首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
生物炭与不同肥料配施对镉胁迫下烟株生长的影响   总被引:1,自引:0,他引:1  
以豫烟12号为供试材料,采用盆栽土培试验,探讨在重金属镉胁迫下,生物炭与不同肥料配施后,烟株根系活力、保护酶活性、烟叶中镉含量及烟叶生物量的变化。结果表明:生物炭的添加在一定程度上提高了根际土壤的pH值,添加生物炭的施肥处理土壤中的有效态镉含量和烟叶镉含量均在旺长期(60 d)后显著下降。成熟期(90 d)时,复合肥处理和有机肥+复合肥处理在添加生物炭后,土壤中的有效态镉含量分别降低了22.2%和7.14%,烟叶镉含量分别降低了61.3%和40.3%。生物炭与复合肥配施和生物炭与有机肥+复合肥配施的烟株根系活力分别较未添加生物炭的对应施肥处理提高了11.24和18.85 μg·g-1·h-1,烟叶生物量较未添加生物炭的施肥处理分别增加了67.6%和21.4%。胁迫环境下,两种施肥方式添加生物炭后显著降低了烟叶的MDA含量,减少了烟叶的膜质过氧化程度,烟叶的SOD,POD和CAT保护酶活性较未添加生物炭的施肥处理也有所增加,且以有机肥+复合肥添加生物炭的施肥处理对烟叶保护酶活性的提高较为显著。因此,在有机肥和复合肥配施的情况下添加生物炭可有效改善烟株的镉胁迫环境,降低烟叶中的镉含量。  相似文献   

2.
生物炭对菜园土化学肥力的影响(英文)   总被引:1,自引:0,他引:1  
[目的]探讨生物炭对菜园土化学肥力的影响。[方法]采用盆栽试验,研究菜园土添加生物炭后土壤pH、有机质、有效氮、速效钾、有效磷、水溶性磷、交换性Ca、Mg等养分含量的变化。试验设置5个处理,分别为对照CK(不施生物炭)、T1(0.10%生物炭)、T2(0.25%生物炭)、T3(0.50%生物炭)、T4(1.00%生物炭)。[结果]不同处理的土壤pH、有机质、速效钾含量均随生物炭施用量的增多而显著增加,表现为T4〉T3〉T2〉T1〉CK;土壤有效磷和水溶性磷含量则呈现先增加后降低的趋势,均表现为T3最高,CK最低;有效氮和交换性Mg无显著性变化;与不施生物炭对照相比,适量添加生物炭后土壤的交换性Ca含量显著增加。[结论]生物炭能够显著提高菜园土化学肥力和化学性状,并且在T3(0.50%生物炭)施用条件下效果最佳。  相似文献   

3.
【目的】研究不同秸秆转化生物炭对红壤性水稻土养分含量及微生物群落结构的影响差异,为土壤改良和秸秆资源的合理利用提供理论参考。【方法】以水稻和玉米秸秆300℃、400℃和500℃裂解得到的生物炭为添加材料,以发育于第四纪的红壤性水稻土为供试土壤,通过135 d室内培育试验,研究秸秆生物炭添加对红壤性水稻土pH、有机碳和养分含量、土壤微生物生物量碳(MBC)的影响,及其对磷脂脂肪酸(PLFA)表征的微生物群落结构的影响。试验共设7个处理:对照(CK)、添加水稻秸秆炭300℃(RB300)、400℃(RB400)、500℃(RB500)和添加玉米秸秆炭300℃(CB300)、400℃(CB400)、500℃(CB500)。【结果】物料类型和制备温度因素显著影响裂解得到生物炭材料的养分含量和化学性质。培育试验表明,两种秸秆生物炭的添加,平均提高土壤pH值0.16个单位;土壤有机碳、速效磷和速效钾水平,分别比对照增加26.1%、20.6%和281.8%。水稻秸秆炭对土壤速效钾水平促进作用较大,而玉米秸秆炭则主要增加速效磷含量。低温裂解秸秆炭(300℃)的添加,并没有显著影响土壤碱解氮和无机氮含量;而添加RB500和CB500处理的碱解氮分别比对照低10.4%和8.1%,硝态氮含量分别比对照高63.6%和100.7%(P<0.05)。添加生物炭处理,微生物生物量碳和磷脂脂肪酸总量平均比对照增加63.4%和47.5%,但添加300℃秸秆炭处理与对照差异不显著;两种秸秆炭的输入均可以增加革兰氏阴性细菌(G-)、革兰氏阳性细菌(G+)、放线菌和真菌的含量,且不同制备温度处理间的差异表现为300℃<400℃<500℃。主成分分析表明,水稻秸秆炭对土壤微生物群落结构的影响较玉米秸秆炭更为显著;不同温度水稻秸秆炭间,群落结构差异明显,而不同温度玉米秸秆炭间没有区分开来。典范对应分析结果表明,生物炭添加可以通过改变土壤性质,间接影响微生物群落结构;其中,土壤速效磷、有机碳和速效钾含量与土壤微生物群落分布显著相关。【结论】水稻和玉米秸秆炭均可以改良红壤性水稻土的酸度,提高土壤养分含量和微生物量水平;两种秸秆炭的添加均改变了土壤微生物群落结构,其中以水稻秸秆炭的影响更为明显。  相似文献   

