首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy level is a critical factor controlling gonadal activity at various phases of reproduction. A female rat model has revealed that fasting‐induced luteinizing hormone (LH) suppression is mediated by a specific neural pathway, such as noradrenergic neurons originating in the A2 region and projecting to the hypothalamic paraventricular nucleus and corticotropin‐releasing hormone neurons. The pathway is shared with that mediating glucoprivic suppression of LH pulses. Among the peripheral signals altered by energy deficiency, glucose could be a signal molecule conveying the peripheral information to the brain to regulate feeding and gonadotropin‐releasing hormone/LH release through the noradrenergic pathway during undernutrition. The brain detects the energy availability to control feeding and reproductive function at various phases of an animal’s life. It is most likely that the central glucose‐sensing mechanism could be similar to the pancreatic one, involving a glucokinase‐mediated process to detect glucose availability. Further studies are needed to elucidate the mechanism integrating the energy signals.  相似文献   

2.
The Damaraland mole‐rat is a subterranean mammal exhibiting extreme reproductive skew with a single reproductive female in each colony responsible for procreation. Non‐reproductive female colony members are physiologically suppressed while in the colony, exhibiting reduced concentrations of plasma luteinizing hormone (LH) and a decreased response of the pituitary, as measured by the release of bioactive LH, to an exogenous dose of gonadotrophin releasing hormone (GnRH). Removal of the reproductive female from the colony results in an elevation of LH and an enhanced response of the pituitary to a GnRH challenge in non‐reproductive females comparable to reproductive females, implying control of reproduction in these individuals by the reproductive female. The Damaraland mole‐rat is an ideal model for investigating the physiological and behavioral mechanisms that regulate the hypothalamo–pituitary–gonadal axis. In contrast, we know less about the control of reproduction at the level of the hypothalamus. The immunohistochemistry of the GnRH system of both reproductive and non‐reproductive female Damaraland mole‐rats has revealed no significant differences with respect to morphology, distribution or numbers of immunoreactive GnRH perikarya. We examined whether the endogenous opioid peptide beta‐endorphin was responsible for the inhibition of the release of the GnRH from the neurons indirectly by measuring LH concentrations in these non‐reproductive females following single, hourly and 8 hourly injections of the opioid antagonist naloxone. The results imply that the endogenous opioid peptide, beta‐endorphin, is not responsible for the inhibition of GnRH release from the perikarya in non‐reproductive females. Preliminary data examining the circulating levels of cortisol also do not support a role for circulating glucocorticoids. The possible role of kisspeptin is discussed.  相似文献   

3.
The hypothalamic gonadotropin-releasing hormone (GnRH) is seen as the key hormone of neuroendocrine regulation of reproduction. The ability of GnRH and its analogues to stimulate the release of the gonadotropins FSH and LH is world-wide utilized for various veterinary purposes, including treatment of certain hormone-dependent disturbances and stimulation of ovulation in controlled breeding programmes. A large difference is striking, however, when comparing the efficiencies reported. This may underline the importance of accurate treatment and reflect the manifold influences by animals and their environment on reproductive performance. During the last years, novel analytical methods have been established enabling a significant progress in reproductive research. The discovery and characterization of natural GnRH variants and their receptors in several vertebrate species may become more important.The reason is, that these GnRHs affect the release of the gonadotropins FSH and LH, but they may transmit, moreover, seasonal and nutritive signals to reproductive organs. It might be expected that the further exploration of these functions may serve as basis for the development of new and effective biotechnical methods in farm animal treatment.  相似文献   

