首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Early sexual maturation of male chinook salmon (maturation 1 to 4 years prior to females in the same age class) results in reduced effectiveness of stock enhancement programs and a financial loss to the salmon farming industry. Previous studies in Atlantic salmon have shown that the age of maturity in males is affected by growth and/or body energy stores, but the relative roles of these two factors are not well understood. Therefore, an experiment was designed to determine when spermatogenesis was initiated, to characterize the endocrine changes during the onset of puberty in male salmon, and to determine if the level of whole-body lipid affects the incidence of early male maturation in a wild stock (Yakima River) of 1+ spring chinook salmon. Fry were fed a commercial diet from February until August and were then divided into groups of 320 fish (mean weight, 5.6 g) and fed one of five experimental diets (two replicate groups/diet) containing 4%, 9%, 14%, 18% or 22% lipid and 82%, 77%, 73%, 69%, or 65% protein for 13 months. Fish were reared on natural photoperiod and ambient temperature (6°C to 16°C), and pair-fed to a level based on the tank with the lowest feed consumption. Fish were weighed monthly and sampled to determine body composition, pituitary follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels, plasma insulin-like growth factor I (IGF-I) levels, and stage of gonadal development.

Throughout the experimental period the mean fish weight was similar among treatment groups. However, from December through the end of the experiment in the following September, maturing males were significantly larger than nonmaturing fish. Initial lipid levels in 0-age experimental fish were near 6%, which is similar to wild fish of the same stock and age captured in the Yakima River during August. Fish fed diets containing more than 4% lipid increased in whole-body lipid content during the first 2 months of feeding and then maintained at relatively constant levels during the course of the experiment. Whole-body lipid levels for the dietary treatment groups averaged 5.6%, 7.1%, 8.2%, 9.4%, and 9.6% from October through the following September.

Based on histological examination of the testes of experimental fish, type B spermatogonia and primary spermatocytes were first observed in some of the yearling males during November. These were designated maturing males. Pituitary FSH levels were significantly higher in maturing than nonmaturing males at this time and for the remainder of the study. Pituitary FSH levels increased as spermatogenesis proceeded in maturing fish, whereas pituitary LH levels increased in maturing 1+ males only during July and August, when testes were in late stages of spermatogenesis and in September during spermiation. Plasma IGF-I levels were significantly higher in maturing males than nonmaturing fish from December through the end of experiment. Since maturing males were significantly larger than nonmaturing fish of both sexes from December through September, the difference in IGF-I levels could be due to differences in growth or due to maturation.

The percentage of maturing males was significantly influenced by whole-body lipid, increasing from 34% in fish fed the 4% lipid diet to 45% in fish fed the 22% lipid diet. These data suggest that whole-body lipid levels influenced the incidence of maturation of male spring chinook salmon. In addition, both endocrine and histological indicators suggest that maturation was initiated in males approximately a full year prior to the time the fish will spawn.  相似文献   


2.
Seasonal changes in plasma levels of insulin-like growth factor I (IGF-I) in precociously maturing amago salmon (Oncorhynchus masou ishikawai), which matured as 1-year-olds, have been investigated. Profiles of plasma IGF-I levels were compared with changes in growth and maturity, and plasma growth hormone (GH) and thyroxine (T4) concentrations. The maturity of the fish was determined by calculating the gonadosomatic index; in November, 100% of males and 89% females matured. In both males and females, plasma IGF-I levels increased from March to August, and subsequently, plasma IGF-I levels in the early maturing males and females declined gradually and were maintained at lower levels during the spawning period in November. Plasma GH levels were high in April, and then declined gradually through September. Thereafter, in early maturing fish, a slight increase in plasma GH levels was observed in October and November. No significant changes in plasma T4 levels were found in the precociously maturing fish. In sharp contrast, plasma IGF-I levels in immature fish remained elevated through September, reaching a peak in October, and then gradually declined in November. In immature females, plasma T4 and GH levels were elevated in August, reached their maximum in September and then gradually declined until November.  相似文献   

3.
Since somatostatin (SRIF) inhibits the release of growth hormone (GH), its immunoneutralization may provide an alternative to GH therapy as a means of enhancing somatic growth in fish. The present study examined the feasibility of accelerating growth in juvenile chinook salmon by means of antiSRIF administration. Yearling salmon of Nicola River stock (BC, Canada) were injected intraperitoneally every 5 days, for a total of 40 days, with either SRIF (1 μg g-1 body wt.), antiSRIF (SOMA-10, 1 μg g−1), recombinant bovine GH (rbGH, 2.5 μg g−1), recombinant porcine GH (rpGH, 2.5 μg g−1) or saline (controls). No significant differences were observed in length, weight or final condition factor (k) between the SRIF-treated and control fish over the experimental period. However, the fish treated with the antiSRIF were significantly (p ≤ 0.05) longer and heavier than the control salmon after 25 and 30 days respectively. Furthermore, antiSRIF treatment caused a lowering in k when compared to the control salmon. Fish injected with rbGH or rpGH were significantly longer and heavier than all other groups (p ≤ 0.05), after only 5 days. GH treated groups also returned higher k when compared against all other treatments (p ≤ 0.05). No differences were observed in growth between the two rGH treatments over the experimental period.  相似文献   

