首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial canker is a major disease of Prunus avium (cherry), Prunus domestica (plum) and other stone fruits. It is caused by pathovars within the Pseudomonas syringae species complex including P. syringae pv. morsprunorum (Psm) race 1 (R1), Psm race 2 (R2) and P. syringae pv. syringae (Pss). Psm R1 and Psm R2 were originally designated as the same pathovar; however, phylogenetic analysis revealed them to be distantly related, falling into phylogroups 3 and 1, respectively. This study characterized the pathogenicity of 18 newly genome‐sequenced P. syringae strains on cherry and plum, in the field and laboratory. The field experiment confirmed that the cherry cultivar Merton Glory exhibited a broad resistance to all clades. Psm R1 contained strains with differential specificity on cherry and plum. The ability of tractable laboratory‐based assays to reproduce assessments on whole trees was examined. Good correlations were achieved with assays using cut shoots or leaves, although only the cut shoot assay was able to reliably discriminate cultivar differences seen in the field. Measuring bacterial multiplication in detached leaves differentiated pathogens from nonpathogens and was therefore suitable for routine testing. In cherry leaves, symptom appearance discriminated Psm races from nonpathogens, which triggered a hypersensitive reaction. Pathogenic strains of Pss rapidly induced disease lesions in all tissues and exhibited a more necrotrophic lifestyle than hemibiotrophic Psm. This in‐depth study of pathogenic interactions, identification of host resistance and optimization of laboratory assays provides a framework for future genetic dissection of host–pathogen interactions in the canker disease.  相似文献   

2.
Bacterial canker is a major disease of stone fruits and is a critical limiting factor to sweet cherry (Prunus avium) production worldwide. One important strategy for disease control is the development of resistant varieties. Partial varietal resistance in sweet cherry is discernible using shoot or whole tree inoculations; however, these quantitative differences in resistance are not evident in detached leaf assays. To identify novel sources of resistance to canker, we used a rapid leaf pathogenicity test to screen a range of wild cherry, ornamental Prunus species and sweet cherry × ornamental cherry hybrids with the canker pathogens, Pseudomonas syringae pvs syringae, morsprunorum races 1 and 2, and avii. Several Prunus accessions exhibited limited symptom development following inoculation with each of the pathogens, and this resistance extended to 16 P. syringae strains pathogenic on sweet cherry and plum. Resistance was associated with reduced bacterial multiplication after inoculation, a phenotype similar to that of commercial sweet cherry towards nonhost strains of P. syringae. Progeny resulting from a cross of a resistant ornamental species Prunus incisa with susceptible sweet cherry (P. avium) exhibited resistance indicating it is an inherited trait. Identification of accessions with resistance to the major bacterial canker pathogens is the first step towards characterizing the underlying genetic mechanisms of resistance and introducing these traits into commercial germplasm.  相似文献   

3.
Bacterial canker caused by Pseudomonas syringae pv. syrinage (Pss) in apricot has widely spread in Turkey, especially in Malatya province, in recent years. The main objective of this study was to determine resistance of apricot cultivars to bacterial canker caused by Pss in apricot cultivars grown in Turkey. During the 2006–2007 growing period, bacterial isolations were taken from diseased apricot trees in Malatya and 53 Pseudomonas syringae isolates were obtained. Forty-two isolates were determined as Pseudomonas syringae pv. syringae and 11 isolates as pv. morsprunorum. In a pathogenicity test, leaves of cv. Hacihalilo?lu were used and five Pss isolates (K24, K25, K43, K47 and K51) were detected to be the most virulent and were used to test for cultivar resistance to Pss. Leaves of fifteen apricot cultivars (Alyanak, Çatalo?lu, Çölo?lu, Erken A?erik, Hacihalilo?lu, Hasanbey, ?smaila?a, Kabaa?i, Karacabey, Sakit 2, So?anci, ?am, ?ekerpare, Tokalo?lu (Erzincan) and Turfanda Eski Malatya) were tested for resistance to Pss. Green shoots were spray-inoculated with a concentration of 108 cfu ml?1 Pss mixed culture. Sprayed shoots were covered with moist plastic bags for 3 days and maintained in the growth chamber and monitored for symptom development. Hasanbey, Çölo?lu, So?anci and ?ekerpare apricot cultivars were resistant and ?am, Tokalo?lu (Erzincan) and Erken A?erik apricot cultivars were susceptible to Pss. This is the first report of a resistance source in apricot cultivars grown in Turkey against Pss.  相似文献   