4.
Kisspeptins (Kp) are a family of neuropeptides produced mainly by two hypothalamic neuronal cell populations. They have recently emerged as a major regulator of the gonadotropin axis and their action is located upstream of the gonadotropin-releasing hormone (GnRH) cell population. In less than 10 yr a growing body of literature has demonstrated the involvement of these peptides in most, if not all, aspects of reproductive axis maturation and function. In contrast to these abundant basic research studies, few experiments have evaluated the potential application of Kp as tools to manipulate reproduction in domestic animals. In mammals, exogenous Kp administration potently stimulates gonadotropin secretion. This action is exerted mainly, if not exclusively, through the stimulation of GnRH release. Intravenous, intraperitoneal, or subcutaneous administration of Kp induced a robust and rapid increase in plasma gonadotropins (luteinizing hormone [LH] and follicle-stimulating hormone [FSH]). However, this stimulatory effect is of short duration. Prolonged LH and FSH release over several hours can be achieved only when Kp are given as repeated multiple bolus or as an infusion. Kp administration was used in two experimental models, ewe and pony mare, with the aim of inducing well-timed and synchronized ovulations. During the breeding season, progesterone-synchronized ewes were given an intravenous infusion of Kp starting 30 h after the removal of progesterone implants. An LH surge was induced in all Kp-treated animals within 2 h of infusion onset. In contrast, in pony mares a constant infusion of Kp for 3 d in the the late follicular phase was unable to induce synchronized ovulation. Another set of studies showed that Kp could be used to activate reproductive function in acyclic animals. Pulsatile administration of Kp in prepubertal ewe lambs was shown to activate ovarian function, leading to enhanced ovarian steroidogenesis, stimulation of LH preovulatory surge, and ovulation. In anestrous ewes, an intravenous infusion of a low dose of Kp induced an immediate and sustained release of gonadotropins, followed a few hours later by an LH surge. This hormonal pattern mimicked hormonal changes normally observed during the estrous cycle follicular phase and was associated with a high percentage of ovulating animals (80%). In summary, exogenous administration of Kp appears to be a new tool to manipulate reproduction. However, optimal doses and periods of treatment should be defined for each species, and the development of powerful analogs or long-term release formulations is necessary before large-scale applications in domestic animals could be envisaged.  相似文献   

5.
Increasing evidence suggests that orexins--hypothalamic neuropeptides--act as neurotransmitters or neuromediators in the brain, regulating autonomic and neuroendocrine functions. Orexins are closely associated with gonadotropin-releasing hormone (GnRH) neurons in the preoptic area and alter luteinizing hormone (LH) release, suggesting that they regulate reproduction. Here, we investigated the distribution of orexin B (immunohistochemical technique) and the relationship between orexin B and GnRH containing fibres and neurons in the pig hypothalamus using double immunofluorescence and laser-scanning confocal microscopy. Orexin B immunoreactive neurons were mainly localized in the perifornical area (PeF), dorsomedial hypothalamic nucleus (DMH), zona incerta (ZI) and the posterior hypothalamic area (PH), with a sparser distribution in the preoptic and anterior hypothalamic area. Immunoreactive fibres were distributed throughout the central nervous system. Approximately 30% GnRH neurons were in close contact with orexin B immunoreactive fibres, among these approximately 6% of GnRH neurons co-localized with orexin B perikarya in the region between the caudal preoptic area and the anterior hypothalamic area. Orexin B may regulate reproduction by altering LH release in the hypothalamus.  相似文献   

6.
Sheep are seasonal breeders, experiencing an annual period of reproductive quiescence in response to increased photoperiod during the late-winter into spring and renaissance during the late summer. The nonbreeding (anestrous) season is characterized by a reduction in the pulsatile secretion of GnRH from the brain, in part because of an increase in negative feedback activity of estrogen. Neuronal populations in the hypothalamus that produce kisspeptin and gonadotropin-inhibitory hormone (GnIH) appear to be important for the seasonal shift in reproductive activity, and the former are also mandatory for puberty onset. Kisspeptin cells in the arcuate nucleus (ARC) and preoptic area appear to regulate GnRH neurons and transmit sex-steroid feedback signals to these neurons. Moreover, kisspeptin expression in the ARC is markedly up-regulated at the onset of the breeding season, as too are the number of kisspeptin fibers in close apposition to GnRH neurons. The lower levels of kisspeptin seen during the nonbreeding season can be "corrected" by infusion of kisspeptin, which causes ovulation in seasonally acyclic females. The role of GnIH is less clear, but mounting evidence supports a role for this neuropeptide in the inhibitory regulation of both GnRH secretion and gonadotropin release from the pituitary gland. Contrary to kisspeptin, GnIH expression is markedly reduced at the onset of the breeding season. In addition, the number of GnIH fibers in close apposition to GnRH neurons also decreases during this time. Importantly, exogenous GnIH treatment can block both the pulsatile release of LH and the preovulatory LH surge during the breeding season. In summary, it is most likely the integrated function of both these neuropeptide systems that modulate the annual shift in photoperiod to a physiological change in fertility.  相似文献   