4.
During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week springmigration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility,yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses ofmigrating fish either did not increase during themigration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations inmigrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability ofmigrating smolts to maintain relatively elevated IGF-I levels despiteRestricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance.  相似文献   

5.
Two extruded diets designed to have fat levels of 220 g kg−1 (F22) and 300 g kg−1 (F30) were fed to Atlantic salmon Salmo salar L. in two different experiments during the sea rearing period (from 0.2–0.3 kg to 3–4 kg). Each diet was fed restricted and isoenergetically at two feeding rates to fish in triplicate groups. In one of the experiments, a supplementary group of fish was fed to satiation with the F30 diet. All fish were slaughtered and evaluated for quality according to a commercial standard.
No difference in growth was observed between fish fed the two diets at similar feeding rates and the growth was proportional to the amount of dietary energy offered. Feed conversion ratios decreased according to higher energy content in the F30 diet, and the nitrogen and phosphorus retention increased significantly. Fish fed the F30 diet revealed a higher incidence of sexual maturity. Fat content in cutlets and dressed carcasses were significantly affected by feeding rate but not by dietary fat level. Fish fed the F30 diet had more visceral fat and, consequently, lower dress-out percentage. Mortality, liver size and liver colour were not significantly affected by dietary fat level.
These experiments showed that even large differences in dietary fat level employed for the entire sea rearing period of Atlantic salmon, did not, or only marginally affected the cutlet and dressed carcass fat content. The high fat diet improved the feed utilization, thus decreasing the discharge to the environments. Furthermore, it resulted in greater growth at ad libitum feeding.  相似文献   

6.
The growth and feed utilization of Atlantic cod (Gadus morhua) (437 g), Atlantic salmon (Salmo salar) (485 g) and rainbow trout (Oncorhynchus mykiss) (413 g) fed a diet (170 g kg−1 fat, 600 g kg−1 crude protein; LE) similar to that used in commercial cod production or one that was top dressed with additional fat (280 g kg−1 fat, 530 g kg−1 crude protein; HE), were compared in an 11‐week trial. In the cod, relative feed intake was 41–58% and thermal growth coefficient 63% of that in the salmonids, but the feed efficiency ratio (FER) was 38% better (P ≤ 0.05). In contrast to the cod where there was no effect of diet on feed intake, growth or FER, both the salmon and trout fed the HE diet had greater feed intake than those fed the LE diet, but the effect of this was only positive for growth in the salmon. The cod retained more of the digested nitrogen (44.9 ± 2.7%) than the salmon (39.4 ± 0.8%), and both of these species retained more than the trout (33.6 ± 1.1%) (P ≤ 0.05). The retention of digested energy was significantly higher in the salmon (52.2 ± 0.9%) than in the trout (44.8 ± 1.1%), with the cod (44.9 ± 4.9%) not different from either of the other species. There were no differences between the species in the retention of absorbed phosphorus (65.9 ± 3.6%). There were very few dietary effects on nutrient utilization in this trial and, for the cod, this indicates that higher energy diets may be feasible for use in production.  相似文献   

7.
The purpose of the study was to investigate whether dietary ration or diet composition influence the relationship between plasma growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) in Arctic charr (Salvelinus alpinus L.). The pattern of changes in plasma GH and IGF‐1 concentrations was examined in fish fed at different ration levels (0%, 0.35% and 0.70% BW day−1) for 5 weeks, and in fish fed diets containing different lipid:crude protein (LCP) ratios. Ration level significantly affected plasma GH and IGF‐1 concentrations; at 5 weeks the levels of both hormones in the food‐deprived group were significantly lower than in fish fed the 0.70% BW day−1 ration. Also, plasma IGF‐1 levels in fish of each ration treatment group were significantly correlated with individual final body weight; no such correlation was found for GH. To examine the effects of dietary LCP ratios, fish were fed for up to 18 weeks, with one of four formulated diets that had LCP ratios (dry matter basis) of 0.35 (Diet 1), 0.43 (Diet 2), 0.51 (Diet 3) or 0.59 (Diet 4), or a commercial diet (Diet 5) which had an LCP ratio of 0.38. Statistical differences in plasma GH and IGF‐1 concentrations were found only after 18 weeks. Growth hormone was significantly lower in fish fed Diets 1 and 2 compared with Diets 3 and 5, and IGF‐1 was significantly lower in fish fed Diet 1 compared with Diets 2 and 5. Significant correlations between plasma GH and IGF‐1 concentrations were found only for fish fed Diets 1 and 5, suggesting that the influence of diet composition on the relationship between GH and IGF‐1 varies with the dietary LCP ratio in this species. The decline in plasma IGF‐1 concentrations during food deprivation is similar to that described in other species; however, the unexpected decrease in plasma GH during food deprivation in this study may represent a species‐specific response.  相似文献   

