首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 593 毫秒
1.
空气流速对温室地下蓄热系统加温时热湿传递的影响   总被引:1,自引:0,他引:1  
为确定温室地下蓄热系统换热管道空气流速对其加温运行时热量交换和水蒸气迁移的影响,测试了该系统以不同换热管道空气流速蓄热后,夜间加温时换热管道进出口空气温度与湿度、地坪温度、室外温度,计算了换热管道进出口处空气的含湿量、焓、蓄热功率.结果表明,在冬季晴朗的天气下,系统以0.6、1.0、1.5、2.0、2.5、2.8 m/s的换热管道空气流速白昼蓄热后,夜间以与蓄热时相同的空气流速加温时,温室内低温高湿空气流经换热管道后,温度、焓显著增加,相对湿度明显降低,加温功率随换热管道流速增加而增加,平均加温功率分别达1.0、1.6、3.2、6.4、7.2、7.7 kW;当换热管道空气流速小于2 m/s时,加温效果不显著;当换热管道空气流速大于2.5 m/s时持续加温能力差;在满足作物夜间生长所需温度条件时,应以2.0 m/s的换热管道空气流速加温.  相似文献   

2.
温室地下蓄热系统换热管道空气流速对蓄热效果影   总被引:1,自引:0,他引:1  
为确定双层覆盖温室地下蓄热系统换热管道空气流速对蓄热增温效果及对温室温度与湿度环境的影响,分别测试了该系统换热管道以不同空气流速蓄热时换热管道进出口空气温度和湿度、地坪温度以及相邻无蓄热系统温室内的气温、土壤温度和室外温度.结果表明,白昼晴朗时,当换热管道内空气以流速0.6、1.0、1.5、2.0、2.5、2.8 m/s进行蓄热时,地坪温度均高于相邻无蓄热系统温室内的土壤温度,平均温差分别为0.8、1.1、3.1、3.9、4.3、5.6℃,系统蓄热效果随换热管道空气流速增加而增强.在系统换热管道内空气流速以0.6~2.8 m/s蓄热时,温室内热空气流经换热管道温度明显降低,使蓄热温室内的气温低于相邻温室气温0.1~0.6℃,但蓄热温室气温在常见温室栽培作物所需的适宜温度范围内,换热管道以不同空气流速蓄热对温室的温度环境影响较小.  相似文献   

3.
温室地下蓄热系统蓄热和加温性能   总被引:3,自引:1,他引:2  
针对温室地下蓄热系统热量损失大、系统运行效率低的缺点,设计了一种新型温室地下蓄热系统,测试了蓄热与加温时进出口空气温度、湿度、换热管道出口处流速、土壤温度。试验结果表明,系统蓄热与加温时空气流经换热管道温度、焓值变化明显,平均蓄热热流密度为23-81W/m^2,平均加温热流密度为82-96W/m^2,能够明显提高苗床温度,蓄热量与加温热量均是系统消耗电能的10倍以上,节能效果明显。  相似文献   

4.
日光温室带竖向空气通道的太阳能相变蓄热墙体体系   总被引:12,自引:0,他引:12  
基于已有日光温室专用多曲面槽式空气集热器,提出一种带竖向空气通道的太阳能相变蓄热墙体构筑体系,通过主动与被动相结合的蓄热方式,提高日光温室后墙体的太阳能热利用率。为了验证构筑体系的科学性和可行性,分别搭建了日光温室专用多曲面槽式空气集热器试验系统和带竖向空气通道的相变蓄热墙体试验系统,分析了太阳辐射强度、集热器内空气流速、日光温室中间显热蓄热墙体层内空气流动参数(空气流速、空气通道间距、空气流动方向)等对空气集热器太阳能热利用率以及墙体主动蓄热能力的影响规律。研究结果表明:当集热器内空气速度为1.4~1.8 m/s时,集热器的综合集热性能最佳,集热量随着太阳辐射强度的增加而升高;当墙体内竖向空气通道间距为400 mm、空气通道内空气速度为0.26 m/s、空气流动方向为上进下出时,相变蓄热墙体换热效率为66.2%,主动蓄热量约为9.43 MJ/m3,其中中间砌块层的蓄热量约占82.3%,墙体日蓄放热效率为98.4%。  相似文献   

5.
温室地下蓄热系统温度的分布试验   总被引:1,自引:0,他引:1  
设计了温室地下蓄热系统,并测试了系统冬季白昼蓄热与夜间加温时温室内空气温度、地坪温度。结果表明,系统蓄热时,温室内纵向最大气温差为1.9℃,地坪温度沿温室横向、纵向变化幅度小,且随着蓄热过程的进行,气温、地温趋于一致;加温时,温室内纵向最大气温差为0.8℃,地坪横向、纵向最大温差分别为0.6℃、1.9℃,温度分布均匀。  相似文献   