7.
The discovery of the obesity gene and its product, leptin, it is now possible to examine the relationship between body fat and the neuroendocrine axis. A minimum percentage of body fat may be linked to onset of puberty and weaning-to-estrus interval in the pig. Adipose tissue is no longer considered as only a depot to store excess energy in the form of fat. Recent findings demonstrate that numerous genes, i.e., relaxin, interleukins and other cytokines and biologically active substances such as leptin, insulin-like growth factor-I (IGF-I), IGF-II and Agouti protein are produced by porcine adipose tissue, which could have a profound effect on appetite and the reproductive axis. Hypothalamic neurons are transsynaptically connected to porcine adipose tissue and may regulate adipose tissue function. In the pig nutritional signals such as leptin are detected by the central nervous system (CNS) and translated by the neuroendocrine system into signals, which regulate appetite, hypothalamic gonadotropin-releasing hormone (GnRH) release and subsequent luteinizing hormone (LH) secretion. Furthermore, leptin directly affects LH secretion from the pituitary gland independent of CNS input. Changes in body weight or nutritional status are characterized by altered adipocyte function a reduction in adipose tissue leptin expression, serum leptin concentrations and a concurrent decrease in LH secretion. During pubertal development serum leptin levels, hypothalamic leptin receptor mRNA and estrogen-induced leptin gene expression in fat increased with age and adiposity in the pig and this occurred at the time of expected puberty. In the lactating sow serum and milk leptin concentrations were positively correlated with backfat thickness and level of dietary energy fed during gestation as well as feed consumption. Although, these results identify leptin as a putative signal that links metabolic status and neuroendocrine control of reproduction, other adipocyte protein products may play an important role in regulating the reproductive axis in the pig.  相似文献   

8.
Role of leptin in farm animals: a review   总被引:2,自引:0,他引:2  
The discovery of hormone leptin has led to better understanding of the energy balance control. In addition to its effects on food intake and energy expenditure, leptin has now been implicated as a mediator of diverse physiological functions. Recently, leptin has been cloned in several domestic species. The sequence similarity suggests a common function or mechanism of this peptide hormone across species. Leptin receptors are expressed in most of tissues, which is consistent with the multiplicity of leptin functions. The main goal of this review was to summarize knowledge about effect of leptin on physiology of farm animals. Experiments point to a stimulatory action of leptin on growth hormone (GH) secretion, normal growth and development of the brain. Surprisingly, leptin is synthesized at a high rate in placenta and may function as a growth factor for fetus, signalling the nutritional status from the mother to her offspring. Maturation of reproductive system can be stimulated by leptin administration. Morphological and hormonal changes, consistent with a major role of leptin in the reproductive system, have also been described, including the stimulation of the release of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin. Leptin has a substantial effect on food intake and feeding behaviour in animals. Administration of leptin reduces food intake. Its level decrease within hours after initiation of fasting. Leptin also serves as a mediator of the adaptation to fasting, and this role may be the primary function for which was the molecule evolved.  相似文献   

9.
Infectious disease processes cause physiological adaptations in animals to reorder nutrient partitioning and other functions to support host survival. Endocrine, immune and nervous systems largely mediate this process. Using endotoxin injection as a model for catabolic disease processes (such as bacterial septicemia), we have focused our attention on regulation of growth hormone (GH) and luteinizing hormone (LH) secretion in sheep. Endotoxin produces an increase in plasma GH and a decrease in plasma LH concentrations. This pattern can be reproduced, in part, by administration of various cytokines. Antagonists to both interleukin-1 (IL-1) and tumor necrosis factor (TNF) given intravenously (IV) prevented the endotoxin-stimulated increase in GH. Since endotoxin will directly stimulate GH and LH release from cultured pituitary cells, the data suggest a pituitary site of action of the endotoxin to regulate GH. Studies with portal vein cannulated sheep indicated that gonadotropin releasing hormone was inhibited by endotoxin, suggesting a central site of action of endotoxin to regulate LH. However, other studies suggest that endotoxin may also regulate LH secretion at the pituitary. Thus, IL-1 and TNF regulate GH release from the pituitary gland while endotoxin induces a central inhibition of LH release.  相似文献   

