首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The pharmacodynamic effect of amoxycillin and danofloxacin against two strains of Actinobacillus pleuropneumoniae was evaluated in an in-vitro pharmacodynamic model. For amoxycillin peak concentrations of 0.5, 1, and 4 microg ml(-1)and half-lives of 3 and 15 hours were examined. For danofloxacin peak concentrations of 0.125, 0.5, and 1. 5 microg ml(-1)and half-lives of 1.5 and 7 hours were evaluated. The initial bactericidal effect was measured as the reduction in colony count (log CFU ml(-1)) during the first three hours, and the overall pharmacodynamic effect as the area under the bacterial growth versus time curve (AUBC).The initial bactericidal effect of amoxycillin was maximal at peak concentrations of two to four times the MIC. Peak concentration and half-life only influenced the pharmacodynamic effect of amoxycillin if the antibiotic concentration fell below the MIC during the experiments, which is consistent with time >MIC as the most important parameter of pharmacodynamic effect of beta-lactam drugs.For danofloxacin maximal bactericidal effect initially was observed at peak concentrations of at least eight times the MIC. The pharmacodynamic effect was dependent on the peak concentration. The half-life only influenced the pharmacodynamic effect of danofloxacin in experiments with a peak concentration MIC ratio of less than eight. This indicated that for danofloxacin the peak concentration was the major determinant of pharmacodynamic effect.  相似文献   

2.
OBJECTIVE: To determine the pharmacokinetics and pharmacodynamics of danofloxacin in goats and the concentrations required to induce bacteriostasis, bactericidal activity, and bacterial elimination. ANIMALS: 6 healthy British Saanen goats. PROCEDURE: Danofloxacin (1.25 mg/kg of body weight) was administered i.v. and i.m. in a cross-over design with 14 days between treatments. A tissue cage was used for evaluation of drug distribution into transudate and exudate. The ex vivo antibacterial activity of danofloxacin in serum, exudate, and transudate against a caprine isolate of Mannheimia haemolytica was determined. Pharmacokinetic and pharmacodynamic data were integrated to determine the ratio of the area under the concentration versus time curve to the minimum inhibitory concentration of danofloxacin (AUIC). RESULTS: Elimination half-lives of danofloxacin in serum were 4.67 and 4.41 hours after i.v. and i.m. administration, respectively. Volume of distribution was high after administration via either route, and bioavailability was 100% after i.m. administration. Rate of penetration into exudate and transudate was slow, but elimination half-lives from both fluids were approximately twice that from serum. Drug concentrations in serum, exudate, and transudate for 9 to 12 hours after administration induced marked ex vivo antibacterial activity. For serum, AUIC24h values required for bacteriostasis, bactericidal effect, and bacterial elimination were 22.6, 29.6, and 52.4, respectively. Similar values were obtained for exudate and transudate. CONCLUSIONS AND CLINICAL RELEVANCE: Integration of danofloxacin pharmacokinetic and pharmacodynamic data obtained in goats may provide a new approach on which to base recommendations for therapeutic dosages.  相似文献   

3.
The minimum inhibitory concentrations (MICS) and minimum mycoplasmacidal concentrations (MMCs) of danofloxacin, florfenicol, oxytetracycline, spectinomycin and tilmicosin against 62 recent British field isolates of Mycoplasma bovis were determined in vitro by a broth microdilution method. The isolates were most susceptible todanofloxacin with MIC90 and MMC90 values of 0.5 microg/ml and 1.0 microg/ml, respectively. They were less susceptible to florfenicol with a MIC90 of 16 microg/ml and MMC90 of 32 microg/ml. Oxytetracycline and spectinomycin had only a limited effect against the majority of isolates tested with MIC50s of 32 microg/ml and 4 microg/ml, respectively and MIC90s of 64 microg/ml and more than 128 microg/ml, respectively. Nearly 20 per cent of the isolates were highly resistant to spectinomycin, and tilmicosin was ineffective, with 92 per cent of the isolates having MIC values of 128 microg/ml or greater. There was no evidence of resistance by M bovis to danofloxacin.  相似文献   

