首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
浓缩风能装置是浓缩风能型风力发电机的核心部分,其选材直接影响到浓缩风能型风力发电机的推广应用。该文应用流固耦合分析方法,采用CFD软件进行流场分析,对浓缩风能装置在特定风场下进行仿真模拟,得到了浓缩风能装置所处流场的风速和风压分布。将流场计算结果作为载荷加载到浓缩风能装置上,该装置在风中所受最大应力3.267 MPa,远小于拜耳makrolon 2407型聚碳酸酯的屈服应力66 MPa、断裂应力65 MPa以及弯曲强度98 MPa,因此该型号聚碳酸酯在强度上满足浓缩风能装置要求,可以替代目前所用材料冷轧钢板。该研究结果可为后期的结构改进和优化设计提供理论依据和参考。  相似文献   

2.
姬忠涛  田德 《农业工程学报》2016,32(21):230-234
通过3D打印技术可以方便快捷地制作出浓缩风能装置风洞试验模型,但必须对其安全性进行分析。该文采用流固耦合分析方法,对利用3D打印技术按1:4.5的比例制作的浓缩风能装置模型用于风洞试验的安全性进行分析。首先通过计算流体力学软件对流体场进行网格无关性分析,然后对流体场进行仿真模拟,得出了浓缩风能装置模型在风洞中的风速分布,其结果表明,浓缩风能装置叶轮安装平面6点风速平均值为流场入口风速的1.40倍,该倍率与参考文献中的实际测量平均倍率1.38倍非常接近,这说明按1:4.5的比例制作的浓缩风能装置模型用于该文所述尺寸风洞按该文中的设置进行模拟计算是正确的。然后将该模型表面风压分布作为载荷加载到此模型上,得到该模型在风洞中所受最大应力为3.5385 MPa,远小于所选3D打印材料的拉伸强度40.2 MPa和弯曲强度67.8 MPa,且最大偏移量仅为1.8675 mm,因此采用文中所选3D打印材料通过3D打印技术制作风洞试验模型是安全的。  相似文献   

3.
浓缩风能装置内部流场仿真分析   总被引:2,自引:2,他引:0  
浓缩风能装置是浓缩风能型风力发电机组的主要部件之一,其结构直接影响机组输出功率的大小。为了提高浓缩风能装置的浓缩效率,以浓缩风能装置为研究对象,应用三维建模软件与CFD(computational fluid dynamics)软件建立了几何模型与网格模型。基于上述模型,提出应用数值模拟方法对浓缩风能装置内部流场进行仿真分析,并通过比较分析不同湍流模型下的内部流场特性,得知标准κ-ω湍流模型更加适用于浓缩风能装置内部流场仿真。基于上述浓缩风能装置模型和湍流模型,分别对不同尺寸参数的浓缩风能装置内部流场特性进行仿真分析,得到了扩散角对浓缩风能装置内部流场特性的影响比收缩角、中央圆筒长度的影响大的规律,此规律为浓缩风能装置结构优化与设计提供了依据,优化后的结构能明显提高风能品质和风电机组输出功率。  相似文献   

4.
浓缩风能装置的扩散管结构直接影响浓缩风能型风电机组的输出功率.为提高浓缩风能装置的浓缩效率,以浓缩风能装置为研究对象,采用数值模拟方法,研究扩散管凸缘的几何参数对浓缩风能装置内部流场特性的影响规律;并通过试验验证数值模拟的可靠性.结果表明:扩散管凸缘结构能够明显提高浓缩风能装置对自然风的加速作用和风能利用率;且装置内部流场的流速和风轮扫掠面积上的可利用风能随着凸缘高度L的增加而增大.综合分析可得,带有L为450 mm、凸缘角度α为+9°的扩散管凸缘的浓缩风能装置模型流场流速和可利用风能较高;与原始模型相比,其内部流场最大流速提高了30.738%,可利用风能提高了84.26%,是所研究模型中流场性能较佳的浓缩风能装置结构.  相似文献   

5.
浓缩风能型风力发电机浓缩装置流场特性模拟与试验   总被引:1,自引:1,他引:0  
对于大型风力发电机组,风切变的影响不容忽视。浓缩风能型风力发电机可以提高风能密度,改善风能的不稳定性。为揭示浓缩风能型风力发电机浓缩装置风切变的流动规律,该文以浓缩风能装置为研究对象,进行了流场风切变特性的数值计算和风洞试验研究。采用具有风速梯度4.2 s-1的风洞进行浓缩风能装置模型的风切变风洞试验。结果证明浓缩风能装置具有减轻风切变的能力;浓缩风能装置使来流的风速梯度由4.2 s-1减小为3.4 s-1,有效地提高了叶片载荷均匀度和风力发电质量;数值计算结果与试验结果相符。研究结果可为风切变研究和完善浓缩装置与叶片的设计提供参考。  相似文献   

