首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Leaching of dissolved organic matter (DOM) from pastoral soils is increasingly seen as an important but poorly understood process. This paper examined the relationship between soil chemical properties, microbial activity and the losses of dissolved organic carbon (DOC) and nitrogen (DON) through leaching from six pasture soils. These soils differed in carbon (C) (4.6–14.9%) and nitrogen (N) (0.4–1.4%) contents and in the amount of organic C and N that had accumulated or been lost in the preceding 20+ years (i.e. −5131 to +1624 kg C ha−1 year−1 and −263 to +220 kg N ha−1 year−1, respectively). The paper also examined whether between‐soil‐type differences in DOC and DON leaching was a major explanatory factor in the observed range of soil organic matter (SOM) changes in these soils. Between 280 and 1690 kg C ha−1 year−1 and 28–117 kg N ha−1 year−1 leached as DOC and DON, respectively, from the six soils in a lysimeter study, with losses being greater from two poorly drained gley soils. Losses of C and N of this magnitude, while at the upper end relative to published data, could not fully explain the losses at Rawerawe, Bruntwood and Lepperton sites reported by Schipper et al. (2007) . The study highlights the leaching of DOM as a significant pathway of loss of C and N in pasture soils that is often ignored or given little attention in predictive models and nutrient budgeting. Leaching losses of DOC and DON alone, or in combination with slightly increased respiration losses of SOM given a 0.2°C increase in the mean annual soil temperature, do not fully explain long‐term changes in the SOM observed at these sites. When soils examined in the present study were separated on the basis of drainage class, the losses of DOC by leaching were correlated with both total and hot‐water extractable C (HWC), the latter being a measure of the labile SOM fraction. Basal microbial CO2 respiration rates, which varied between 1 and 3.5 µg CO2‐C g−1 soil hour−1 in surface soils (0–75‐mm depth), was also linked to HWC and the quantities of C lost as DOC. Adoption of the HWC method as an approach that could be used as a proxy for the direct measurement of the soil organic C lost by leaching as DOC or respired needs to be examined further with a greater number of soils. In comparison, a poor relationship was found between the hot‐water extractable N (HWN) and loss of DON by leaching, despite HWN previously being shown to be a measure of the mineralizable pool of N in soils, possibly reflecting the greater competition for N than C in these soils.  相似文献   

2.
We investigated the importance of physico‐chemical mechanisms responsible for the release of dissolved organic matter (DOM) from a peaty soil. Columns containing peat aggregates (embedded within a sand matrix) provided an experimental system in which both convective and diffusive processes contributed to DOM leaching. The use of aggregated peat avoided the problems associated with traditional batch equilibration experiments in which soil structure is destroyed. Biotic and abiotic processes operating in the columns were manipulated by working with two unsterilized columns (at 5°C and 22°C) and one gamma irradiation‐sterilized column (5°C). Continuous solute flows (< 80 hours) and periods of flow interruption (five interruptions of 6 hours to 384 hours) were applied to the columns (using a 1‐mm NaCl electrolyte) to investigate mechanisms of diffusion‐controlled release of DOM. For all columns, dissolved organic carbon and nitrogen (DOC and DON) effluent concentrations increased after resumption of flow and the maximum concentrations increased with increased flow‐interruption duration. Measurements of effluent UV absorbance (λ= 285 nm) showed that the DOM leached immediately after the flow interruptions contained fewer aromatic moieties of lower molecular weight than the DOM leached after periods of steady flow. The sterilized column had larger DOC and DON effluent concentration spikes than those from the unsterilized column at 5°C (38 mg C dm−3 and 6.5 mg N dm−3 versus 13 mg C dm−3 and 6.5 mg N dm−3 after the 384 hours flow interruption). This result suggested that the concentrations of DOM resulting from physico‐chemical release mechanisms (sterilized column) were attenuated by biological activity (unsterilized columns). Our results indicate that the peat’s microporous structure provides reservoirs of DOM that interact with solute in transport pores via abiotic, rate‐controlled mass transport. Hence, diffusion can influence the quantity and composition of DOM leached from peat in the field depending on intensity and duration of rainfall.  相似文献   