4.
Minimum inhibitory concentrations (MIC) and minimum mycoplasmacidal concentrations (MMC) of the antimicrobials danofloxacin, florfenicol, oxytetracycline, spectinomycin and tilmicosin were determined in vitro for 20 isolates of Mycoplasma mycoides subspecies mycoides small colony type (MmmSC), the causative agent of contagious bovine pleuropneumonia (CBPP). The majority of strains were most susceptible to tilmicosin, followed by danofloxacin, oxytetracycline, florfenicol and spectinomycin with MIC50 values of 0.015, 0.25, 0.5, 1 and 8 microg/ml, and MMC50 values of 0.06, 0.5, 8, 8 and 16 microg/ml, respectively. However, tilmicosin had poor mycoplasmacidal activity against two recent strains from Portugal. There was no evidence of resistance to danofloxacin in any of the strains.  相似文献   

5.
The pharmacodynamic properties of a new veterinary fluoroquinolone antimicrobial agent, ibafloxacin, were evaluated. Minimal inhibitory concentrations (MIC), time-kill kinetics, postantibiotic effect (PAE) and postantibiotic subminimal inhibitory concentration effects (PA-SME) were determined against pathogenic canine Gram-negative and Gram-positive bacterial isolates from dermal, respiratory and urinary tract infections. The synergistic interactions between ibafloxacin and its main metabolite, 8-hydroxy-ibafloxacin were investigated. Finally, the efficacy of ibafloxacin was tested in in vivo canine infection models. Ibafloxacin had good activity against Pasteurella spp., Escherichia coli, Klebsiella spp., Proteus spp. and Staphylococcus spp. (MIC90=0.5 microg/mL), moderate activity against Bordetella bronchiseptica, Enterobacter spp. and Enterococcus spp. (MIC50=4 microg/mL) and low activity against Pseudomonas spp. and Streptococcus spp. The time-killing analysis confirmed that ibafloxacin was bactericidal with a broad spectrum of activity. The PAE and PA-SME were between 0.7-2.13 and 1-11.5 h, respectively. Finally, studies in dog models of wound infection and cystitis confirmed the efficacy of once daily oral ibafloxacin at a dosage of 15 mg/kg. Additional studies are needed to better define the importance of AUC/MIC (AUIC) and Cmax/MIC ratios on the outcome of fluoroquinolone therapy in dogs.  相似文献   

6.
The pharmacodynamic effects of amoxicillin against Actinobacillus pleuropneumoniae at exposure concentration above and below minimum inhibitory concentration (MIC) were evaluated in both in vitro and in vivo. In vitro, the growth and morphological change of A. pleuropneumoniae in culture medium was observed. In vivo, the efficacy of amoxicillin on experimentally induced A. pleuropneumoniae infection in disease-free pigs was evaluated. Fifteen pigs were divided into three groups (n = 5 per group). After the onset of clinical respiratory disease symptoms, 6 h post-infection, amoxicillin sustained-release injectable formulation was injected intramuscularly at 7.5 mg/kg/day (group I) and 15 mg/kg/day (group II). Then the serum concentration of amoxicillin was measured. An untreated infected group served as controls. In each amoxicillin administration group, if symptoms were not absent after 48 h, the pig was injected with the amoxicillin sustained-release injectable formulation again using the same dosage. In vitro, the growth of A. pleuropneumoniae inhibited by amoxicillin exposure at the concentration above the MIC (1.28 x MIC), and the inhibition time was in directly proportion to the time of amoxicillin exposure. Moreover, all the cells were lysed. Whereas the bacterial growth inhibition at the amoxicillin exposure concentration below the MIC (0.25 x MIC) was not done, and the shape of cells were normal or long filamentous. In vivo, the group I clinical and pathological score was higher than the group II, and the group I weight gain was significantly less than the group II. Performance with respect to weight gain corresponded with clinical signs. The infected control group was severely affected with an 80% (4/5) mortality rate 24-96 h post-challenge. The duration of time above MIC (T > MIC) of serum amoxicillin concentration in the group I was less than group II. The present studies suggest that amoxicillin has exposure time-dependent bactericidal activity against A. pleuropneumoniae.  相似文献   