4.
以油茶饼粕为原料,分别在300℃和600℃条件下热解制备成生物炭,以及发酵成为有机肥,研究不同温度生物炭和有机肥元素含量和表面特征的差异。通过室内培养试验研究生物炭和有机肥对土壤呼吸以及有机碳组分的影响。结果表明:随着热解温度的升高,生物炭pH值和灰分含量升高,矿质元素含量增加,C、N、H含量和H/C比值降低,表面官能团减少。在添加有机肥条件下,施用生物炭处理的土壤CO2排放量普遍较高。300℃生物炭的土壤呼吸强于600℃生物炭,600℃生物炭的CO2累计排放量小于对照土壤。300℃生物炭对土壤中的SOC、MBC、DOC的贡献率要高于600℃生物炭。单独添加生物炭的土壤矿化强度比较低。通径分析结果表明:MBC和DOC对土壤CO2累计排放量的直接影响达到极显著水平。  相似文献   

5.
【目的】研究4种常规施肥模式下,添加生物炭后菜地土壤(褐潮土)CO2释放量、可溶性有机碳(DOC)和微生物生物量碳(SMBC)含量的变化,阐明添加生物炭对土壤CO2释放及不同形态碳的影响。【方法】采用室内恒温好氧培养-气象色谱测定方法,在不施肥(CK)、施有机肥(M)、施化肥(F)、有机无机混施(M+F)4种模式下投入2%和4%(质量比:生物炭/土壤干重)生物炭,定期采集气样和土样,分析土壤CO2的释放量及DOC、SMBC含量的动态变化,并分析DOC、SMBC含量变化与CO2释放量变化之间的相关关系。【结果】在F和M+F基础上,添加生物炭处理的土壤CO2释放速率在培养前期(2—8 d)显著高于未添加生物炭处理,而在10—60 d,二者CO2释放速率无显著差异;在CK和M基础上,添加与未添加生物炭处理在整个培养期间CO2释放速率没有显著差异。在CK基础上,添加2%和4%生物炭后CO2累积释放量分别为2 839和3 272 mg·kg-1,与CK(3 134 mg·kg-1)相比均无显著差异;而在F和M+F基础上,添加2%和4%生物炭后CO2累积释放量均显著提高,分别提高20.6%和19.8%、29.9%和40.7%。相关分析表明,未添加生物炭处理DOC、SMBC含量与CO2释放量之间无相关关系,而添加生物炭处理DOC、SMBC含量与CO2释放量极显著相关。【结论】将生物炭单独投入未施肥土壤中,土壤CO2排放量未出现明显增加或降低;在有机肥基础上添加生物炭,土壤CO2排放量随着生物炭投入量的增加而增加;在化肥、有机无机配施基础上添加生物炭后,土壤CO2排放增加比例最高。  相似文献   

6.
以白花芥蓝为试材,设置不施肥、施生物炭10 t/hm~2、施有机肥4 t/hm~2、配施生物炭10 t/hm~2+有机肥4 t/hm~2共4个处理,研究添加生物炭对西北旱区有机芥蓝生长和土壤水分状况的影响,并对土壤改良应用效果进行检验。结果表明,向土壤中添加生物炭可改善土壤的持水性,芥蓝根系层的土壤含水量增加10%以上;单施生物炭对有机芥蓝生长的促进作用并不明显,配施生物炭与有机肥可使芥蓝生长得到明显改善,10月1日芥蓝鲜质量与单施有机肥相比增加15.1%。因此,在西北旱区有机栽培模式下,向土壤添加生物炭具有保水和增加芥蓝产量的双重效果。  相似文献   