3.
Various biologically mediated processes are involved in the turnover of dissolved organic matter (DOM) in soil; however, relatively little is known about the dynamics of either the microbial community or the individual classes of organic molecules during the decomposition of DOM. We examined the net loss of DOC, the mineralisation of C to CO2 and the degradation of DOC from six different soils by soil microorganisms. We also quantified the changes in the concentrations of protein, carbohydrate and amino acid C during microbial biodegradation. Over a 70-day incubation period at 20°C, the mineralisation of DOC to CO2 was described by a double exponential model with a labile pool (half-life, 3–8 days) and a stable pool (half-life, 0.4–6 years). However, in nearly all cases, the mass loss of DOC exceeded the C released as CO2 with significant deviations from the double exponential model. Comparison of mass DOC loss, CO2 production and microbial cell counts, determined by epifluorescence microscopy, showed that a proportion of the lost DOC mass could be accounted for by microbial assimilation. Carbohydrate and protein C concentrations fluctuated throughout the incubation with a net change of between 3 to 13 and −30 to 22.4% initial DOC, respectively. No amino acid C was detected during the incubation period (level of detection, 0.01 mg C l−1).  相似文献   

4.
Tree species have significant effects on the availability and dynamics of soil organic matter. In the present study, the pool sizes of soil dissolved organic matter (DOM), potential mineralizable N (PMN) and bio-available carbon (C) (measured as cumulative CO2 evolution over 63 days) were compared in soils under three coniferous species — 73 year old slash (Pinus elliottii), hoop (Araucaria cunninghamii) and kauri (Agathis robusta) pines. Results have shown that dissolved organic N (DON) in hot water extracts was 1.5–1.7 times lower in soils under slash pine than under hoop and kauri pines, while soil dissolved organic C (DOC) in hot water extracts tended to be higher under slash pine than hoop and kauri pines but this was not statistically significant. This has led to the higher DOC:DON ratio in soils under slash pine (32) than under hoop and kauri pines (17). Soil DOC and DON in 2 M KCl extracts were not significantly different among the three tree species. The DOC:DON ratio (hot water extracts) was positively and significantly correlated with soil C:N (R2 = 0.886, P < 0.01) and surface litter C:N ratios (R2 = 0.768, P < 0.01), indicating that DOM was mainly derived from litter materials and soil organic matter through dissolution and decomposition. Soil pH was lower under slash pine (4.5) than under hoop (6.0) and kauri (6.2) pines, and negatively correlated with soil total C, C:N ratio, DOC and DOC:DON ratio (hot water extracts), indicating the soil acidity under slash pine favored the accumulation of soil C. Moreover, the amounts of dissolved inorganic N, PMN and bio-available C were also significantly lower in soils under slash pine than under hoop and kauri pines. It is concluded that changes in the quantity and quality of surface litters and soil pH induced by different tree species largely determined the size and quality of soil DOM, and plantations of hoop and kauri pine trees may be better in maintaining long-term soil N fertility than slash pine plantations.  相似文献   

5.
Dissolved organic matter (DOM) plays an important role in transport, storage and cycling of carbon (C) and nitrogen (N) in forest soils where litter is one of the main sources. The aim was to study the amount and characteristics of DOM leached from freshly fallen litters of silver birch (Betula pendula Roth.), Norway spruce (Picea abies (L.) Karst.) and their mixture during decomposition. DOM was collected after irrigation on eight occasions during 252 days incubation in the laboratory at about 18°C, including one freeze‐thaw cycle. During the incubation about 33–35% of C from birch and spruce litter and 40% of C from their mixture was lost. The total cumulative flux of dissolved organic carbon (DOC) from the mixture of litters was approximately 40% larger than that from single litters. The flux of DOC, DON, phenolic compounds and proteins followed a two‐stage pattern during decomposition. In the first stage the initially large fluxes decreased gradually. In the second stage, after freezing and thawing, the fluxes tended to increase again. Mixing birch and spruce litters and a freeze‐thaw cycle seems to increase the decomposition of litter and result in the increased flux of DOC, DON and phenolic compounds. The flux of hemicelluloses and the degradability of DOM were large at the first leaching occasion and decreased during the incubation. Birch had a 40% larger total flux of easily degradable DOM than spruce, supporting the previous consistent signs of greater microbial biomass and activities related to C and N cycling in soil under birch than under spruce. It is known that recalcitrant DOM might be stabilized whereas labile DOM may promote microbial activity and nutrient cycling. We conclude that the storage and cycling of C and N is affected by both tree species and degradation stage of litter in forest soils.  相似文献   