6.
日光温室不同厚度土墙体蓄放热特性研究   总被引:4,自引:0,他引:4  
为实现土墙日光温室结构优化及温室土墙体轻简化,以泰安市不同厚度土墙日光温室为研究对象,利用在两温室(1号墙体较厚、2号墙体较薄)北墙体的不同高度上布置的温度传感器采集的数据,比较分析了在不同天气状况条件下两温室不同厚度土墙体的蓄放热特性。结果表明,晴好天气时,1号温室土墙体的蓄热量和放热量略高于2号温室,二者差值很小,分别为82.3、45.0 k J。连阴天时墙体全天放热,测试3 d的平均放热量,1号温室明显高于2号温室,厚墙体与薄墙体的放热量有明显差异,其二者差值为615.9 k J,但两温室距离墙体内表面0.1 m处的平均气温相差仅0.6℃。从距墙体内表面0.6 m以外的墙体温度相对稳定部分的温度分析表明,厚墙体温室(1号温室)温度相对稳定层的范围较薄墙体温室的大,蓄积热量也较多,应采取有效的换热设备或材料,将厚墙体内温度相对稳定层蓄积的热量释放到温室内部,用于进一步提高温室气温,以充分发挥厚墙体的节能效果。  相似文献   

7.
为提高日光温室土地利用率、增大日光温室操作空间,设计了一种新型南北走向的大跨度温室。该温室在夏天种植作物时,室内温度较高,尤其在晴天,即便通风口全开进行自然通风,中午温室内温度亦可高达40 ℃以上。为降低大跨度温室内温度,该文提出了一种高压喷雾降温方法,高压喷雾装置由过滤器、储水箱、管道、高压泵、控制器解压阀和喷头组成。根据现有的研究理论,计算温室的喷雾量为0.27 g/(m2·s),选择锥心式喷头,喷头孔径为0.3 mm,雾滴直径为0.02~0.03 m,喷头流量为1.3~2.4 g/s,喷头安装密度为0.3个/m2。试验期间设置了60 s开300 s关、90 s开300 s关和120 s开300 s关的3种喷雾运行模式,并在夏季典型晴天开展了喷雾降温试验,选择室外环境差异小的3个典型晴天的3个时段进行比较。试验结果表明,3种喷雾系统运行模式下,试验温室与对照温室相比,气温分别要低3.0、5.1和6.0 ℃,空气相对湿度分别增加10.2%、20.1%和23.8%。同等室外环境条件下,3种喷雾系统运行模式下的喷雾蒸发冷却效率分别为26.3%、39.4%和47.2%,从降温效果、空气相对湿度增加量及喷雾蒸发冷却效率结合来看,系统运行120 s关闭300 s的喷雾模式的降温效果最为理想。综合认为,该研究为北方大跨度温室夏季降温调控奠定了基础。   相似文献   

8.
为了减少温室加温能耗,基于植物生理设计了温室地下蓄热系统,测试了系统冬季白昼蓄热与夜间加温时温室内空气温度、湿度和地坪温度和室外气温、土壤温度、相邻未蓄热温室气温和地温。结果表明:在冬季白昼为晴朗、多云时,系统蓄热可分别使地坪温度平均高于未蓄热温室地温4.8℃,4.4℃,具有良好的蓄热效果;阴天时蓄热时间应适当缩短,但由于长期蓄热,其地温仍高于相邻温室2.6℃。在白昼为晴朗、多云、阴天的情况下,夜间系统加温使温室内气温分别高于相邻未蓄热温室3.1℃,2.0℃,1.5℃,与外界分别保持3.95℃,3.21℃,2.35℃的平均温差,在加温期间具有良好的加温效果,至少可以满足温室加温能耗的35.7%。  相似文献   

9.
不同墙体结构日光温室保温效果的研究   总被引:2,自引:0,他引:2  
为明确墙体结构对日光温室保温性能的影响,以3种不同墙体结构的日光温室为研究对象,计算了日光温室各组成元素的热工性能,分析了不同结构温室的墙体温度分布、温室内空气温湿度以及土壤温度分布。研究结果表明,厚度为0.6m的秸秆块墙体的热阻是平均厚度4.0m土墙体热阻的2.54倍,土墙体导热系数和蓄热系数分别是厚度为0.6m秸秆块墙体导热系数的16.91倍和11.42倍;墙体温度梯度显示土墙体厚度方向上的温度衰减速率最小,其次是0.6m厚秸秆块墙体,0.46m厚秸秆块墙体温度衰减速率最大。试验期间,SBWG1、SBWG2和SWG中空气的平均温度分别为3 0.8℃,3 2.1℃和3 2.6℃,温室中土壤在0 cm、1 0 cm和2 0 cm处温度(2月份)分别为26.2、14.1、13.9,25.2、16.5、15.1、27.2、17.5、17.2℃。秸秆块墙体日光温室在保温性能及湿度调解方面优势明显,在蓄热性能和土壤温度方面需要提高,以达到土墙体日光温室的保温效果。  相似文献   