10.
The hypothalamo‐pituitary‐gonadal (HPG) axis is the regulatory system for reproduction in mammals. Because secretion of gonadotropin‐releasing hormone (GnRH) into the portal vessels is the final step at which the brain controls gonadal activities, the GnRH neuronal system had been thought to be central to the HPG axis. A newly discovered neural peptide, kisspeptin, has opened a new era in reproductive neuroendocrinology. As shown in a variety of mammals, kisspeptin is a potent endogenous secretagogue of GnRH, and the kisspeptin neuronal system governs both the pulsatile GnRH secretion that drives folliculogenesis, spermatogenesis and steroidogenesis, and the GnRH surge that triggers ovulation in females. The kisspeptin neuronal system is therefore considered a master player in the central control of mammalian reproduction, and kisspeptin and related substances could therefore be valuable for the development of novel strategies for the management of fertility in farm animals. To this end, the present review aimed to summarize the current research on kisspeptin signaling with a focus on domestic animals such as sheep, goats, cattle, pigs and horses.  相似文献   

11.
It is well established that reproductive function is metabolically gated. However, the mechanisms whereby energy stores and metabolic cues influence appetite, energy homeostasis and fertility are yet to be completely understood. Adipose tissue is no longer considered as only a depot to store excess energy. Recent findings have identified numerous genes, several neurotrophic factors, interleukins, insulin-like growth factor binding protein-5, ciliary neurotrophic factor and neuropeptide Y (NPY) as being expressed by adipose tissue during pubertal development. These studies demonstrated for the first time the expression of several major adipokines or cytokines in pig adipose tissue which may influence local and central metabolism and growth. Leptin appears to be the primary metabolic signal and is part of the adipose tissue-hypothalamic regulatory loop in the control of appetite, energy homeostasis and luteinizing hormone (LH) secretion. Leptin's actions on appetite regulation are mediated by inhibition of hypothalamic NPY and stimulation of proopiomelanocortin. Its effects on gonadotropin-releasing hormone (GnRH)/LH secretion are mediated by NPY and kisspeptin. Thus, leptin appears to be an important link between metabolic status, the neuroendocrine axis and subsequent fertility in the gilt and sow.  相似文献   

12.
促性腺激素释放激素(gonadotropin-releasing hormone,GnRH))是下丘脑分泌的生殖激素,主要通过下丘脑-垂体-性腺轴参与调控动物的生殖活动,也可直接作用于性腺或其他器官发挥重要功能。哺乳动物的GnRH具有相同的十肽结构,通过改变十肽结构中第六、九、十位氨基酸可合成不同的GnRH类似物。GnRH及其类似物可通过刺激促黄体素(LH)分泌、抑制雌激素受体二聚化及调节胚胎附植期相关蛋白质的合成来影响动物的繁殖性能。GnRH及其类似物已被证明可提高猪的繁殖力。在母猪生产中,GnRH类似物的应用仍存在受胎次影响、促进排卵但不能增加产仔数等问题。文章主要从GnRH的来源与功能、GnRH及其类似物的结构、GnRH受体(GnRHR)的结构与功能、GnRH及其类似物对母猪繁殖性能的影响,以及存在的问题与展望五方面介绍了GnRH及其类似物在母猪繁殖中的应用研究进展。  相似文献   

13.
Endogenous opioid peptides and the control of gonadotrophin secretion   总被引:1,自引:0,他引:1  
The endogenous opioid peptides are a group of recently discovered compounds which occur in the brain of a wide variety of species. Originally named because of their opiate-like activity, they have since been demonstrated to have multifaceted actions, one of which appears to be the modulation of luteinising hormone (LH) secretion. Because of the prime position of LH in the ovulatory process, this role for the opioids has attracted considerable interest. Their mode of action is essentially one of suppression and they work by inhibiting the release of hypothalamic gonadotrophin releasing hormone. Through this mechanism they have been implicated in the suppression of LH secretion during the prepubertal period and the modulation of LH during the oestrous cycle. It is well established that gonadal steroids suppress LH secretion by negative feedback upon the hypothalamic-pituitary axis, and this action may be brought about, in part, through intermediary opioidergic neurones. Much of the research to date has been carried out upon laboratory rodents and primates, but there is evidence now accruing that the opioids have similar actions in domestic animals. Knowledge of the role of these compounds may therefore aid in the understanding of an area of commercial importance, namely the control of ovulation in farm livestock.  相似文献   