6.
Pyrogenic organic matter (PyOM), derived from the incomplete combustion of plant biomass and fossil fuels, has been considered one of the most stable pools of soil organic matter (SOM) and a potentially important terrestrial sink for atmospheric CO2. Recent evidence suggests that PyOM may degrade faster in soil than previously thought, and can affect native SOM turnover rates. We conducted a six-month laboratory incubation study to better understand the processes controlling the degradation of PyOM in soils using dual-enriched (13C/15N) PyOM and its precursor wood (Pinus ponderosa). We examined the effects of soil type and inorganic N addition on PyOM and wood C and N mineralization rates, microbial C utilization patterns, and native SOM turnover rates. PyOM charred at 450 °C or its precursor pine wood was incubated in two temperate forest subsoils with contrasting short range order (SRO) clay mineralogy (granite versus andesite parent material). Duplicates of experimental treatments with and without PyOM added were sterilized and abiotic C mineralization was quantified. In a second incubation, PyOM or wood was incubated in granitic soil with and without added NH4NO3 (20 kg N ha−1). The fate of 13C/15N-enriched PyOM and wood was followed as soil-respired 13CO2 and total extractable inorganic 15N. The uptake of 13C from PyOM and wood by soil microbial community groups was quantified using 13C-phospholipids fatty acids (PLFA). We found that (1) The mean residence time (MRT) of PyOM-C was on a centennial time scale (390–600 yr) in both soil types; (2) PyOM-C mineralization was mainly biologically mediated; (3) Fungi more actively utilized wood-C than PyOM-C, which was utilized by all bacteria groups, especially gram (+) bacteria in the andesite (AN) soil; (4) PyOM-N mineralization was 2 times greater in granite (GR) than in AN soils; (5) PyOM additions did not affect native soil C or N mineralization rates, microbial biomass, or PLFA-defined microbial community composition in either soil; (6) The addition of N to GR soil had no effect on the MRT of C from PyOM, wood, or native SOM. The centennial scale MRT for PyOM-C was 32 times slower than that for the precursor pine wood-C or native soil C, which is faster than the MRT used in ecosystem models. Our results show that PyOM-C is readily utilized by all heterotrophic microbial groups, and PyOM-C and -N may be more dynamic in soils than previously thought.  相似文献   

7.
The aim of this study was to determine whether tree species consistently affects soil microbial activities related to C and N cycling and to compare these activities with the characteristics of soil dissolved organic matter (DOM). Samples were taken from the mor-type organic layer (Of+Oh) underlain by podzols of six 20–72-year-old tree-species experiments on different site types in different parts of Finland. Sampling plots were dominated by silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst) or Scots pine (Pinus sylvestris L., only on four sites). Amounts of C and N in the microbial biomass and rates of C mineralization (CO2 production) and net N mineralization were determined, and water extracts were analysed for concentrations of DOC and DON and characterized according to molecular size by ultrafiltration and according to chemical composition using a resin fractionation technique. In all older stands, birch, compared to spruce or pine, increased soil pH, NH4-concentration and amounts of C and N in microbial biomass and decreased the C-to-N ratio and ratio of dissolved organic N (DON)-to-mineral N. Birch had similar effects also in part of the younger stands. Birch also increased the rates of both C and net N mineralization compared to spruce or pine but only on two sites. In all soils, net nitrification was low. The distribution of DOC into different fractions based on chemical composition and molecular size was rather similar in all soils. The most abundant chemical fraction was hydrophobic acids, and the most abundant molecular size fraction was 10–100 kDa. The C-to-N ratio varied but was lowest in hydrophilic bases and in the smallest molecular size class. Mineralization of C was highly and positively correlated with concentration of DOC (Pearson's correlation coefficient r = 0.9, P < 0.01). The results indicated close interactions between microbial processes and dissolved organic matter.  相似文献   