10.
可变边界条件下的Venlo温室温度场三维非稳态模拟   总被引:3,自引:0,他引:3  
以外界温度、太阳辐射、风速风向作为随时间变化的边界条件,基于CFD方法建立了Venlo温室自然通风三维非稳态数学模型。结果显示,模拟值与实测值均方根误差RMSE为0.688℃,最大相对误差为8.9%,平均相对误差为2.8%,所建立CFD模型可以准确地描述室内温度场的时空变化。从整个模拟周期上看,温室内温度和室外温度变化趋势一致,室内温度和室外温度平均温差3.09℃;当室外风速从0.81 m/s跃变至1.2 m/s,风向由西南偏南变为西时,温室西侧迎风口局部气流速度出现了先增大后减小的变化模式,温室东侧上部气流速度明显增加,除温室迎风口附近区域外大部分作物区域气流速度维持在0~0.1 m/s的范围内,温室通风入口处x=1.5 m截面和作物冠层y=1.4 m截面平均温度在180 s内分别下降了1.87℃和0.92℃,室外风速风向对温室自然通风降温效果影响显著。  相似文献   

11.
针对温室加温能耗大的突出问题,设计了双层覆盖温室地下蓄热系统。测试了冬季夜间保温时温室内外温度、湿度,计算了达到同样环境温度时燃煤热水锅炉加温所需能耗及燃料成本。结果表明,在冬季白昼为晴天、多云、阴天时,双层覆盖温室地下蓄热系统蓄热后,夜间保温时温室内温度分别高于外界温度5.1~9.8℃、4.8~6.9℃、4.2~6.4℃,室内外平均温差分别为6.9℃、5.4℃、5.3℃,其能耗费用低于燃煤热水锅炉加温费用,系统具有良好的保温性能,节能效果明显。  相似文献   

12.
燃气机热泵余热利用理论分析   总被引:4,自引:0,他引:4       下载免费PDF全文
对燃气机热泵余热利用方式进行了理论分析,从能量平衡角度分析了除霜的可行性,计算结果表明:除霜热量占余热回收总量的比值为6.5%~9.5%;在不同的除霜周内,制冷剂气化热量占回收余热总量的比值变化较大,最大不超过45%,从能量角度利用余热除霜是可行的;燃气机热泵的Cop可以提高30%,一次能源利用率在1.3~1.8,可见利用余热供热对提高燃气机热泵的性能系数具有重要的意义。  相似文献   

13.
对热风式相变蓄热陶瓷远红外散热系统进行研究,将几种高效的蓄热相变材料有机结合在一起,对各成分占比进行优化、对装置材料及封装外形研究,解决温室热能的储存和释放,采用石蜡、石墨烯、水质量占比为6∶1∶1的复合相变材料进行试验,其蓄放热时间可延长为原来的3倍左右,对热能的利用具有重要的意义,拥有广阔的市场前景。  相似文献   

14.
刘建禹  陈立  冯江 《农机化研究》2000,(3):40-42,47
分析了用于回收畜禽舍通风系统余热的板翅式热交换器的传热特性,提出了其传热过程的计算方法,为今后畜禽舍通风系统余热回收板翅式热交换器传热性的试验研究提供了理论根据。  相似文献   

15.
Free-convection heat transfer between heating pipes and air, horizontal screen and air and inner roof surface and air was studied experimentally in twin-span glasshouses, under constant heat flux conditions. Among other results, equation coefficients between Nusselt and Rayleigh numbers are presented for the inner surface of the greenhouse roof, screen surfaces and heating pipes. Special attention is given to the influence of the location of the heating pipes relative to the screen, as well as the presence of a crop, upon the convective heat transfer between different surfaces and air. The equation coefficients obtained in this work are between 2 and 75% greater than the equivalent equation coefficients found for smooth plates and cylinders by other authors.  相似文献   

16.
针对热泵除湿干燥系统因降温除湿致使干燥介质热空气温度偏低,影响稻谷干燥速率和能耗,在热泵蒸发器两侧设计一套分离式热管换热器,对环境空气进行预冷却和预加热,在不增加能耗的前提下,提高了热泵除湿系统的除湿量和干燥空气的温度。试验研究表明当环境温度为27℃、空气相对温度为60%~78%时,热管换热器对应降低除湿能耗28.4%~9.6%。在环境温度为26.2℃、空气相对湿度为80.2%时,热管辅助热泵除湿稻谷干燥能耗为1560kJ/kg,相对热泵除湿干燥系统节能18.2%。  相似文献   

17.
分别给出了烟气在管槽内强迫流动时的换热和空气横向绕流管束时的换热计算方法,确定了管内外换热的大小和强弱,并指出管外换热强度必须大于或等于管内换热强度。同时,检验巳定参数的合理性,为下一步进行换热器的系列设计计算提供依据。  相似文献   

18.
以CFD软件Fluent和FEA软件ABAQUS为仿真计算平台,建立了柴油机气缸盖与冷却水腔所组成的流固耦合传热模型,进行了流体与固体之间的传热仿真模拟。为反映沸腾换热的影响,基于单相流沸腾换热模型编写相关子程序,并嵌入到Fluent软件中。结果表明:与不考虑沸腾传热的单相流对流传热计算结果相比,沸腾换热可有效强化缸盖冷却水套内的传热,降低缸盖的高热负荷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号