7.
为了探讨腐植酸对生物炭修复重金属污染土壤的影响,通过土培试验,分析两种不同添加量(0.1%和1%,m/m)的腐植酸[胡敏酸(HA)、富里酸(FA)]与两种生物炭[玉米秸秆生物炭(CBC)、稻壳生物炭(RBC)]复配处理下污染土壤中Cd形态的变化,并探究不同腐植酸作用下生物炭稳定Cd的差异和机制。结果表明:腐植酸增强了生物炭对土壤中Cd的稳定化程度。与未处理组相比,1% HA和 1% FA作用下的 CBC使土壤中残渣态 Cd占比升高了 145.89%和 117.96%,RBC使残渣态 Cd占比升高了 124.04%和159.58%。1%腐植酸添加量处理显著降低了土壤pH,提高了土壤阳离子交换量(CEC)、土壤有机质(SOM)和有效磷含量。生物炭表面具有丰富的含氧官能团、芳香碳,其可通过静电吸引、络合、表面沉淀和阳离子-π键相互作用等结合重金属离子。综合来看,1% FA和RBC复配添加对Cd污染土壤的修复效果最佳,其使污染土壤的CEC、SOM和有效磷含量上升了24.56%、27.14%和34.81%,并且使重金属Cd迁移指数下降了65.85%。  相似文献   

8.
陈伟  周波  束怀瑞 《中国农业科学》2013,46(18):3850-3856
【目的】研究生物炭和生物有机肥处理对平邑甜茶根系及微生物功能多样性等指标的影响,为果园可持续发展提供参考依据。【方法】采用盆栽试验,添加生物炭和生物有机肥处理,分析不同生物炭和生物有机肥处理对植株根系、土壤微生物群落功能多样性的影响。【结果】施用生物有机肥和生物炭均可增加细吸收根量、细吸收根面积、土壤和根际可培养微生物量,提高土壤FDA酶活性和土壤微生物多样性,二者联合施用效果最佳。生物炭处理对细吸收根面积的改善效果优于生物有机肥处理,对土壤微生物多样性的改善效果则不如生物有机肥处理;10%生物肥+6%生物炭、10%生物肥+3%生物炭处理细吸收根面积分别是CK的6.6和10倍,10%生物肥处理是CK的2.5 倍,6%和3%生物炭处理是CK的3.3和3.1倍,生物炭和生物有机肥处理土壤细菌数量为CK土壤的3.32—10.23倍,放线菌数量为CK土壤的1.2—1.97倍,真菌数量为CK土壤的3.24—5.26倍,根际放线菌数量在生物有机肥处理后最高,根际真菌数量则在3%生物炭处理后最高。【结论】增加土壤炭可以增加植株根系、土壤微生物多样性,有利于土壤肥力的保持和农业的可持续发展。  相似文献   

9.
有机肥是来源于植物或动物经发酵腐熟的含碳有机物料,因此不同有机肥养分含量存在差异,对胡椒园来说施用何种有机肥更有利于胡椒园的土壤肥力提升及胡椒生长是值得研究的一项课题。以4种有机物料为材料添加到胡椒园土壤中,研究不同有机物料对胡椒园土壤肥力性状及胡椒生长的影响。结果显示,各处理土壤pH值高低顺序为100g猪粪+4kg土(T2)> 100g生物炭+4kg土(T4)> 100g牛粪+4kg土(T3)> 0g肥料+4kg土(T1)> 100g商品有机肥+4kg土(T5),与T1相比,T2处理达显著水平;其他处理土壤有机质含量均显著高于T1;T2、T3处理对土壤碱解氮含量具有显著的提高作用;T2处理的土壤速效磷、有效钾含量极显著高于其他处理。不同处理有机肥施用对胡椒生物量、茎围、株高增加值的差异不显著,100g牛粪+4kg土(T8)处理新梢增加的数量显著高于0g肥料+4kg土(T6)处理。此项研究结果在胡椒农业生产中具有一定的指导意义。  相似文献   