7.
The objectives of this study were to determine the pharmacokinetics and tissue concentrations of doxycycline after repeated intragastric administration, and to determine the minimum inhibitory concentrations (MIC) for equine pathogenic bacteria. In experiment 1, 2 mares received a single intragastric dose of doxycycline hyclate (3 mg/kg bwt). Mean peak serum concentration was 0.22 microg/ml 1 h postadministration. In experiment 2, 5 doses of doxycycline hyclate (10 mg/kg bwt), dissolved in water, were administered to each of 6 mares via nasogastric tube at 12 h intervals. The mean +/- s.e. peak serum doxycycline concentration was 0.32+/-0.16 microg/ml 1 h after the first dose and 0.42+/-0.05 microg/ml 2 h after the fifth dose. The mean trough serum concentrations were > 0.16 microg/ml. Highest mean synovial concentration was 0.46+/-0.13 microg/ml and highest mean peritoneal concentration was 0.43+/-0.07 microg/ml, both 2 h after the fifth dose. Highest urine concentration was mean +/- s.e. 145+/-25.4 microg/ml 2 h after the last dose. Highest endometrial concentration was mean +/- s.e. 1.30+/-0.36 microg/ml 3 h after the fifth dose. Doxycycline was not detected in any of the CSF samples. Mean +/- s.e. Vd(area) was 25.3+/-5.0 l/kg and mean t1/2 was 8.7+/-1.6 h. In experiment 3, minimum inhibitory concentrations of doxycycline were determined for 168 equine bacterial culture specimens. The MIC90 was < or = 1.0 microg/ml for Streptococcus zooepidemicus and 0.25 microg/ml for Staphylococcus aureus. Based on drug concentrations achieved in the serum, synovial and peritoneal fluids and endometrial tissues and MIC values determined in the present study, doxycycline at a dose of 10 mg/kg bwt per os every 12 h may be appropriate for the treatment of infections caused by susceptible (MIC < 0.25 microg/ml) gram-positive organisms in horses.  相似文献   

8.
In the present position paper, an attempt was made to establish clinical breakpoints of amoxicillin to classify porcine respiratory tract pathogens as susceptible, intermediate or resistant based on their minimum inhibitory concentrations of amoxicillin. For this, a thorough review of the published literature with regard to swine-specific pharmacological data (including dosages of amoxicillin applied and routes of administration used), clinical efficacy, and in vitro susceptibility of the target pathogens was performed. Based on the comparative analysis of the results, the working group "Antibiotic Resistance" of the German Veterinary Medical Society (DVG) proposed to classify porcine respiratory tract pathogens that show MIC values of amoxicillin of < or =0.5microg/ml as "susceptible", those with MICs of 1microg/ml as "intermediate", and those with MICs of > or =2microg/ml as "resistant".  相似文献   

9.
OBJECTIVE: To compare concentrations of danofloxacin, enrofloxacin, and ciprofloxacin in plasma and respiratory tissues of calves treated after challenge with Mannheimia haemolytica. ANIMALS: 75 calves. PROCEDURE: 24 hours after challenge with M. haemolytica, 72 calves with clinical signs of respiratory tract disease were randomly assigned to 1 of 12 equal treatment groups.Three nonchallenged, nontreated calves formed a control group. Challenged calves were treated with danofloxacin (6 and 8 mg/kg, SC) and enrofloxacin (8 mg/kg, SC) once. At 1, 2, 6, and 12 hours after treatment, 6 calves from each treatment group were euthanatized. Antimicrobial drug concentrations were assayed in various specimens. Peak plasma concentration (Cmax)-to-minimum inhibitory concentration (MIC; Cmax-to-MIC) ratios and the area under the concentration versus time curve over a 12-hour period-to-MIC ratios (AUC(12h)-to-MIC) were calculat-ed. RESULTS: Danofloxacin and enrofloxacin had MICs of 0.03 microg/mL for the M. haemolytica challenge isolate. Danofloxacin administered at doses of 6 and 8 mg/kg resulted in numerically higher geometric mean concentrations of danofloxacin in plasma and all respiratory tissues than geometric mean concentrations of enrofloxacin after treatment with enrofloxacin. Geometric mean concentrations of enrofloxacin were numerically higher than geometric mean concentrations of ciprofloxacin metabolite in plasma and almost all respiratory tissues. Danofloxacin and enrofloxacin achieved Cmax-to-MIC ratios >10 and AUC(12h)-to-MIC ratios >125 hours. CONCLUSIONS AND CLINICAL RELEVANCE: When used to treat pneumonic pasteurellosis in calves, danofloxacin and enrofloxacin can be expected to deliver concentration-dependent bactericidal activity against M. haemolytica, the bacteria most commonly associated with bovine respiratory tract disease.  相似文献   