8.
Because dissolved organic matter (DOM) plays an important role is terrestrial C-, N- and P-balances and transport of these three components to aquatic environments, there is a need to include it in models. This paper presents the concept of the newly developed DOM modules implemented in the DAISY model with focus on the quantification of DOM sorption/desorption and microbial-driven DOM turnover. The kinetics of DOM sorption/desorption is described by the deviation of the actual DOM concentration in solution from the equilibrium concentration, Ceq. The Ceq is soil specific and estimated from pedotransfer functions taking into account the soil content of organic matter, Al and Fe oxides. The turnover of several organic matter pools including one DOM pool are described by first-order kinetics.The DOM module was tested at field scale for three soil treatments applied after cultivating grass–clover swards. Suction cups were installed at depths 30, 60 and 90 cm and soil solution was sampled for quantification of dissolved organic C (DOC) and dissolved organic N (DON). In the topsoil, the observed fluctuations in DOC were successfully simulated when the sorption/desorption rate coefficient k was low. In the subsoil, the observed concentrations of DOC were steadier and the best simulations were obtained using a high k. The model shows that DOC and DON concentrations are levelled out in the subsoils due to soil buffering. The steady concentration levels were based on the Ceq for each horizon and the kinetic concept for sorption/desorption of DOC appeared a viable approach. If Ceq was successfully estimated by the pedotransfer function it was possible to simulate the DOC concentration in the subsoil. In spite of difficulties in describing the DOC dynamics of the topsoil, the DOM module simulates the subsoil concentration level of DOC well, and also—but with more uncertainty—the DON concentration level.  相似文献   

9.
The individual effects of salinity and sodicity on organic matter dynamics are well known but less is known about their interactive effects. We conducted a laboratory incubation experiment to assess soil respiration and dissolved organic matter (DOM) dynamics in response to salinity and sodicity in two soils of different texture. Two non-saline non-sodic soils (a sand and a sandy clay loam) were leached 3–4 times with solutions containing different concentrations of NaCl and CaCl2 to reach almost identical electrical conductivity (EC1:5) in both soils (EC1:5 0.5, 1.3, 2.5 and 4.0 dS m?1 in the sand and EC1:5 0.7, 1.4, 2.5 and 4.0 dS m?1 in the sandy clay loam) combined with two sodium absorption ratios: SAR < 3 and 20. Finely ground wheat straw residue was added (20 g kg?1) as substrate to stimulate microbial activity. Cumulative respiration was more strongly affected by EC than by SAR. It decreased by 8% at EC 1.3 and by 60% at EC 4.0 in the sand, whereas EC had no effect on respiration in the sandy clay loam. The apparent differential sensitivity to EC in the two soils can be explained by their different water content and therefore, different osmotic potential at the same EC. At almost similar osmotic potential: ?2.92 MPa in sand (at EC 1.3) and ?2.76 MPa in the sandy clay loam (at EC 4.0) the relative decrease in respiration was similar (8–9%). Sodicity had little effect on cumulative respiration in the soils, but DOC, DON and specific ultra-violet absorbance (SUVA) were significantly higher at SAR 20 than at SAR < 3 in combination with low EC in both soils (EC 0.5 in the sand and EC 0.7 and 1.4 in the sandy clay loam). Therefore, high SAR in combination with low EC is likely to increase the risk of DOC and DON leaching in the salt-affected soils, which may lead to further soil degradation.  相似文献   