10.
为了解生物炭影响土壤肥力的机理,通过盆栽实验,设置6个生物炭水平(0、10、30、50、70、90 t/hm~2),测试塿土4个钾离子指标:水溶性钾离子、交换性钾离子、速效钾、全钾含量。结果表明,在塿土中添加生物炭后,土壤水溶性钾、速效钾、交换性钾离子含量与生物炭添加量之间呈现y=ae~(bx)指数关系,土壤pH和土壤速效钾、交换性钾离子含量显著相关,与水溶性钾离子、全钾含量无显著相关关系。在关中塿土中添加生物炭,可以显著提升土壤速效钾、水溶性钾、交换性钾离子含量。考虑到土壤钾离子、酸碱度、经济因素,提前30天,在塿土中施入50 t/hm~2生物炭效果最好。  相似文献   

11.
  目的  探讨施用小龙虾Procambarus clarkii壳炭(CSB)和细叶榕Ficus microcarpa炭(FMB)对复合污染土壤理化性质及作物生长的影响。  方法  在 650 ℃限氧条件下热解制备厨余废弃物小龙虾壳炭和园林废弃物细叶榕炭。以不同质量比(0、1%、3%)施入小红萝卜Raphanus sativus盆栽土壤,测定和分析施用小龙虾壳炭和细叶榕炭对土壤中镉和铅有效性、养分转化、土壤酶活性及小红萝卜生长的影响。  结果  3%FMB处理对土壤有机碳、有效磷和速效钾质量分数提升效果最显著(P<0.05),较对照的增幅分别为135.8%、35.4%和173.7%。除1%CSB处理外,其余生物质炭处理下土壤中有效态镉和铅质量分数较对照均显著降低(P<0.05),降幅分别为60.7%~91.1%和21.0%~26.1%。3%CSB处理对土壤β-葡萄糖苷酶、亮氨酸氨基肽酶和β-N-乙酰基氨基葡萄糖苷酶活性提升效果最显著(P<0.05),较对照分别提高79.7%、30.3%和1 668.5%。不同比例CSB和FMB的施用均显著(P<0.05)提高了小红萝卜可食部分的生物量,且3%CSB处理的提升效果最显著(P<0.05),较对照提高了171.5%。  结论  与细叶榕炭相比,小龙虾壳炭在提高土壤酶活性,降低土壤中镉和铅生物有效性以及提升作物品质和产量方面效果更为优越,更适合作为镉-铅复合污染土壤修复的潜在应用材料。图7表1参46  相似文献   

12.
【目的】探究不同原料、炭化温度和生物质炭不同组分对植物生长的影响,进而揭示生物质炭的增产机制。【方法】分别以木屑和玉米秸秆为原料,在350、450、550℃下裂解得到生物质炭。采用热水浸提法将生物质炭中的可溶性组分(浸提液)与难溶性组分(炭骨架)分离。通过盆栽试验,研究不同生物质炭及组分对小白菜生长的影响。【结果】添加玉米秸秆生物质炭及其各组分处理下,小白菜地上部生物量平均为16.1 g/盆,显著高于添加木屑生物质炭及其各组分(13.0 g/盆)和对照处理(13.5 g/盆)。与地上部生物量类似,添加玉米秸秆生物质炭及其各组分处理下小白菜根长、根表面积、根体积和根尖数等形态学指标较木屑生物质炭和对照处理显著改善。添加炭骨架处理下小白菜地上部生物量平均为16.5 g/盆,较添加原状生物质炭和浸提液分别提高26.9%和17.9%。添加炭骨架处理下小白菜根长、根表面积、根体积和根尖数较添加浸提液处理分别提高64.1%、51.1%、38.3%和80.0%。不同炭化温度裂解得到的生物质炭对小白菜地上部生物量和根系生长无显著影响。与添加原状生物质炭处理相比,添加炭骨架处理下小白菜地上部氮含量提高25.9%,而磷和钾含量分别降低39.7%和14.1%。添加玉米秸秆生物质炭及其各组分处理下土壤pH、有机碳、全氮、速效磷和速效钾含量较添加木屑生物质炭处理分别提高0.1个单位、20.3%、19.1%、29.1%和189.2%。与添加原状生物质炭相比,添加生物质炭骨架处理下土壤有机碳、全氮、速效磷和速效钾含量分别降低14.6%、6.6%、41.3%和55.1%,土壤pH升高0.13个单位;而添加生物质炭浸提液处理下土壤有机碳、全氮和速效磷含量分别降低49.8%、18.9%和24.2%,土壤pH和速效钾含量无显著变化。相关分析表明,不同处理下小白菜地上部生物量与根长、表面积、平均直径、根体积、根尖数等根系形态指标和土壤pH呈正相关,与小白菜地上部磷含量呈负相关。【结论】生物质炭制备原料和组成是影响植物生长的重要因素,玉米秸秆生物质炭较木屑生物质炭有更好的增产效果;玉米秸秆生物质炭经热水浸提后再添加至土壤中有更好的增产效果。生物质炭中可溶性组分对根系生长的促进作用是生物质炭增产的主要机制,而可溶性组分对根系促生作用与原料、制备温度和其本身物质组成密切相关。  相似文献   