6.
浓缩风能装置的结构直接影响浓缩风能型风电机组的性能。在该文中,采用计算流体力学软件对浓缩风能装置进行结构优化。优化方案是在原模型扩散管后增加一段锥形管,并分析锥形管的母线长度d及偏转角β对浓缩性能的影响。分析结果表明,锥形管母线长度为0.4D(D为中央圆筒直径),偏转角为50°时的优化模型为较优模型。浓缩风能装置优化模型的浓缩性能由锥形管后方的漩涡和锥形管内壁面上的流动分离决定。漩涡的存在使浓缩风能装置优化模型的浓缩性能优于原模型。流动分离会使浓缩性能降低。使浓缩风能装置得到优化的最佳状态是锥形管后方出现一个强烈的漩涡,同时锥形管内壁面附近不出现强度较大的流动分离。  相似文献   

7.
浓缩风能型风力发电机的流场具有特殊性,它的流场特性直接影响该类型风力发电机的性能。浓缩风能的目的是为了有效地提高风能品位、单机输出功率和风能资源利用率,降低风电度电成本。200W浓缩风能型风力发电机是由风洞测试后的浓缩风能型风力发电机整体试验模型简化改进的实用机型。采用车载法对200W浓缩风能型风力发电机相似模型的流场进行了测试,运用皮托管和数字压力计测试了各断面特征点的总压、静压,获取了流场流速分布等特性。试验表明:相似模型的中央圆筒叶轮安装处流速增至来流流速的1.31倍,风能增至来流风能的2.25倍。通过相似模型的车载法试验结果分析研究,找出了流场流速分布的规律性。  相似文献   

8.
浓缩风能型风力发电机浓缩装置流场特性及试验   总被引:5,自引:5,他引:0  
为揭示浓缩风能型风力发电机浓缩装置的流动规律,该文以浓缩装置为研究对象,进行了流场特性的理论分析、数值计算和试验研究.流体流过浓缩装置,靠壁面流体首先被加速,在中间截面前0.22 m截面超过中心轴流速,之后随轴向距离加大,逐渐形成中间流速大于边缘流速的流场;中央圆筒具有以中心轴为圆心的径向流速梯度,来流风速10.74 m/s时,中间截面径向流速梯度达2.35/s;近壁面形成薄薄的边界层,出现在距中央圆筒壁面50 mm附近,在中间截面前0.11 m截面和中间截面后0.07 m截面出现波峰,波谷出现在中间截面后0.02 m处.试验结果表明,数值计算结果与试验结果相符.研究结果可为完善浓缩装置和叶片的设计提供参考.  相似文献   

9.
浓缩风能型风力发电机的流场具有特殊性,它的流场特性直接影响该类型风力发电机的性能。浓缩风能型风力发电机改进模型是由相似模型改进而成。采用车载法对改进模型的流场特性进行了试验并与原相似模型比较,研究表明:改进模型中央圆筒叶轮安装处流速增至来流流速的1.38倍,比原模型提高了5.34%;气流动能增至来流风能的2.65倍。采用车载法对改进模型功率输出特性进行了试验,当自然风速为 10.83 m/s时,叶轮转速额定,叶轮风能利用系数Cp为0.182,机组输出功率117.6 W,此时发电机效率为0.655,试验结果证明:叶轮安装处风速是前方相同面积来流风速的1.37倍,气流动能增至来流风能的2.57倍。试验为浓缩风能型风力发电机叶轮设计提供了重要依据。  相似文献   

10.
200 W浓缩风能型风力发电机的应用及运行效果   总被引:7,自引:7,他引:0  
浓缩风能型风力发电机是使自然风通过聚能装置把稀薄不稳定的风能浓缩和均匀化之后利用的一种风力发电装置。200 W小型机组已经在中国和日本多个地区应用,当自然风速为10 m/s时,发电机效率为0.603,机组功率达到了208.6 W,风能利用系数为0.52,运行效果良好。与其它国内外优秀机组相比具有风轮直径较小,起动风速低,风能利用系数较高等特点。该机组采用6叶片风轮,高风速时可自动限速,安全性高,应用前景广阔。  相似文献   