10.
OBJECTIVE: To determine the pharmacokinetics of ceftazidime following subcutaneous administration and continuous IV infusion to healthy dogs and to determine the minimum inhibitory concentration (MIC) of ceftazidime for clinical isolates of Pseudomonas aeruginosa. ANIMALS: 10 healthy adult dogs. PROCEDURE: MIC of ceftazidime for 101 clinical isolates of P aeruginosa was determined in vitro. Serum concentrations of ceftazidime were determined following subcutaneous administration of ceftazidime (30 mg/kg of body weight) to 5 dogs and continuous IV infusion of ceftazidime (loading dose, 4.4 mg/kg; infusion rate, 4.1 mg/kg/h) for 36 hours to 5 dogs. RESULTS: The MIC of ceftazidime for P aeruginosa was < or = 8 microg/ml; all isolates were considered susceptible. Following SC administration of ceftazidime, mean beta disappearance half-life was 0.8 hours, and mean serum ceftazidime concentration exceeded the MIC for P aeruginosa for only 4.3 hours. Two dogs had gastrointestinal tract effects. Mean serum ceftazidime concentration exceeded 16 microg/ml during continuous IV infusion. None of the dogs developed adverse effects. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of ceftazidime subcutaneously (30 mg/kg, q 4 h) or as a constant IV infusion (loading dose, 4.4 mg/kg; rate, 4.1 mg/kg/h) would maintain serum ceftazidime concentrations above the MIC determined for 101 clinical isolates of P aeruginosa. Use of these dosages may be appropriate for treatment of dogs with infections caused by P aeruginosa.  相似文献   

11.
Danofloxacin is a new fluoroquinolone antibacterial, developed specifically for veterinary use. Its in vitro activity and pharmacokinetic properties have been investigated to assess its potential for use in the therapy of respiratory disease in cattle. The minimum inhibitory concentration of danofloxacin against 90% (MIC90) of contemporary European and North American field isolates of Pasteurella haemolytica, Pasteurella multocida and Haemophilus somnus, the most important bacterial respiratory pathogens of cattle, was 0.125 micrograms/ml. The plasma and lung kinetics of danofloxacin following parenteral administration of 1.25 mg/kg were evaluated in two studies. Danofloxacin was rapidly absorbed following intramuscular and subcutaneous injection and bioavailability was virtually complete (101% and 94% respectively). Plasma concentration profiles of danofloxacin were similar for intramuscular and subcutaneous routes with no significant differences in the area under the plasma concentration-time curves (AUC) following one, three or five consecutive daily doses, although slightly higher peak plasma concentrations were achieved by the intramuscular route. Following intramuscular administration, the mean peak lung concentration of danofloxacin was 4.1 times greater than that of plasma. Similarly, the AUC for lung tissue was 3.7 times greater than that for plasma. These data indicate that danofloxacin should be particularly appropriate for the therapy of bacterial respiratory disease in cattle.  相似文献   

12.
Clarithromycin offers numerous advantages over erythromycin and thus, is an attractive alternative for the treatment of Rhodococcus equi infections in foals. The disposition of clarithromycin was investigated in 6 foals after intragastric administration at a dose of 10 mg/kg body weight. Detectable serum concentrations of clarithromycin were found in 3 of 6 foals at 10 minutes and in all foals by 20 minutes post-administration. Time to peak serum concentration (Tmax) was 1.5 hours and peak serum concentration (Cmax) was 0.92+/-0.17 microg/ml. Mean serum concentrations decreased to 0.03 microg/ml at 24 h. No adverse reactions were noted during or after IG administration in any of the foals. Based on the pharmacokinetic parameters, the MIC90 of R. equi isolates, and predicted steady state concentrations, an oral dose of 7.5 mg/kg given every 12 hours would appear appropriate for the treatment of R. equi infections in foals.  相似文献   

