (falconry-managed) falcons according to the Quality Assurance and Laboratory Standards Committee of the American Society for Veterinary Clinical Pathology, and the Clinical Laboratory Standards Institute guidelines. Blood chemistry analyses were carried out on 252 clinically healthy falcons examined at the Dubai Falcon Hospital in the UAE: 124 gyrfalcons (Falco rusticolus) and 128 falcons of other species. We observed no significant variation in RIs of Cu (1.5–7.0 µmol/L), Mg (0.49–0.78 mmol/L), or Zn (11.8–34.1 µmol/L) based on different species or sex.  相似文献   

14.
A protocol was presented for uniform evaluation and reporting of hematologic data in veterinary clinical laboratories. The protocol was used in the Clinical Pathology Laboratory at Michigan State University for 2 years and was found to improve the recognition and quantification of morphologic changes in blood smears.  相似文献   

15.
The Education Committee of the American Society for Veterinary Clinical Pathology has identified a need for improved structure and guidance of training residents in clinical pathology. This article is the third in a series of articles that address this need. The goals of this article are to describe learning objectives and competencies in knowledge, abilities, and skills in cytopathology and surgical pathology (CSP); provide options and ideas for training activities; and identify resources in veterinary CSP for faculty, training program coordinators, and residents. Guidelines were developed in consultation with Education Committee members and peer experts and with evaluation of the literature. The primary objectives of training in CSP are: (1) to develop a thorough, extensive, and relevant knowledge base of biomedical and clinical sciences applicable to the practice of CSP in domestic animals, laboratory animals, and other nondomestic animal species; (2) to be able to reason, think critically, investigate, use scientific evidence, and communicate effectively when making diagnoses and consulting and to improve and advance the practice of pathology; and (3) to acquire selected technical skills used in CSP and pathology laboratory management. These guidelines define expected competencies that will help ensure proficiency, leadership, and the advancement of knowledge in veterinary CSP and will provide a useful framework for didactic and clinical activities in resident‐training programs.  相似文献   

16.
After 5 years of development, the European College of Veterinary Clinical Pathology (ECVCP) was formally recognized and approved on July 4, 2007 by the European Board of Veterinary Specialisation (EBVS), the European regulatory body that oversees specialization in veterinary medicine and which has approved 23 colleges. The objectives, committees, basis for membership, constitution, bylaws, information brochure and certifying examination of the ECVCP have remained unchanged during this time except as directed by EBVS. The ECVCP declared full functionality based on the following criteria: 1) a critical mass of 65 members: 15 original diplomates approved by the EBVS to establish the ECVCP, 37 de facto diplomates, 7 diplomates certified by examination, and 5 elected honorary members; 2) the development and certification of training programs, laboratories, and qualified supervisors for residents; currently there are 18 resident training programs in Europe; 3) administration of 3 annual board-certifying examinations thus far, with an overall pass rate of 70%; 4) European consensus criteria for assessing the continuing education of specialists every 5 years; 5) organization of 8 annual scientific congresses and a joint journal (with the American Society for Veterinary Clinical Pathology) for communication of scientific research and information; the College also maintains a website, a joint listserv, and a newsletter; 6) collaboration in training and continuing education with relevant colleges in medicine and pathology; 7) development and strict adherence to a constitution and bylaws compliant with the EBVS; and 8) demonstration of compelling rationale, supporting data, and the support of members and other colleges for independence as a specialty college. Formal EBVS recognition of ECVCP as the regulatory body for the science and practice of veterinary clinical pathology in Europe will facilitate growth and development of the discipline and compliance of academic, commercial diagnostic, and industry laboratories in veterinary clinical pathology. Future needs are in developing sponsorship for resident positions, increasing employment opportunities, increasing compliance with laboratory, training, and continuing education standards, and advancing relevant science and technology.  相似文献   

17.
Veterinary schools in Australia and New Zealand are assessed for accreditation purposes every six years by the Veterinary Schools Accreditation Advisory Committee (VSAAC), which is a standing committee of the Australasian Veterinary Boards Council (AVBC).1 Prior to undertaking an assessment, VSAAC requests a Self Evaluation Report from the school and subsequently spends a week on site to collect additional information. The committee also takes into consideration other quality assurance procedures within the university and aims for a process that complements other evaluation activities. Internal evaluation procedures within VSAAC are designed to reflect the process and outcomes of each visit and lead to annual revisions of the publication Policies, Procedures and Guidelines publication. The committee has close links with the Royal College of Veterinary Surgeons (RCVS), and there is a routine exchange of observers on all visits in the United Kingdom and Australasia. In recent years VSAAC has become increasingly interested in looking at ways to place greater emphasis on the outcomes of veterinary education and, eventually, to reduce our reliance on input measures. There has been good progress in identifying desirable attributes for veterinary graduates, but further work is needed to establish the reliability of assessment procedures. The Australasian accreditation system is very supportive of recent moves to achieve greater compatibility of veterinary accreditation systems in different parts of the world because we believe it has the potential to assist globalization of animal disease control and veterinary education.  相似文献   