10.
Two processes contribute to changes of the δ13C signature in soil pools: 13C fractionation per se and preferential microbial utilization of various substrates with different δ13C signature. These two processes were disentangled by simultaneously tracking δ13C in three pools - soil organic matter (SOM), microbial biomass, dissolved organic carbon (DOC) - and in CO2 efflux during incubation of 1) soil after C3-C4 vegetation change, and 2) the reference C3 soil.The study was done on the Ap horizon of a loamy Gleyic Cambisol developed under C3 vegetation. Miscanthus giganteus - a perennial C4 plant - was grown for 12 years, and the δ13C signature was used to distinguish between ‘old’ SOM (>12 years) and ‘recent’ Miscanthus-derived C (<12 years). The differences in δ13C signature of the three C pools and of CO2 in the reference C3 soil were less than 1‰, and only δ13C of microbial biomass was significantly different compared to other pools. Nontheless, the neglecting of isotopic fractionation can cause up to 10% of errors in calculations. In contrast to the reference soil, the δ13C of all pools in the soil after C3-C4 vegetation change was significantly different. Old C contributed only 20% to the microbial biomass but 60% to CO2. This indicates that most of the old C was decomposed by microorganisms catabolically, without being utilized for growth. Based on δ13C changes in DOC, CO2 and microbial biomass during 54 days of incubation in Miscanthus and reference soils, we concluded that the main process contributing to changes of the δ13C signature in soil pools was preferential utilization of recent versus old C (causing an up to 9.1‰ shift in δ13C values) and not 13C fractionation per se.Based on the δ13C changes in SOM, we showed that the estimated turnover time of old SOM increased by two years per year in 9 years after the vegetation change. The relative increase in the turnover rate of recent microbial C was 3 times faster than that of old C indicating preferential utilization of available recent C versus the old C.Combining long-term field observations with soil incubation reveals that the turnover time of C in microbial biomass was 200 times faster than in total SOM. Our study clearly showed that estimating the residence time of easily degradable microbial compounds and biomarkers should be done at time scales reflecting microbial turnover times (days) and not those of bulk SOM turnover (years and decades). This is necessary because the absence of C reutilization is a prerequisite for correct estimation of SOM turnover. We conclude that comparing the δ13C signature of linked pools helps calculate the relative turnover of old and recent pools.  相似文献   

11.
Microbial decomposition of extracted and leached dissolved organic carbon (DOC) and nitrogen (DON) was demonstrated from three pasture soils in laboratory incubation studies. DOC concentration in water extracts ranged between 29 and 148 mg C L?1 and DON concentration ranged between 2 and 63 mg N L?1. Between 17 and 61 % of the DOC in the water extracts were respired as CO2 by microbes by day 36. DON concentrations in the extracts declined more rapidly than DOC. Within the first 21 days of incubation, the concentration of DON was near zero without any significant change in the concentration of NO3 ? or NH4 +, indicating that microbes had utilized the organic pool of N preferentially. Decomposition of leached DOC (ranged between 7 and 66 mg C L?1) and DON (ranged between 6 and 11 mg N L?1) collected from large lysimeters (with perennial pasture; 50 cm diameter?×?80 cm deep) followed a similar pattern to that observed with soil extracts. Approximately 28 to 61 % of the DOC in leachates were respired as CO2 by day 49. The concentration of DON in the leachates declined to below 1 mg N L?1 within 7–14 days of the incubation, consistent with the observations made with extractable DON. Our results clearly show that DOC and DON components of the dissolved organic matter in pasture soils, whether extracted or leached, are highly decomposable and bioavailable and will influence local ecosystem functions and nutrient balances in grazed pasture systems and receiving water bodies.  相似文献   

12.
Rice residue management often leads to increased methane (CH4) emissions but the outcomes of edaphic and management factors are not always predictable. Rice residue can act as a substrate for CH4 production; however the role it plays in priming (mineralization) of soil organic matter (SOM) to release additional substrates for CH4 production are not well established. We anaerobically incubated a highly organic soil with 13C-enriched rice straw for 3 months to investigate its priming effect (PE) on SOM and source of C for CH4 production. Anaerobic decomposition of SOM was accompanied by iron (Fe) reduction with minimal CH4 production when straw was absent. Straw addition enhanced Fe reduction and increased CH4 production concurrently with a clear succession of microbial community structure and function assessed with phospholipid fatty acid (PLFA) profiling. The PE on CH4 production from SOM was strong and positive during the entire experiment. Overall, PE on SOM (CO2 plus CH4 production) was slightly positive at the end of the experiment, associated with only a 32% mineralization of the added straw-C (as CO2 plus CH4). Straw addition also released large amounts of dissolved organic carbon (DOC) from SOM. Our results suggest that straw addition effects on PE of SOM and CH4 production can last for a long period of time showing that straw will cause non-linear response in CH4 production and potentially result in significant losses of soil C as DOC by leaching or direct exports in histosols.  相似文献   