4.
The pathogenicity of 99 Belgian Pseudomonas syringae strains representative of the genetic diversity encountered in Belgian fruit orchards was evaluated by using 17 pathogenicity tests conducted on pear, cherry, plum, lilac, sugar beet and wheat. The P. syringae pv. morsprunorum strains were pathogenic to stone fruit species but the race 1 strains possessing the cfl gene involved in coronatine production were pathogenic in more tests than those lacking the gene. Also, sweet cherry twigs were a better material to detect pathogenic strains of race 1 and sour cherry twigs of race 2, which accorded with race 2 presence in sour cherry orchards in Belgium. Three groups were defined in the pv. syringae based on pathogenicity. One group pathogenic in 71.1% of the tests and to lilac included toxic lipodesipeptide-producing (TLP+) strains. The second group pathogenic in 26.8% of the tests and non-pathogenic to lilac included TLP+ strains. The thirth group pathogenic in 9.1% of the tests and almost specifically pathogenic to pear included TLP− strains. The three groups were genetically heterogeneous. Although strain-host relationships were noted within the pv. syringae, aptata and atrofaciens when considering the strain origins, such relationships were not found in the pathogenicity tests, suggesting that pathogenicity tests could probably not reproduce all the aspects of the host-pathogen interactions. None of the pathogenicity tests was able to provide all the information provided by the complete study. A test on pear buds indicated that strains different from the pv. syringae were pathogenic to pear.  相似文献   

5.
A survey of wild cherry (Prunus avium) woodland plantations and nurseries was carried out in 2000/01. Trees with symptoms of bacterial canker were found in 20 of the 24 plantations visited and in three of seven nurseries. Fifty-four Pseudomonas syringae isolates from wild cherry together with 22 representative isolates from sweet cherry and 13 isolates from other Prunus spp., pear and lilac were characterised by physiological, biochemical, serological and pathogenicity tests. Isolates from wild cherry were predominantly P. syringae pv. syringae (Pss), but P. syringae pv. morsprunorum (Psm) races 1 and 2 were also found. Physiological and biochemical tests discriminated Psm races 1 and 2 from other P. syringae isolates. Agglutination and indirect-enzyme-linked immunosorbent assay tests with three different antisera showed that Psm race 1 and race 2 were very uniform and indicated high variability amongst other P. syringae isolates. However, pathogenic Pss isolates could not be distinguished from non-pathogenic isolates of P. syringae on the basis of physiological, biochemical or serological tests. Pathogenicity tests on rooted lilac plants and on micropropagated plantlets of lilac and two wild cherry clones differentiated Pss and Psm isolates and demonstrated a range of aggressiveness amongst Pss isolates. Serological tests could be used as an alternative to the classical physiological and biochemical tests to increase the speed of detection and discrimination of isolates, but pathogenicity tests are still necessary to discriminate the pathogenic Pss isolates.  相似文献   

6.
Bacterial strains isolated from cankers of wild cherry trees (Prunus avium) in France were characterized using numerical taxonomy of biochemical tests, DNA–DNA hybridization, repeat sequence primed-PCR (rep-PCR) based on REP, ERIC and BOX sequences, heteroduplex mobility assay (HMA) of internal transcribed spacer (ITS) as well as pathogenicity on wild cherry trees and other species of Prunus. They were compared to reference strains of Pseudomonas syringae pathovars isolated from wild and sweet cherry and various host plants. Wild cherry strains were closely related to P. syringae (sensu lato) in LOPAT group Ia (+ - - - +). Wild cherry strains were pathogenic to wild cherry trees and produced symptoms similar to those observed in orchards. They were pathogenic also, but at a lesser extent, to sweet cherry trees (cv. Napoléon). The wild cherry strains were collected from five different areas in France and appeared to constitute a very homogeneous group. They showed an homogenous profile of a biochemical and physiological characteristics. They were closely related by DNA–DNA hybridization and belonged to genomospecies 3 `tomato'. Rep-PCR showed that wild cherry strains constitute a tight group distinct from P. s. pv. morsprunorum races 1 and 2 and from other P. syringae pathovars. HMA profiles indicated that the ITS of all wild cherry strains were identical but different from P. s. pv. persicae strains since the two heteroduplex bands with reduced mobility were generated by hybridization with the P. s. pv. persicae pathotype strain CFBP 1573. The 8 genomospecies of Gardan et al. (1999) have not been converted into formal species as they cannot be differentiated by biochemical tests. Therefore, the pathovar system within P. syringae was currently used. P. syringae pv. avii is proposed for this bacterium causing a wild cherry bacterial canker and strain CFBP 3846 (NCPPB 4290, ICMP 14479) is designated as the pathotype.  相似文献   