13.
为探讨土壤添加剂对太湖流域稻田面源污染的控制效果,选用生物炭、微生物菌肥和硝化抑制剂三种土壤添加剂作为供试材料,通过盆栽试验研究其单独施用及两两组合配施对水稻生长、产量、肥期田面水养分动态、养分吸收利用以及土壤肥力等的影响。研究结果表明:各添加剂处理均可保证水稻的正常生长,并表现出增产效果,生物炭添加处理、微生物菌肥与生物炭组合处理及生物炭与硝化抑制剂组合处理水稻产量分别较施肥对照处理提高了57.5%、66.1%和45.4%。各添加剂的施用对植株吸氮量的影响不显著,仅微生物菌肥与生物炭组合处理显著提高了氮回收效率,但是所有添加剂处理均显著提高了氮肥农学利用效率和生理效率,生物炭处理和微生物菌肥与生物炭组合处理效果最佳,各添加剂处理对水稻的磷素吸收利用没有影响。微生物菌肥单施处理提高了水稻基肥期田面水氮浓度,而其他处理则表现为显著降低,特别是与生物炭的组合处理;蘖肥期各处理对田面水氮浓度影响不大;穗肥期除生物碳与菌肥配施处理外,其他各添加剂处理均显著提高了田面水氮浓度。添加剂处理还略微增加了基肥期和穗肥期的田面水总磷浓度,但差异不显著。各添加剂处理对收获后土壤肥力指标没有影响。综合产量、氮肥吸收以及田面水氮磷流失风险,微生物菌肥与生物炭组合处理可促进水稻生长,显著提高水稻产量,有效降低水稻生育前期氮素流失风险,缩短养分流失风险期,并能维持土壤肥力,值得应用于太湖流域稻田的面源污染控制上。  相似文献   

14.
为探讨花生壳生物炭用于农田土壤改良的效果,采用盆栽试验,结合静态箱-气相色谱法研究了施用不同剂量(0、0.5%、1%、2%、4%)花生壳生物炭对红壤和潮土的理化性质及温室气体排放变化特征的影响。结果表明,施用生物炭对潮土温室气体排放的影响较大,且两种土壤表现出不同的排放特征。总体上,潮土N_2O累积排放量显著高于红壤,与单施氮肥处理相比,随生物炭添加量的增加,潮土N_2O累积排放量显著降低,降幅达6.5%~26.6%;红壤N_2O累积排放量则随生物炭添加量的增加呈上升趋势,与单施氮肥处理相比,红壤N_2O累积排放量增幅为14.7%~54.3%。与对照相比,施用生物炭显著增加潮土CO_2排放,其累积排放量增幅最大为25.9%;而对红壤CO_2累积排放量则没有显著影响。此外,在施用不同剂量生物炭处理下,两种土壤CH_4排放无规律性变化,CH_4排放累积量总体在0左右。与空白对照和单施氮肥处理相比,随生物炭添加量的增加,两种土壤的固碳量显著增加,潮土增加了57.1%~78.7%,红壤增加了11.2%~59.9%;同时随生物炭的施用,潮土温室气体排放强度显著提高68.0%~76.8%,而生物炭添加量对红壤的温室气体排放强度无显著影响。分析认为,对潮土施用生物炭通过改变土壤容重、有机碳、无机氮等养分含量,显著提高温室气体排放强度,抑制供试作物生长,增强其净综合温室效应;而对红壤添加生物炭则可促进作物生长,其温室气体排放强度无显著增加,提升土壤固碳量,具有较好的生态效应。  相似文献   