13.
The cycling of soil organic matter (SOM) by microorganisms is a critical component of the global carbon cycle but remains poorly understood. There is an emerging view that much of SOM, and especially the dissolved fraction (DOM), is composed of small molecules of plant and microbial origin resulting from lysed cells and released metabolites. Unfortunately, little is known about the small molecule composition of soils and how these molecules are cycled (by microbes or plants or by adsorption to mineral surfaces). The water-extractable organic matter (WEOM) fraction is of particular interest given that this is presumably the most biologically-accessible component of SOM. Here we describe the development of a simple soil metabolomics workflow and a novel spike recovery approach using 13C bacterial lysates to assess the types of metabolites remaining in the WEOM fraction. Soil samples were extracted with multiple mass spectrometry-compatible extraction buffers (water, 10 mM K2SO4 or NH4HCO3, 10–100% methanol or isopropanol/methanol/water [3:3:2 v/v/v]) with and without prior chloroform vapor fumigation. Profiling of derivatized extracts was performed using gas chromatography/mass spectrometry (GC/MS) with 55 metabolites identified by comparing fragmentation patterns and retention times with authentic standards. As expected, fumigation, which is thought to lyse microbial cells, significantly increased the range and abundance of metabolites relative to unfumigated samples. To assess the types of microbial metabolites from lysed bacterial cells that remain in the WEOM fraction, an extract was prepared from the soil bacterium Pseudomonas stutzerii RCH2 grown on 13C acetate. This approach produced highly labeled metabolites that were easily discriminated from the endogenous soil metabolites. Comparing the composition of the fresh bacterial extract with what was recovered following a 15 min incubation with soil revealed that only 27% of the metabolites showed >50% recovery in the WEOM. Many, especially cations (polyamines) and anions, showed <10% recovery. These represent metabolites that may be inaccessible to microbes in this environment and would be most likely to accumulate as SOM presumably due to binding with minerals and negatively-charged clay particles. This study presents a simple untargeted metabolomics workflow for extractable organic matter and an approach to estimate microbial metabolite availability in soils. These methods can be used to further our understanding of SOM and DOM composition and examine the link between metabolic pathways and microbial communities to terrestrial carbon cycling.  相似文献   

14.
Organic upland soils store large amounts of humified organic matter. The mechanisms controlling the leaching of this C pool are not completely understood. To examine the effects of temperature and microbial cycling on C leaching, we incubated five unvegetated soil cores from a Podzol O horizon (from NE Scotland), over a simulated natural temperature cycle for 1 year, whilst maintaining a constant soil moisture content. Soil cores were leached with artificial rain (177 mm each, monthly) and the leachates analysed for dissolved organic carbon (DOC) and their specific C‐normalized UV absorbance determined (SUVA, 285 nm). Monthly values of respiration of the incubated soils were determined as CO2 efflux. To examine the effects of vegetation C inputs and soil moisture, in addition to temperature, we sampled O horizon pore waters in situ and collected five additional field soil cores every month. The field cores were leached under controlled laboratory conditions. Hysteresis in the monthly amount of DOC leached from field cores resulted in greater DOC on the rising, than falling temperature phases. This hysteresis suggested that photosynthetic C stimulated greater DOC losses in early summer, whereas limitations in the availability of soil moisture in late summer suppressed microbial decomposition and DOC loss. Greater DOC concentrations of in‐situ pore waters than for any core leachates were attributed to the effects of soil drying and physico‐chemical processes in the field. Variation in the respiration rates for the incubated soils was related to temperature, and respiration provided a greater pathway of C loss (44 g C m−2 year−1) than DOC (7.2 g C m−2 year−1). Changes in SUVA over spring and summer observed in all experimental systems were related to the period of increased temperature. During this time, DOC became less aromatic, which suggests that lower molecular weight labile compounds were not completely mineralized. The ultimate DOC source appears to be the incomplete microbial decomposition of recalcitrant humified C. In warmer periods, any labile C that is not respired is leached, but in autumn either labile C production ceases, or it is sequestered in soil biomass.  相似文献   