7.
A survey of bleeding canker disease, caused by Pseudomonas syringae pv. aesculi, was undertaken across Ireland. Incidence has become severe and can be considered epidemic, as 61% of the 1587 horse chestnut trees surveyed showed symptoms of the disease. Bacteria were isolated from a sample of trees and characterized using gyrBDNA sequencing. DNA was also extracted directly from wound tissue. The Irish P. syringae pv. aesculi genotype was identical to genotypes previously sequenced with gyrB from the UK and some other locations in Europe. Real‐time PCR, using existing primers and a newly designed, more pathovar‐specific primer set, was assessed for use in disease screening. With molecular screening, a total of 11 trees from a sample of 55 tested positive for P. syringae pv. aesculi in Ireland. It was more efficient to extract DNA directly from wound tissue, especially fresh bark, for disease detection than to undertake bacterial isolation with subsequent molecular analysis. A further set of sequencing primers was developed for the amplification of the gyrB gene from P. syringae pv. aesculi and their specificity was shown using a diverse sample of bacterial isolate DNAs. The study also isolated and identified other bacterial species from diseased material; some of these are known pathogens (Brenneria nigrifluens, P. marginalis and P. syringae) or have previously been identified as potentially beneficial endophytes of host trees (Erwinia billingiae, E. tolentana, P. fluorescens, P. putida and Raoultella).  相似文献   

8.
Bacteria forming levan colonies and not producing fluorescent pigments have been isolated from olive knots and the olive phylloplane in central Italy. By their pathogenicity to olive and their morphological, biochemical and physiological features, they clearly belong to Pseudomonas syringae subsp. savastanoi.  相似文献   

9.
梨和苹果腐烂病菌不同培养表型菌株的致病性分析   总被引:3,自引:0,他引:3  
The pathogenicity of three strains (F-SD-8, F-BJ-2c-2 and F-HN-2a-1) of Valsa mali var. pyri causing pear canker and one strain (F-SX-A6) of V. mali var. mali causing apple canker in China were comparatively tested by wound inoculation on in vitro twigs of pear, apple and some other woody plants, and in vivo twigs of pear. Significant pathogenicity differentiation was detected in V. mali var. pyri. Generally strains F-SD-8 and F-BJ-2c-2 were highly pathogenic on pear although their culturing characteristics differed greatly. The strain F-SX-A6 was more aggressive on apple than on pear, and the strain F-HN-2a-1 showed significant lower pathogenicity on ten pear cultivars and other seven species of woody plants. Our results confirmed that two variants of V. mali had host preference and were also aggressive to crabapple, apricot, and peach besides apple and pear. Meanwhile, strains F-SD-8 and F-BJ-2c-2 could induce the formation of pycnidia on in vivo twigs of pear, which was not observed on in vivo twigs inoculated with F-HN-2a-1 and F-SX-A6.  相似文献   

10.
Since 2008, bacterial canker of kiwifruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (Psa) has resulted in severe economic losses worldwide. Four biovars of Psa can be distinguished based on their biochemical, pathogenicity and molecular characteristics. Using a range of biochemical, molecular and pathogenicity assays, strains collected in France since the beginning of the outbreak in 2010 were found to be genotypically and phenotypically diverse, and to belong to biovar 3 or biovar 4. This is the first time that strains of biovar 4 have been isolated outside New Zealand or Australia. A multilocus sequence analysis based on four housekeeping genes (gapA, gltA, gyrB and rpoD) was performed on 72 strains representative of the French outbreak. All the strains fell into two phylogenetic groups: one clonal corresponding to biovar 3, and the other corresponding to biovar 4. This second phylogenetic group was polymorphic and could be divided into four lineages. A clonal genealogy performed with a coalescent approach did not reveal any common ancestor for the 72 Psa strains. Strains of biovar 4 are substantially different from those of the other biovars: they are less aggressive and cause only leaf spots whereas Psa biovars 1, 2 and 3 also cause canker and shoot die‐back. Because of these pathogenic differences, which were supported by phenotypic, genetic and phylogenetic differences, it is proposed that Psa biovar 4 be renamed Pseudomonas syringae pv. actinidifoliorum pv. nov. Strain CFBP 8039 is designated as the pathotype strain.  相似文献   