13.
The in vitro susceptibilities of 128 isolates of east1 + Escherichia coli from pre-weaned and post-weaned pigs with diarrhoea were tested with nine commonly used anti-microbial agents by an agar dilution minimal inhibitory concentration (MIC) procedure according to National Committee for Clinical Laboratory Standards guidelines. For the isolates from preweaned and post-weaned pigs, most of them were susceptible to low concentrations (MIC90) of tetracycline (4 and 2 microg/ml), ceftiofur (2 and 2 microg/ml), and colistin (4 and 2 microg/ml). Marked resistance was found in others.  相似文献   

14.
The pharmacokinetics of cefuroxime sodium, 20 and 40 mg kg(-1), were studied after i.v. and intramuscular injections in goats. Following single i.v. injections the serum concentration time curves of cefuroxime sodium were best fitted to a two-compartment open model. The drug was rapidly distributed with half-lives of distribution (t(1/2 alpha)) of 0.250 hours and 0.266 hours, and rapidly eliminated with half-lives of elimination (t(1/2 beta)) of 1.482 hours and 1.416 hours, respectively, following single i.v. injections of 20 and 40 mg kg(-1)body weight. After single intramuscular injections of cefuroxime sodium at the same doses, the mean absorption time (MAT) values were 1.379 and 1.716 hours and the peak serum concentration, C(max), was 12.965 and 38.50 microg ml(-1), attained after 0.515 and 0.608 hours (t(max)), respectively. The elimination half-lives (t(1/2el)) were 2.088 and 2.114 hours and the mean residence times (MRT) were 3.198 and 3.237 hours for 20 and 40 mg kg(-1)body weight, respectively. After both i.v. and intramuscular injections of cefuroxime sodium, the concentrations of cefuroxime in urine were much higher than that in serum. Urinary drug concentrations decreased gradually to reach their lowest levels at 24 and 48 hours post-injection, respectively. The systemic bioavailability of cefuroxime sodium in goats after intramuscular injections of 20 and 40 mg kg(-1)body weight was 88.4 per cent and 103.5 per cent, respectively. In vitro protein binding of cefuroxime sodium in goat's serum was low, ranging from 13.3 per cent to 21.6 per cent with an average of 17.0 per cent.  相似文献   

15.
OBJECTIVE: To determine pharmacokinetics and plasma concentrations of erythromycin and related compounds after intragastric administration of erythromycin phosphate and erythromycin estolate to healthy foals. ANIMALS: 11 healthy 2- to 6-month-old foals. PROCEDURE: Food was withheld from foals overnight before intragastric administration of erythromycin estolate (25 mg/kg of body weight; n = 8) and erythromycin phosphate (25 mg/kg; 7). Four foals received both drugs with 2 weeks between treatments. Plasma erythromycin concentrations were determined at various times after drug administration by use of high-performance liquid chromatography. Maximum plasma peak concentrations, time to maximum concentrations, area under plasma concentration versus time curves, half-life of elimination, and mean residence times were determined from concentration versus time curves. RESULTS: Maximum peak concentration of erythromycin A after administration of erythromycin phosphate was significantly greater than after administration of erythromycin estolate (2.9 +/- 1.1 microg/ml vs 1.0 +/- 0.82 microg/ml). Time to maximum concentration was shorter after administration of erythromycin phosphate than after erythromycin estolate (0.71 +/- 0.29 hours vs 1.7 +/- 1.2 hours). Concentrations of anhydroerythromycin A were significantly less 1 and 3 hours after administration of erythromycin estolate than after administration of erythromycin phosphate. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma concentrations of erythromycin A remained > 0.25 microg/ml (reported minimum inhibitory concentration for Rhodococcus equi) for at least 4 hours after intragastric administration of erythromycin phosphate or erythromycin estolate, suggesting that the recommended dosage for either formulation (25 mg/kg, q 6 h) should be adequate for treatment of R equi infections in foals.  相似文献   