14.
Prolonged restriction of dietary energy delays onset of puberty, disrupts cyclicity in sexually mature animals, and lengthens the postpartum anestrous period in domestic ruminants. One important mechanism by which energy restriction impairs reproductive activity seems to be suppression of the increase in LH pulse frequency that is necessary for growth of ovarian follicles to the preovulatory stage. Under-nutrition apparently inhibits pulsatile secretion of LH by reducing LHRH secretion by the hypothalamus. The ability of an animal to sustain a high-frequency mode of pulsatile LH release is related to its metabolic status. Mechanisms linking metabolic status to LHRH secretion have not been fully characterized. Changes in body fat have been associated with changes in reproductive activity, but it is unlikely that body fat per se regulates LHRH secretion. It is possible that pulsatile LHRH release is regulated by specific metabolites and(or) metabolic hormones that reflect nutritional status. Alternatively, availability of oxidizable metabolic fuels, such as glucose and nonesterified fatty acids, may influence activity of neurons that control LHRH release. Our understanding of how the central nervous system transduces information about nutritional status into neuroendocrine signals that control reproduction in cattle and sheep is limited by a lack of information concerning the nature of neurons controlling LHRH release in these species.  相似文献   

15.
家兔是刺激性排卵动物,需要性交刺激释放促性腺激素释放激素(GnRH),引发促黄体生成素(LH)增加,从而诱导成熟卵母细胞的排卵,但其排卵机制尚未完全明晰。在家兔的人工授精中,由于缺少性交的刺激,肌注或阴道内输入GnRH及其类似物被用来诱导排卵,然而这些化合物通常会对家兔繁殖产生不利影响,因此需要一种新的方法来取代激素刺激。β-神经生长因子(β-NGF)是新发现的在雌性生殖生理学中发挥作用的最有前途的物质之一,β-NGF及其受体广泛存在于家兔生殖系统中并具有重要的生理作用。同时β-NGF本身就存在于动物的精液中,且很有可能是兔的一种天然促排卵因子,使用β-NGF或许能够减少激素或其他药物的使用。作者简述了β-NGF促进家兔排卵作用及研究现状,主要从β-NGF及其受体在家兔生殖系统中的表达、β-NGF系统在诱导家兔排卵中的物种特异性,以及β-NGF诱导家兔排卵的作用机制等方面进行分析,旨在为研究家兔刺激排卵机理提供思路与理论基础,并促进β-NGF在家兔辅助生殖技术中的应用。  相似文献   

16.
The present study aimed to determine estrogen feedback action sites to mediate prepubertal restraint of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release in female rats. Wistar-Imamichi strain rats were ovariectomized (OVX) and received a local estradiol-17β (estradiol) or cholesterol microimplant in several brain areas, such as the medial preoptic area (mPOA), paraventricular nucleus, ventromedial nucleus and arcuate nucleus (ARC), at 20 or 35 days of age. Six days after receiving the estradiol microimplant, animals were bled to detect LH pulses at 26 or 41 days of age, representing the pre- or postpubertal period, respectively. Estradiol microimplants in the mPOA or ARC, but not in other brain regions, suppressed LH pulses in prepubertal OVX rats. Apparent LH pulses were found in the postpubertal period in all animals bearing estradiol or cholesterol implants. It is unlikely that pubertal changes in responsiveness to estrogen are due to a change in estrogen receptor (ER) expression, because the number of ERα-immunoreactive cells and mRNA levels of Esr1, Esr2 and Gpr30 in the mPOA and ARC were comparable between the pre- and postpubertal periods. In addition, kisspeptin or GnRH injection overrode estradiol-dependent prepubertal LH suppression, suggesting that estrogen inhibits the kisspeptin-GnRH cascade during the prepubertal period. Thus, estrogen-responsive neurons located in the mPOA and ARC may play key roles in estrogen-dependent prepubertal restraint of GnRH/LH secretion in female rats.  相似文献   