15.
Properties of dissolved organic matter (DOM) determine its biodegradation. In turn, biodegradation changes the properties of the remaining DOM, which may be decisive for the formation of stable organic carbon in soil. To gain information on both mechanisms and controlling factors of DOM biodegradation and the properties of biodegraded DOM, we investigated changes in the composition of 13 different DOM samples extracted from maize straw, forest floors, peats, and agricultural soils during a 90-day incubation using UV absorbance, fluorescence emission spectroscopy, FTIR-spectroscopy, 1H-NMR spectroscopy, pyrolysis-field ionization mass spectroscopy (Py-FIMS), and 13C natural abundance before and after incubation. Changes in the DOM properties were related to the extent of biodegradation determined by the release of CO2. Increasing UV absorption and humification indices deduced from fluorescence emission spectra, and increasing portions of aromatic H indicated relative enrichment of aromatic compounds during biodegradation. This enrichment significantly correlated with the amount of DOC mineralized suggesting that aromatic compounds were relatively stable and slowly mineralized. 13C depletion during the incubation of highly degradable DOM solutions indicated an enrichment of lignin-derived aromatic compounds. Py-FI mass spectra indicated increasing contents of phenols and lignin monomers at the expense of lignin dimers and alkylaromatics during incubation. This partial degradation of higher-molecular, lignin-derived DOM compounds was accompanied by relative increases in the proportions of lower-molecular degradation products and microbial metabolites. Carbohydrates, especially when abundant at high initial contents, seem to be the preferred substrate for microorganisms. However, four independent methods suggested also some microbial production of carbohydrates and peptides during DOM degradation. After incubation, the composition of highly degradable DOM samples became similar to relatively stable DOM samples with respect to aromaticity, carbohydrate content, and thermal stability. We conclude that DOM biodegradation seems to result in organic matter properties being a precondition for the formation of stable carbon. These structural changes induced by DOM biodegradation should also result in stronger DOM sorption to the soil matrix additionally affecting DOM stabilization.  相似文献   

16.
Dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soils are increasingly recognized as important components of nutrient cycling and biological processes in soil‐plant ecosystems. The aims of this study were to: (i) quantify the pools of DON and DOC in a range of New Zealand pastoral soils; (ii) compare the effects of land use changes on these pools; and (iii) examine the seasonal variability associated with these two components of dissolved organic matter. Soil samples (0–7.5 cm depth) from 93 pastoral sites located in Northland, Waikato, Bay of Plenty and Otago/Southland, New Zealand, were collected in autumn. Adjacent sites under long‐term arable cropping or native vegetation and forestry land use were also sampled at the same time to estimate the impacts of different land use on DON and DOC in these soils. Twelve dairy and 12 sheep and or beef pastures were sampled in winter, spring, summer and autumn for a 2‐year period to study the seasonal fluctuations of DON and DOC. A field incubation study was also carried out in a grazed pasture to examine fluctuations in the concentrations of and and DON levels in soil. Other soil biological properties, such as microbial biomass‐C, biomass‐N and mineralizable N, were also measured. Pastoral soils contained the greatest amounts of DON (13–93 mg N kg−1 soil, equivalent to 8–55 kg N ha−1) and DOC (73–718 mg C kg−1 soil, equivalent to 44–431 kg C ha−1), followed by cropping and native vegetation and forestry soils. The DON concentration in soils was found to be more seasonally variable than DOC. There was approximately 80% fluctuation in the concentration of DON in winter from the annual mean concentration of DON, while DOC fluctuated between 23 and 28% at the dairy and the sheep and beef monitoring sites. Similar fluctuations in the concentrations of DON were also observed in the field incubation studies. These results indicate that DON is a dynamic pool of N in soils. There was a strong and significant positive correlation between DON and DOC in pastoral soils (r = 0.71, P < 0.01). There were also significant positive correlations between DON and total soil C (r = 0.59, P < 0.01), total soil N (r = 0.62, P < 0.01) and mineralizable N (r = 0.47, P < 0.01). The rather poor correlations between total soil C and N with DOC and DON, suggest other biogeochemical processes may be influencing concentrations of DOC and DON in these soils. Given the size of DON and DOC pools in the pastoral soils, we suggest that these pools of C and N should be taken into account when assessing the impact of pastoral land use on soil C and N enrichment of surface and groundwater.  相似文献   