15.
试验研究了不同浓度侧柏根际土壤提取物对萝卜、紫花苜蓿、刺槐、侧柏等4种植物的种子萌发和幼苗生长的化感效应。结果表明:不同浓度的侧柏根际土壤提取物对该4种植物种子萌发和幼苗生长的影响主要表现为抑制作用。在提取物浓度较低时,对该4种植物种子的萌发和幼苗的生长有轻微的促进作用,随着提取物浓度的增大,促进作用转变为抑制作用,且这种抑制作用逐渐增强。相同浓度的侧柏根际土壤提取物对该4种植物种子萌发和幼苗生长的抑制作用也存在差异,对发芽率和种子活力的抑制作用:侧柏>刺槐>紫花苜蓿>萝卜;对平均发芽速率的影响为:紫花苜蓿>侧柏>刺槐>萝卜;对幼苗根长生长的抑制:萝卜>紫花苜蓿>刺槐>侧柏。  相似文献   

16.
生物炭对土壤氮磷流失和油菜产量的影响   总被引:1,自引:0,他引:1  
明确生物炭对土壤氮磷流失和作物产量的影响是生物炭应用技术中的关键问题。采用测筒试验,在20 cm土壤中添加不同比例(0.5%、1.0%、1.5%)的生物炭,并模拟降雨淋溶后收集测筒淋溶液分析氮磷含量,研究生物炭对土壤氮磷淋溶流失和油菜产量的影响。结果表明:(1)与不施用生物炭处理相比,1.5%生物炭处理极显著降低了TN淋溶损失量、TN淋溶浓度比率、NO~-_3-N淋溶损失量、NO~-_3-N淋溶浓度比率、TP淋溶损失量和TP淋溶浓度比率;各处理间NH~(+2)_4-N和PO~-_4-P淋溶损失量差异不显著。(2)油菜生长期间,TN、NO~-_3-N的淋溶损失量随生物炭施用量增加而减少,且以NO~-_3-N的淋溶流失为主;受施肥和作物生长吸收利用的影响,NH~+_4-N、TP和PO~(2-)_4-P的淋溶流失规律不明显。(3)施用生物炭增加了油菜的产量,主要表现为油菜一次有效分支数、单株有效角果数和每果粒数的增加。  相似文献   

17.
生物炭对杉木人工林土壤磷素吸附解吸特性的影响   总被引:2,自引:0,他引:2  
为了改善磷素吸附作用,提高磷在杉木人工林土壤中的利用率,又防止解吸过度引起土壤磷素淋溶造成资源浪费,以杉木树叶和树干为原料,分别在300℃和600℃下制备4种生物炭:300℃杉叶炭(BL300)、600℃杉叶炭(BL600)、300℃木屑炭(BW300)和600℃木屑炭(BW600),分别向土壤中加入0%、2%、4%、8%比例的生物炭,完成吸附解吸试验。结果表明,制备原料和温度对生物炭的成分和性质有决定性的作用,杉叶生物炭pH值、灰分含量、有效磷等的含量显著高于木屑生物炭,且高温炭大于低温炭,其中BL600生物炭pH值、灰分含量及有效磷含量最高;Langmuir模型能很好地拟合生物炭添加后红壤磷素的吸附过程,在低磷浓度时生物炭添加对土壤磷素吸附作用的影响不大,高磷浓度时则促进吸附作用;其中杉叶炭促进土壤磷素吸附的作用大于木屑炭,高温炭大于低温炭,2%和4%的生物炭添加量促进土壤磷素吸附,但8%的添加量会降低土壤对磷的吸附作用;生物炭添加在一定程度上降低了土壤磷素的解吸率,其中木屑炭降低的作用大于杉叶炭;因此建议在磷浓度较高的杉木林人工土壤中添加中低量的BL600,在磷浓度较低的杉木林人工土壤中添加大量的BL600,土壤富磷时能够增强吸附作用,减小土壤磷素淋溶风险,土壤缺磷时增加解吸率来提高土壤磷素利用率。  相似文献   