11.
滚筒筛式废旧地膜与杂质风选装置设计   总被引:2,自引:1,他引:1  
回收后的废旧地膜与棉秸秆、根茬等杂质缠绕不易分离,不能实现二次利用,为实现废旧地膜循环再利用和从根源上解决废旧地膜对土壤环境的污染问题,通过对棉秸秆、根茬及地膜在风场中进行运动学分析,测定其悬浮速度,并以此为基础设计了滚筒筛式废旧地膜杂质风选装置,介绍了机具的整体结构、工作原理及关键部件.通过正交试验确定了最优工作参数组合,试验结果表明当旋转筛筒转速为30 r/min,风管出口风速15 m/s时,物料喂入量为250 kg/h时,作业后膜中含杂率、杂中含膜率及废旧地膜产量效果最佳,将最优参数组合带入实际生产中进行验证,试验表明该机具各项指标均满足设计要求,分离后的废旧地膜膜中含杂率为13.71%,杂中含膜率为0.133%,废旧地膜产量可达35.8 kg/h.  相似文献   

12.
单纵轴流谷物联合收获机清选装置内部流场对筛面风速分布和清选效果具有显著影响。该研究以雷沃重工RG-60型联合收获机为研究对象,通过田间试验测试了清选装置上筛面风速分布情况,结果表明上筛面右侧的风速大于左侧,风速分布均匀性差,造成振动筛左侧的脱出混合物堆积现象,不利于清选作业。为解决上述问题,对清选装置内部脱出混合物的受力和运动速度进行分析,利用HyperWorks软件对清选装置内部的风速分布进行仿真,结果表明风机前出风口和尾筛中部的风速最大值为8.6 m/s,筛面右侧风速偏大,左右两侧风速平均差值为2.6 m/s,试验和仿真结果的各测点风速变化规律一致。对清选装置的结构进行仿真优化,并进行优化后联合收获机田间试验,结果表明当清选装置右侧挡风板逆时针转动30°时上筛面风速分布最均匀,风速最大值为8.7 m/s;左右两侧流场对称分布,筛面各测点的风速比优化前平均提高2m/s;小麦籽粒损失率为0.89%,含杂率为0.37%;水稻籽粒损失率为1.85%,含杂率为0.51%,清选效果良好。研究结果为单纵轴流收获机清选装置结构设计提供了参考。  相似文献   

13.
单旋翼电动无人直升机辅助授粉作业参数优选   总被引:1,自引:4,他引:1  
不同类型的农用无人直升机的结构不同,旋翼所产生气流到达作物冠层后形成的风场也有较大差异,对应的风速、风向和风场宽度等参数对花粉的运送效果直接影响到授粉的效果(母本结实率)、作业效率及经济效益。该文采用单轴单旋翼电动无人直升机,根据正交试验设计法设计了3因素(飞行高度、飞行速度和飞机及负载质量)3水平的正交试验,通过考察平行于飞行方向(X向)、垂直于飞行方向(Y向)、垂直地面(Z向)3个方向上的峰值风速(X、Y向越大越好,Z向越小越好)、Y向风场宽度(越宽越好)、动力电池的压降(放电越慢越好)3个指标,对单旋翼电动无人直升机用于水稻制种辅助授粉的田间作业参数进行优选,试验结果分析表明:SCAU-2型单轴单旋翼电动无人机在峰值风速1 m/s时对应的水稻冠层有效风场最宽可达8.1 m,最窄为4.9 m,该机型在所设计的试验条件下基本能满足传播花粉的需求;该机型在水稻冠层所形成风场的峰值风速主要受飞机的飞行速度、飞机及负载质量、飞行高度影响,且随着飞行速度的降低、飞机及负载质量的增加、飞行高度的降低,其峰值风速有逐步增大的趋势。结合有效风场宽度及电池电量消耗程度来考量,3种主要因素的主次排序及其较优水平依次为飞行速度1.56 m/s、飞机及负载质量14.05 kg和飞行高度1.93 m。该结果可为其他单轴单旋翼电动无人直升机用于水稻制种辅助授粉的田间作业参数设置提供参考,而且也可为制定基于农用无人直升机的水稻制种辅助授粉作业技术规范提供依据。  相似文献   

14.
浓缩风能型风力发电机是把稀薄的风能浓缩后利用的一种新型风力发电机组。依据大量的风洞实验数据,分析论证了不使用其它动力源,利用浓缩装置前方入口外侧形成的高压和浓缩装置侧面形成的低压,采用高压喷嘴喷出和抽吸孔对浓缩装置内扩散管的边界层进行喷射和抽吸可提高浓缩风能效果,使风力发电机输出功率增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号