17.
Dissolved organic matter (DOM) plays a central role in driving many chemical and biological processes in soil; however, our understanding of the fluxes and composition of the DOM pool still remains unclear. In this study we investigated the composition and dynamics of dissolved organic carbon (DOC) and nitrogen (DON) in five temperate coniferous forests. We subsequently related our findings to the inputs (litterfall, throughfall, atmospheric deposition) and outputs (leaching, respiration) of C and N from the forest and to plant available sources of N. With the exception of NO3?, most of the measured soil solution components (e.g. DOC, DON, NH4+, free amino acids, total phenolics and proteins) progressively declined in concentration with soil depth, particularly in the organic horizons. This decline correlated well with total microbial activity within the soil profile. We calculated that the amount of C lost by soil respiration each day was equivalent to 70% of the DOC pool and 0.06% of the total soil C. The rapid rate of amino acid mineralization and the domination of the low molecular weight soluble N pool by inorganic N suggest that the microbial community is C‐ rather than N‐limited and that C‐limitation increases with soil depth. Further, our results suggest that the forest stands were not N‐limited and were probably more reliant on inorganic N as a primary N source rather than DON. In conclusion, our results show that the size of the DON and DOC pools are small relative to both the amount of C and N passing through the soil each year and the total C and N present in the soil. In addition, high rates of atmospheric N deposition in these forests may have removed competition for N resources between the plant and microbial communities.  相似文献   

18.
The degradability and chemical characteristics of dissolved organic carbon (DOC) and nitrogen (DON) from the litter, F and H layers of silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) stands were studied in an incubation experiment. Soil dissolved organic matter (DOM) was collected by centrifugation. Degradability was assessed in an incubation experiment by measuring the loss of DOC and DON, the mineralization rate of DOC and the availability of DOM to both bacteria and fungi, and by estimating the proportion of labile DOC of the total DOC. The degradability of DOC was highest in the litter layer and in that layer under birch. In the F and H layers, however, the degradability was highest under spruce. The most degradable fractions were the hydrophilic neutral fraction of DOC, the hydrophilic base fraction of DON, and the phenol fraction, as well as the smallest (<1 kDa) and largest (>100 kDa) molecular size classes of both DOC and DON. The degradability of these fractions seemed to be related to their relatively low C-to-N ratios. The hydrophilic acid fraction and the molecular size class of 1-10 kDa were more abundant in the H layer than in the litter layer, and thus apparently indicating a more decomposed DOM. In general, the effect of tree species on DOM was more obvious in the litter layer than in the lower organic layers.  相似文献   

19.
Dissolved organic matter (DOM) has been recognised as a key carbon and nitrogen (N) pool involved with soil-plant-microbe interactions. Yet few studies have quantified this contribution in agricultural soils. In this study we leached DOM from a sandy loam and sandy clay loam soil under either grassland or arable cropping. Two weeks after DOM removal microbial respiration from soils was not altered. However, a significant (P<0.05) decline in microbial biomass-N, potentially mineralizable-N, gross N mineralization and gross nitrification occurred after leaching. This data illustrate that whilst DOM is a small component of the soil OM it contributed up to 25% of microbial N supply within these agricultural soils.  相似文献   

20.
We have sought to understand the molecular mechanisms by which dissolved organic matter (DOM) forms and soil organic matter (SOM) degrades in upland peaty gley soil under grass. Pyrolysis mass spectrometry (Py-MS) and pyrolysis gas chromatography mass spectrometry (Py-GC/MS) were applied to characterize the DOM collected from lysimeters and its parent SOM. The macromolecular organic matter in the litter and fermentation (Lf) horizon of the soil consists primarily of little decomposed lignocellulose from grass, whereas the humus (Oh) horizon is characterized by an accumulation of selectively decomposed lignocellulose material, microbial metabolites and bound fatty acids. The mineral horizon produced a relative enrichment of furan structures derived from microbial reworking of plant polysaccharides but virtually no lignin signals. A series of exceptional long chain C43 to C53 fatty acids with odd over even predominance, probably derived from mycobacteria, were also identified in the Oh horizon. Side-chain oxidation and shortening, increase of carboxyl functionality and selective removal of syringyl (S) > guaiacyl (G) > p-hydroxyphenyl (P) lignin units were the main reactions when lignin degraded. Compared with SOM, the DOM shows a large accumulation of more oxidized lignin and aromatic structures, especially those containing carboxylic and dicarboxylic acid functionalities and with shorter side-chain length. The polysaccharide-type compounds in the DOM were more modified (greater abundance of furan structures in pyrolysis products), and had significantly lower molecular weight and more diverse polymeric structures than did those in soils. Increased temperature and rainfall appeared to result in greater relative abundance of lignin degradation products and aromatic compounds in DOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号