18.
The clinical hematology practices utilized at veterinary teaching hospitals and private veterinary diagnostic laboratories were surveyed using a questionnaire. The hematology caseload at private diagnostic laboratories was larger, and comprised predominantly of canine and feline submissions. The Coulter S Plus IV and Serono Baker 9000 were the hematology analyzers used most frequently at veterinary medical laboratories. The Abbott Cell-Dyn 3500, a multispecies analyzer capable of leukocyte differential counting, was utilized more by private laboratories. Commercial hematology control reagents were used at all laboratories; teaching hospital laboratories more often used reagents supplied by the manufacturer of the analyzer. A greater percentage of private diagnostic laboratories participated in the external quality assurance programs offered by Veterinary Laboratory Association and College of American Pathologists. While private diagnostic laboratories retained the EDTA blood specimens longer after initial testing, the teaching hospital laboratories retained blood smears and complete blood count reports longer. The complete blood count reports at veterinary teaching laboratories more often included red blood cell volume distribution width, mean platelet volume, manual hematocrit, plasma protein, and leukocyte differentials as absolute concentrations. The laboratory practices utilized by these veterinary medical laboratories were generally similar, and differences were attributed to divergent emphasis on economic accountability and clinical investigation.  相似文献   

19.
Background: The Education Committee of the American Society for Veterinary Clinical Pathology identified a need for improved structure and guidance of clinical pathology resident training in clinical chemistry.
Objectives: The committee's goal was to develop learning objectives and competencies in knowledge, abilities, and skills in clinical chemistry; provide options and ideas for training activities; and identify clinical chemistry resources useful for clinical pathology faculty, training program coordinators, and residents.
Methods: Guidelines were developed and written with the input of Education Committee members and peer experts.
Results: The primary objectives of clinical chemistry training are: 1) to accrue a thorough, extensive, and relevant knowledge base of the types, principles, and properties of clinical chemistry tests and concepts of pathophysiology in animals; 2) to develop abilities to reason, think critically, and exercise judgment in clinical chemistry data interpretation, investigative problem-solving, and hypothesis-driven research; and 3) to acquire technical and statistical skills important in clinical chemistry and laboratory operations.
Conclusions: These guidelines define expected competencies that will help ensure proficiency, leadership, and the advancement of knowledge in veterinary clinical chemistry and provide a useful framework for didactic and clinical activities in resident training programs. The learning objectives can readily be adapted to institutional and individual needs, interests, goals, and resources.  相似文献   

20.
OBJECTIVE: To describe antimicrobial susceptibility testing practices of veterinary diagnostic laboratories in the United States and evaluate the feasibility of collating this information for the purpose of monitoring antimicrobial resistance in bacterial isolates from animals. DESIGN: Cross-sectional study. PROCEDURES: A questionnaire was mailed to veterinary diagnostic laboratories throughout the United States to identify those laboratories that conduct susceptibility testing. Nonrespondent laboratories were followed up through telephone contact and additional mailings. Data were gathered regarding methods of susceptibility testing, standardization of methods, data management, and types of isolates tested. RESULTS: Eighty-six of 113 (76%) laboratories responded to the survey, and 64 of the 86 (74%) routinely performed susceptibility testing on bacterial isolates from animals. Thirty-four of the 36 (94%) laboratories accredited by the American Association of Veterinary Laboratory Diagnosticians responded to the survey. Laboratories reported testing > 160,000 bacterial isolates/y. Fifty-one (88%) laboratories reported using the Kirby-Bauer disk diffusion test to evaluate antimicrobial susceptibility; this accounted for 65% of the isolates tested. Most (87%) laboratories used the NCCLS (National Committee for Clinical Laboratory Standards) documents for test interpretation. Seventy-five percent of the laboratories performed susceptibility testing on bacterial isolates only when they were potential pathogens. CONCLUSIONS: The veterinary diagnostic laboratories represent a comprehensive source of data that is not easily accessible in the United States. Variability in testing methods and data storage would present challenges for data aggregation, summary, and interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号