16.
The single-dose disposition kinetics of danofloxacin were determined in clinically normal lactating cows after intravenous (i.v.) and intramuscular (i.m.) administration of the drug at 1.25 mg/kg. The drug concentrations in blood serum and milk were determined by microbiological assay methods and the data were subjected to kinetic analysis. The mean i.v. and i.m. elimination half-lives ( t ½el) in serum were 54.9 and 135.7 min, respectively. The steady-state volume of distribution ( V ss) was 2.04 L/kg. The drug was quickly absorbed after i.m. injection but a 'flip flop' effect was clearly evident and bioavailability was > 100%. Penetration of danofloxacin from blood into milk was rapid and extensive with drug concentrations in milk exceeding those in serum beginning 90–120 min after i.v. and i.m. administration and onwards. Milk danofloxacin concentrations equal to or higher than the minimal inhibitory concentrations (MIC) for pathogenic Gram-negative bacteria and Mycoplasma species were maintained over ≈ 24 h.
  Concentrations greater than the MIC for Staphylococcus aureus were maintained in the milk for 12 h.  相似文献   

17.
The objective of this study was to determine the pharmacokinetics of a long-acting formulation of ceftiofur crystalline-free acid (CCFA) following intramuscular injection in ball pythons (Python regius). Six adult ball pythons received an injection of CCFA (15 mg/kg) in the epaxial muscles. Blood samples were collected by cardiocentesis immediately prior to and at 0.5, 1, 2, 4, 8, 12, 18, 24, 48, 72, 96, 144, 192, 240, 288, 384, 480, 576, 720, and 864 hr after CCFA administration. Plasma ceftiofur concentrations were determined by high-performance liquid chromatography. A noncompartmental pharmacokinetic analysis was applied to the data. Maximum plasma concentration (Cmax) was 7.096 +/- 1.95 microg/ml and occurred at (Tmax) 2.17 +/- 0.98 hr. The area under the curve (0 to infinity) for ceftiofur was 74.59 +/- 13.05 microg x h/ml and the elimination half-life associated with the terminal slope of the concentration-time curve was 64.31 +/- 14.2 hr. Mean residence time (0 to infinity) was 46.85 +/- 13.53 hr. CCFA at 15 mg/kg was well tolerated in all the pythons. Minimum inhibitory concentration (MIC) data for bacterial isolates from snakes are not well established. For MIC values of < or =0.1 microg/ml, a single dose of CCFA (15 mg/kg) provides adequate plasma concentrations for at least 5 days in the ball python. For MICs > or =0.5 microg/ml, more frequent dosing or a higher dosage may be required.  相似文献   

18.
The antimicrobial properties of amoxicillin were determined for the bovine respiratory tract pathogens, Mannheima haemolytica and Pasteurella multocida. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time‐kill curves were established. Pharmacokinetic (PK)/pharmacodynamic (PD) modelling of the time‐kill data, based on the sigmoidal Emax equation, generated parameters for three levels of efficacy, namely bacteriostatic, bactericidal (3log10 reduction) and 4log10 reduction in bacterial counts. For these levels, mean AUC(0–24 h)/MIC serum values for M. haemolytica were 29.1, 57.3 and 71.5 h, respectively, and corresponding values for P. multocida were 28.1, 44.9 and 59.5 h. Amoxicillin PK was determined in calf serum, inflamed (exudate) and noninflamed (transudate) tissue cage fluids, after intramuscular administration of a depot formulation at a dosage of 15 mg/kg. Mean residence times were 16.5 (serum), 29.6 (exudate) and 29.0 h (transudate). Based on serum MICs, integration of in vivo PK and in vitro PD data established maximum concentration (Cmax)/MIC ratios of 13.9:1 and 25.2:1, area under concentration–time curve (AUC0–∞)/MIC ratios of 179 and 325 h and T>MIC of 40.3 and 57.6 h for P. multocida and M. haemolytica, respectively. Monte Carlo simulations for a 90% target attainment rate predicted single dose to achieve bacteriostatic and bactericidal actions over 48 h of 17.7 and 28.3 mg/kg (M. haemolytica) and 17.7 and 34.9 mg/kg (P. multocida).  相似文献   