11.
Pseudomonas syringae pv. actinidiae (Psa) is responsible for bacterial canker of kiwifruit. Biovar 3 of Psa (Psa3) has been causing widespread damage to yellow‐ and green‐fleshed kiwifruit (Actinidia spp.) cultivars in all the major kiwifruit‐producing countries in the world. In some areas, including New Zealand, P. syringae pv. actinidifoliorum (Pfm), another bacterial pathogen of kiwifruit, was initially classified as a low virulence biovar of Psa. Ability to rapidly distinguish between these pathovars is vital to the management of bacterial canker. Whole genome sequencing (WGS) data were used to develop PCR assays to specifically detect Psa3 and Pfm from field‐collected material without the need to culture bacteria. Genomic data from 36 strains of Psa, Pfm or related isolates enabled identification of areas of genomic variation suitable for primer design. The developed assays were tested on 147 non‐target bacterial species including strains likely to be found in kiwifruit orchards. A number of assays did not proceed because although they were able to discriminate between the different Psa biovars and Pfm, they also produced amplicons from other unrelated bacteria. This could have resulted in false positives from environmental samples, and demonstrates the care that is required when applying assays devised for pure cultures to field‐collected samples. The strategy described here for developing assays for distinguishing strains of closely related pathogens could be applied to other diseases with characteristics similar to Psa.  相似文献   

12.
During the period 2006–2011, Pseudomonas syringae pv. syringae caused a bacterial inflorescence rot (BIR) epidemic in an Australian cool climate viticultural region. Molecular multilocus sequence typing of ‘housekeeping’ genes (MLST), biochemical testing and analysis of molecular variance (AMOVA) were used to characterize the genotypes and phenotypes of P. syringae pv. syringae grapevine isolates. Comparison of the MLST data with exemplars of phylogroups available at PAMDB demonstrated that the BIR isolates formed a new clade within P. syringae pv. syringae phylogroup 2 (PG02): putatively designated PG02f. Analysis of the MLST and phenotypic data by AMOVA demonstrated some genetic differences between the BIR isolates and the general vineyard P. syringae pv. syringae population. Isolates positive for syringopeptin, syringomycin and tyrosinase, tobacco leaf hypersensitivity reaction (HR), ampicillin resistance and grapevine leaf pathogenicity were genetically distinct from those negative for these factors. This study has shown that, generally, the core genome of P. syringae pv. syringae is only weakly associated with the virulence-associated traits. As the new phylogroup PG02f consists of the epidemic BIR isolates and nonpathogenic grapevine isolates, these genetically similar isolates differ greatly in pathogenicity and most of the other tested phenotypic traits. However, within the PG02f group, tobacco leaf HR and presence of sylC (the gene for phytotoxin syringolin A) are associated with the BIR and bacterial leaf spot (BLS) isolates, and negative for the nonpathogens, indicating that these two virulence factors may be associated with vineyard pathogenicity within the new Australian phylogroup.  相似文献   

13.
Antisera were raised against cell surface components of Pseudomonas syringae pv. syringae strain R32, the causal agent of brown spot disease of bush bean, and against a non-pathogenic Tn5 derived strain, PS9021. When the antiserum from strain R32 was purged against the non-pathogenic mutant PS9021, pathogenicity-specific antibodies (purged AB) were detected in the supernatant which agglutinated strain R32 but not the mutant. When the mutant, PS9021, was complemented with an intact wild type DNA fragment cloned in a cosmid vector, it was agglutinated with purged AB. When the mutant PS9021 was cured of this cosmid by introducing an incompatible plasmid no agglutination with purged AB was detected.Site-directed mutagenesis of P. syringae R32 with Tn5-containing homologous Pseudomonas DNA from the non-pathogenic mutant resulted in mutants that were indistinguishable from PS9021 with respect to either titre of purged AB or pathogenicity. The complementation of these mutants with cloned wild type DNA and their subsequent curing resulted in the same pathogenicity and purged AB behaviour as previously observed with PS9021.Cultivation of P. syringae at 30 °C, or higher temperatures, resulted in no agglutination with purged AB. These bacteria produced significantly reduced symptoms when inoculated into beans. Dot blot DNA-DNA hybridization revealed DNA homology between the pathogenicity coding region of P. syringae and DNA from several different plant pathogenic bacteria but not with naturally occurring non-pathogenic or unrelated pseudomonads. A correlation was found between the intensity of the hybridization and the titre of the purged AB of each individual Pseudomonas isolate.  相似文献   