18.
生物质炭降低蔬菜吸收土壤中抗生素的作用   总被引:3,自引:0,他引:3  
采用土培方法研究了施用不同量生物质炭(0.75%、1.5%和2.0%)对初始污染浓度各为25 mg/kg的土霉素、恩诺沙星、磺酸二甲嘧啶、泰乐菌素等4种抗生素污染土壤中有效态抗生素含量和蔬菜对土壤中抗生素吸收及蔬菜生长的影响。结果表明,施用生物质炭可减缓土壤中抗生素的降解,但明显降低了土壤中有效态抗生素含量。在培养52 d的土壤中,生物质炭用量为1.5%和2.0%的2个处理的有效态土霉素、恩诺沙星、磺酸二甲嘧啶和泰乐菌素的含量分别比对照下降25.29%与39.09%,16.39%与28.69%,16.97%与23.64%和17.76%与25.70%。施用生物质炭也可减少蔬菜对土壤抗生素的吸收,施用1.5%和2.0%生物质炭后,蔬菜中土霉素、恩诺沙星、磺酸二甲嘧啶和泰乐菌素含量分别比未施生物质炭的对照处理低23.11%与35.93%,15.89%与22.85%,7.64%与16.56%和16.79%与29.50%。与对照土壤比较,施用生物质炭可增加蔬菜的生物量。  相似文献   

19.
在田间试验条件下,研究施用生物有机肥和生物炭对稻田Cd 和Pb 污染的钝化修复效果。研究结果表明:施用生物有机肥和生物炭处理可以提高土壤pH值以及土壤养分含量,并显著降低土壤有效态Cd 和Pb 的含量,且土壤pH 值与土壤有效态Cd 和Pb 的含量呈极显著负相关;生物有机肥和生物炭处理还可以降低水稻体内Cd 和Pb 的含量,其中水稻糙米Cd 降幅达到了22.00%和18.34%,水稻糙米Pb 含量的降幅也达到了33.46%和12.31%,且水稻糙米Cd 和Pb 的含量与土壤有效态Cd 和Pb 的含量呈显著正相关。综合各处理对土壤pH 值、土壤养分含量、土壤有效态Cd 和Pb 的含量以及水稻Cd和Pb 的影响,可以看出生物有机肥和生物炭处理对于Cd 和Pb 污染稻田土壤有较好的修复效果。  相似文献   

20.
为探讨秸秆生物炭与鸡粪单独及其联合施用对镉(Cadmium,Cd)污染土壤的修复效应,采用模拟Cd胁迫盆栽试验,研究了施用秸秆生物炭(20、40 g·kg~(-1)土壤)、鸡粪(20、40 g·kg~(-1)土壤)、秸秆生物炭和鸡粪混合(各20 g·kg~(-1)土壤)对Cd胁迫下玉米生长及Cd吸收的影响。结果表明:(1)与对照相比,施用生物炭和鸡粪不同处理均显著增加Cd胁迫下玉米的株高和生物量,提高玉米叶片中超氧化物歧化酶(Superoxide dismutase,SOD)、过氧化物酶(Peroxidase,POD)、过氧化氢酶(Catalase,CAT)活性,降低丙二醛(Malondiadehyde,MDA)含量。(2)与对照相比,施用生物炭和鸡粪不同处理均显著降低玉米根、茎、叶中Cd含量、富集系数、转运系数及土壤有效态Cd含量。(3)与鸡粪相比,秸秆生物炭降低土壤中有效态Cd含量和玉米组织中Cd含量效果优于鸡粪,而鸡粪促进玉米生长效果优于生物炭。(4)相比而言,施用40 g·kg~(-1)鸡粪处理促进Cd胁迫下玉米生长和抗氧化酶活性效果最佳,玉米株高和生物量分别较对照增加59.7%和72.5%,SOD、POD和CAT活性分别较对照提高48.4%、69.4%、81.9%,而生物炭和鸡粪等量复配处理对降低玉米根、茎、叶Cd含量和土壤有效态Cd含量效果最优,根、茎、叶Cd含量分别较对照降低46.9%、49.3%、63.9%,土壤有效态Cd含量降低61.1%。总之,采用生物炭和鸡粪进行Cd污染土壤修复均可通过增强玉米的抗氧化性能,从而促进Cd胁迫下玉米生长;而且二者联合应用更有利于降低土壤Cd的生物有效性,减少玉米对Cd吸收和积累。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号