19.
The in vitro activity of difloxacin against canine bacterial isolates from clinical cases was studied in the United States and The Netherlands. Minimal inhibitory concentrations (MIC), the postantibiotic effect, the effect of pH on antimicrobial activity, and the bacterial killing rate tests were determined according to standard techniques. The MICs of American and Dutch isolates agreed in general. The MICs of the American gram-negative isolates ranged from 0.06 to 2.0 microg/ml, and the MICs of the Dutch gram-negative isolates ranged from 0.016 to 8.0 microg/ml. A few European strains of Proteus mirabilis and Klebsiella pneumoniae had relatively high MICs. Bordetella bronchiseptica also was less susceptible to difloxacin. The MICs of the American gram-positive cocci ranged from 0.125 to 4.0 microg/ml, and the MICs of Dutch isolates ranged from 0.125 to 2.0 microg/ ml. Difloxacin induced a concentration-dependent postantibiotic effect that lasted 0.2-3 hours in cultures with Escherichia coli, Staphylococcus intermedius, Streptococcus canis, Proteus spp., and Klebsiella pneumoniae. There was no postantibiotic effect observed against canine Pseudomonas aeruginosa. Decreasing the pH of the medium increased the MIC of Proteus mirabilis for difloxacin. The MICs of Escherichia coli and Klebsiella pneumoniae were lowest at neutral pH and were slightly increased in acid or alkaline media. At a neutral pH, most tested bacterial species were killed at a difloxacin concentration of 4 times the MIC. Similar results were obtained when these same bacteria were tested against enrofloxacin. A Klebsiella pneumoniae strain in an acidic environment was readily killed at difloxacin or enrofloxacin MIC, but at neutral pH the drug concentration had to be raised to 4 times the MIC for a bactericidal effect. After 24 hours of incubation at pH 7.1, difloxacin and enrofloxacin had similar bactericidal activity for all bacteria tested except Staphylococcus intermedius. Against S. intermedius, difloxacin was more bactericidal than enrofloxacin.  相似文献   

20.
The pharmacokinetics of marbofloxacin were investigated in healthy (n=8) and Mannheimia haemolytica naturally infected (n=8) Simmental ruminant calves following intravenous (i.v.) and intramuscular (i.m.) administration of 2 mg kg(-1) body weight. The concentration of marbofloxacin in plasma was measured using high performance liquid chromatography with ultraviolet detection. Following i.v. administration of the drug, the elimination half-life (t(1/2 beta)) and mean residence time (MRT) were significantly longer in diseased calves (8.2h; 11.13 h) than in healthy ones (4.6 h; 6.1 h), respectively. The value of total body clearance (CL(B)) was larger in healthy calves (3 ml min(-1) kg(-1)) than in diseased ones (1.3 ml min(-1) kg(-1)). After single intramuscular (i.m.) administration of the drug, the elimination half-life, mean residence time (MRT) and maximum plasma concentration (C(max)) were higher in diseased calves (8.0, 12 h, 2.32 microg ml(-1)) than in healthy ones (4.7, 7.4 h, 1.4 microg ml(-1)), respectively. The plasma concentrations and AUC following administration of the drug by both routes were significantly higher in diseased calves than in healthy ones. Protein binding of Marbofloxacin was not significantly different in healthy and diseased calves. The mean value for MIC of marbofloxacin for M. haemolytica was 0.1+/-0.06 microg ml(-1). The C(max)/MIC and AUC(24)/MIC ratios were significantly higher in diseased calves (13.0-64.4 and 125-618 h) than in healthy calves (8-38.33 and 66.34-328 h). The obtained results for surrogate markers of antimicrobial activity (C(max)/MIC, AUC/MIC and T > or = MIC) indicate the excellent pharmacodynamic characteristics of the drug in diseased calves with M. haemolytica, which can be expected to optimize the clinical efficacy and minimize the development of resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号