14.
Strains of Pseudomonas syringae pv. syringae (Pss) were isolated from healthy and diseased stone fruits tissues sampled from 38 stone fruits orchard sites in Iran in 2010 and 2011. These strains were tested for pathogenicity and the presence of the syrB gene and were genetically characterized by using ERIC (enterobacterial repetitive intergenic consensus), REP (repetitive extragenic palindromes), and BOXAIR and IS50 (insertion sequences) primers and PCR. All 78 strains of Pss tested were moderately to highly pathogenic on Loring peach seedlings. A total of 78 isolates of the Pss amplified a 752-bp fragment with the syrB primers. To assess genetic diversity among the strains, genomic DNA was extracted from strains and used in rep-PCR and IS50-PCR analysis. Cluster analysis was performed using UPGMA. The strains of Pss were separated into nine distinguishable genotypic groups by the combination data set of both rep-PCR and IS50-PCR at 73 % similarity level. There was no significant correlation between genetic diversity and geographical origin of the isolates. These results indicate that a combination of rep-PCR and IS50-PCR fingerprinting can be used as a high resolution genomic fingerprinting method for elucidating intrapathovar diversity among strains of Pss. The results of this study demonstrated the existence of a considerable genetic diversity among Pss strains causing canker of stone fruit trees in Iran. In this study, genetic variability in Iranian strains of Pss were established, which will be of immense use in the development of resistant genotypes against this bacterial pathogen.  相似文献   

15.
Bacterial canker disease is a major limiting factor in the growing of cherry and other Prunus species worldwide. At least five distinct clades within the bacterial species complex Pseudomonas syringae are known to be causal agents of the disease. The different pathogens commonly coexist in the field. Reducing canker is a challenging prospect as the efficacy of chemical controls and host resistance may vary against each of the diverse clades involved. Genomic analysis has revealed that the pathogens use a variable repertoire of virulence factors to cause the disease. Significantly, strains of P. syringae pv. syringae possess more genes for toxin biosynthesis and fewer encoding type III effector proteins. There is also a shared pool of key effector genes present on mobile elements such as plasmids and prophages that may have roles in virulence. By contrast, there is evidence that absence or truncation of certain effector genes, such as hopAB, is characteristic of cherry pathogens. Here we highlight how recent research, underpinned by the earlier epidemiological studies, is allowing significant progress in our understanding of the canker pathogens. This fundamental knowledge, combined with emerging insights into host genetics, provides the groundwork for development of precise control measures and informed approaches to breed for disease resistance.  相似文献   

16.
Bacterial canker and dieback (Pseudomonas syringae van Hall) of apricot is a widespread disease in Europe, except for the Mediterranean areas. Cankers usually develop at pruning wounds or other points of injury. Phloem and cambium become susceptible from just after leaf drop until budding. If the phloem necrosis does not girdle the branch or trunk, cankers develop by the middle or the end of summer. In early summer, the bacterium actually dies out in the infected tissue, and the tree remains resistant during the summer. During this period, the pathogen lives epiphytically on the surface of the leaves, without causing any symptoms. The extent of bacterial necrosis of the phloem depends on the severity of winter frost. Without winter frost, bacterial induced tissue necrosis does not occur. Necrosis is found only if P. syringae has enough time to proliferate before the onset of frost. The most effective method of control is to carry out spring rather than winter pruning.  相似文献   