17.
Administration of endotoxin suppresses circulating concentration of luteinizing hormone (LH) in a number of species, including rats, sheep, cattle, and non-human primates. Specifically, endotoxin administration decreases circulating concentration of LH and LH pulses frequency in castrated male sheep. Endotoxin could alter circulating concentrations of LH via actions at the hypothalamus through altered GnRH production and/or release, or endotoxin could alter circulating concentrations of LH at the level of the pituitary via inhibition of LH production and release or inhibition of LH in response to GnRH. The site of endotoxin suppression of circulating concentrations of LH as well as possible mediators of endotoxin suppression of circulating concentrations of LH, including cortiocotropin-releasing hormone, arginine vasopressin, glucocorticoids, inflammatory cytokines, prostaglandins, and opioids, are discussed.  相似文献   

18.
Fine tuning of the nervous system in response to intrinsic and extrinsic cues is necessary for successful reproductive behavior. Gonadotropin releasing hormone (GnRH) was originally identified as a hypophysiotropic hormone that facilitates the release of gonadotropins from the pituitary. Although later studies reported their presence, the nonhypophysiotropic GnRH systems, which consist of two groups located in the terminal nerve (TN) and the midbrain tegmentum, respectively, has long been overshadowed by the hypophysiotropic GnRH system. By taking advantage of the teleost brains in which all three GnRH systems are well developed, the anatomical and electrophysiological properties of all three groups of GnRH neurons have been studied. However, despite our increasing endocrinological knowledge, we know very little about the manner of information flow by nonhypophysiotropic neuromodulatory GnRH neurons in the brain. In this article, we will review recent advances in the studies of nonhypophysiotropic GnRH neurons from cellular to behavioral levels. We will first discuss general features of the information processing by peptides and then introduce our recent approaches toward the understanding of the excitation-secretion coupling mechanism of single GnRH neuron using our newly developed primary culture system of isolated TN-GnRH3 neurons. We also introduce autocrine/paracrine regulation of TN-GnRH3 neurons by NPFF peptides for synchronization among them. In addition, we highlight recent advances in the neuromodulatory action of GnRH peptide on the information processing of sensory neuronal circuits and reproductive behavior. These multidisciplinary approaches will greatly advance our understanding of the complex action of GnRH peptides in relation to the brain control of reproduction.  相似文献   

19.
瘦素(leptin)是146个氨基酸组成的分子量为146kDa的多肽,由脂肪细胞所分泌。瘦素作为内分泌因子,通过阿片促黑激素皮质素原(POMC)和神经多肽Y(NPY)影响丘脑下部(GnRH)释放,从而影响着生殖激素的产生和释放,动物初情期的发动伴随着瘦素水平的不断提高,成年动物繁殖功能的维持也有赖于瘦素发挥作用。瘦素对性腺和垂体的作用机理尚不明确。  相似文献   

20.
The effects of unilateral castration (UC) and induced unilateral cryptorchidism (UCR) on basal plasma luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone, and on the responses of these hormones to gonadotropin releasing hormone (GnRH), were investigated in bulls altered at 3, 6 or 9 months of age. Blood plasma was collected before and after GnRH (200 micrograms) stimulation approximately 1 year following gonadal manipulation. Neither mean baseline concentrations nor GnRH-induced increases in plasma testosterone were altered (P greater than .1) by hemicastration or UCR (P greater than .1). Both mean baseline LH and GnRH-induced LH release were greater (P less than .05) in bulls altered at 3 months of age than in bulls altered at 9 months of age. UC increased (P less than .05) plasma LH response to GnRH over that observed in intact bulls, but not above that in UCR bulls. UCR had no detectable effect on either baseline concentrations or GnRH-stimulated LH release. FSH was increased (P less than .05) in hemicastrates, while UCR had a variable effect on peripheral FSH: FSH was reduced (P less than .05) in UCR animals altered at 3 months of age but increased (P less than .05) in UCR bulls altered at both 6 and 9 months of age when compared to FSH in intact bulls. The results indicate that, compared with intact bulls, UC bulls release increased amounts of both gonadotropins but similar amounts of testosterone in response to GnRH stimulation. UCR had a variable effect on FSH release and did not alter either LH or testosterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号