17.
Trees and woody plants can be attacked by many pests and pathogens either individually or as polymicrobial infections. In particular, infections caused by tree-specific bacterial pathogens have become more common during the last decade, causing serious concern for important tree and woody plant species in horticulture, urban environments, and forests. For example, Xylella and Pseudomonas bacteria are causing significant economic and ecological devastation throughout Europe in olive, cherry, and other stone fruits, mainly because of lack of efficient control methods and the emergence of bacterial resistance to traditional antimicrobial compounds such as copper and antibiotics. Hence, there is an urgent need for innovative approaches to tackle bacterial plant diseases. One way to achieve this could be through the application of biological control, which offers a more environmentally friendly and targeted approach for pathogen management. This review will explore recent advances in use of pathogen-specific viruses, bacteriophages (or phages), for the biocontrol of bacterial tree diseases. Phages are an important component of plant microbiomes and are increasingly studied in plant pathogen control due to their highly specific host ranges and ability to selectively kill only the target pathogenic bacteria. However, their use still poses several challenges and limitations, especially in terms of managing the bacterial diseases of long-lived trees. A particular insight will be given into phage research focusing on controlling Pseudomonas syringae pathovars, Erwinia amylovora, Xanthomonas species, Ralstonia solanacearum, and Agrobacterium tumefaciens. Recent milestones, current challenges, and future avenues for phage therapy in the management of tree diseases are discussed.  相似文献   

18.
The European earwig, Forficula auricularia L. (Dermaptera: Forficulidae), is a well-known species that is cosmopolitan and present throughout Europe. Due to its omnivorous feeding behaviour, this species can act as a generalist predator, preying on several top fruit pests, but also as a pest causing shallow gouges or holes in stone and soft fruits such as apricots, strawberries, raspberries or blackberries. In Piedmont (NW Italy), significant fruit damage has been observed lately in apricot orchards where earwigs fed on ripening fruits and made a considerable part of the produce unmarketable. In this study, we sampled earwig populations in three apricot orchards in Piedmont and tested the effectiveness of glue barriers applied to the tree trunks in reducing both earwig density in the canopy and fruit damage. The arboreal glues Rampastop® and Vebicolla® were tested both in the field and laboratory trials. Glue barriers demonstrated to be effective control measures, significantly reducing earwig abundance in the canopy and fruit damage. Rampastop® gave better results on old trees with a very rough and cracked bark, since in that case Vebicolla® could not perfectly bond with the trunk.  相似文献   

19.
Pseudomonas syringae pv. actinidiae, the causal bacterium of kiwifruit canker, induces the formation of chlorotic halo lesions on infected leaves and inhibits the growth of Escherichia coli. The inhibition ofE. coli growth was shown to be reversed by L -arginine or L -citrulline, but not by L -glutamine, suggesting that the pathogen produces a toxin similar to phaseolotoxin, which inhibits ornithine carbamoyltransferase. The toxin was purified from culture broth of P. syringae pv. actinidiae strain Kw11, and was shown by nuclear magnetic resonance to be identical to phaseolotoxin. Assays based on inhibition of E. coli growth and on amplification of a phaseolotoxin fatty acid desaturase gene (ptx) fragment revealed that, among the plant pathogenic bacteria examined, the production of phaseolotoxin is restricted to strains of P. syringae pv. phaseolicola and pv.actinidiae . A non-toxigenic mutant of strain Kw11 generated by disruption of the ptx gene induced the formation of necrotic lesions on kiwifruit leaves; however, the lesions were not surrounded by a chlorotic halo as were those induced by the parent strain. The growth rate of the non-toxigenic mutant in leaf tissue was similar to that of the parent strain. These results suggest that phaseolotoxin production contributes to the formation of chlorotic halo lesions in kiwifruit canker but is not required for multiplication of the pathogenic bacterium during infection.  相似文献   

20.
Pseudomonas syringae pv. papulans (PSP) the causal agent of blister spot, on the apple cultivar Mutsu in the USA, Canada and Italy, has not been described in France. A study on epiphytic populations of P. syringae isolated from French apple orchards revealed two isolates called KA54 and E121, whose biochemical characterisation showed high similarities with PSP strains. Identical symptoms were obtained with KA54, E121 and PSP strains, after vacuum inoculation of detached immature fruits of the cultivar Fuji, and young leaves of the cultivars Fuji, Mutsu, Gala and Golden Delicious. Koch's postulate was verified. These results indicate the presence of PSP in France. Differential characterisation criteria including serological, molecular and pathogenicity tests are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号