8.
To examine the hormonal and nutritional regulation of insulin-like growth factor I (IGF-I) mRNA expression, a sequence-specific solution hybridization/RNase protection assay for coho salmon IGF-I mRNA was developed. This assay is both rapid and sensitive and has low inter- (less than 15%) and intra-assay variations (less than 5%). Using this assay, the tissue distribution of IGF-I mRNA and effects of growth hormone (GH), prolactin (PRL) and somatolactin (SL) on hepatic IGF-I mRNA expression in coho salmon were examined in vivo. Liver had the highest IGF-I mRNA level of 16 pg/μg DNA. Significant amounts of IGF-I mRNA were also found in all other tissues examined (intestine 4.1, kidney 3.8, gill arch 2.4, brain 2.4, ovary 2.3, muscle 2.1, spleen 1.7 and fat 1.1 pg/μg DNA). Injection of coho salmon GH at doses of 0.1 and 1 μg/g body weight significantly increased the hepatic IGF-I mRNA levels in a dose-dependent manner. Injection of coho salmon SL, a recently discovered member of the GH/PRL family, stimulated the IGF-I mRNA expression at the higher dose (1 μg/g), whereas coho salmon PRL had no effect at either dose. Concentration-dependent stimulation by coho salmon GH was also obtained in vitro in primary culture of salmon hepatocytes in concentrations ranging from 0.01 to 1 μg/ml. These results indicate that IGF-I mRNA expression occurs in a variety of tissues in coho salmon, and that at least the hepatic expression is under the regulation of GH and possibly other hormones. The sequence-specific assay established in the present study can be used for accurate quantitation of IGF-I mRNA in salmonid species, and can contribute to a better understanding of the physiology of IGF-I in salmonids.
Résumé Afin d'étudier les régulations homronales et nutritionnelles de l'expression des ARNm de l'IGF-I (insulin-like growth factor I), un dosage spécifique par hybridation en solution des ARNm d'IGF-I de saumon coho et protégé des RNases, a été développé. Ce dosage, à la fois rapide et sensible, présente un faible coefficient de variation inter- (< 15%) et intra- (< 5%) dosage. L'étude de la distribution tissulaire des ARNm de l'IGF-I et des effets de l'hormone de croissance (GH), de la prolactine (Prl) et de la somatolactine (SI) sur l'expression hépatique des ARNm de l'IGF-I, a été entreprise in vivo chez le saumon coho en utilisant ce dosage. Le foie présente les plus grandes quantités d'ARNm d'IGF-I (16 pg/μg d'ADN). Des quantités significatives d'ARNm d'IGF-I ont été également détectées dans tous les autres tissus étudiés (intestin 4,1; rein 3,8; branchie 2,4; ovaire 2,3; muscle 2,1; rate 1,7 et graisse 1,1 pg/μg d'ADN). L'injection à des saumons coho, de GH à des doses de 0,1 et 1 μg/g de poids vif, augmente significativement et de manière dose dépendante les niveaux hépatiques d'ARNm d'IGF-I. L'injection de SI de saumon coho, un membre récemment découvert de la famille GH/Prl, stimule avec la plus haute dose utilisée, l'expression des ARNm d'IGF-I alors que la Prl n'a aucun effet. La GH augmente de manière dose dépendante (0,01–1 μg/ml) l'expression in vitro des ARNm d'IGF-I par des ARNm d'IGF-I par des hépatocytes de saumon coho en culture. Ces résultats indiquent que, chez le saumon coho, l'expression des ARNm d'IGF-I est présente dans le nombreaux tissus et que, l'expression hépatique est, au moins en partie, régulée par la GH et peut-être par d'autres hormones. Le dosage par séquence spécifique mise au point dans le présent travail, peut-être utilisé pour la quantification précise des ARNm, d'IGF-I de salmonidés et devrait permettre une meilleure connaissance de la physiologie de L'IGF-I chez les salmonidés.
  相似文献   

9.
We assessed growth in subyearling chinook salmon (Oncorhynchus tshawytscha) during the 1998 El Niño and 1999 La Niña in the Gulf of the Farallones, a region of the continental shelf off central California seaward of the Golden Gate and the southernmost ocean entry point for the species in North America. Juvenile salmon demonstrated greater growth during this strong El Niño, when water temperature anomalies of more than +3°C were recorded at local buoys, than during the similarly strong 1999 La Niña. Slopes of regressions of weight on length, length on age, and weight on age were all significantly greater for juvenile salmon during the 1998 El Niño compared with those in the 1999 La Niña. Daily otolith increment widths, an estimator of somatic growth, corroborated population data. Between June 1 and August 9, mean increment widths for juvenile chinook salmon in 1998 were 3.54 ± 0.03 μm, significantly larger than the 3.13 ± 0.03 μm found in juveniles during the same time interval in 1999. Condition factor for juvenile chinook salmon entering the ocean at the Golden Gate was the same in both years, but became significantly greater in ocean fish during the 1998 El Niño than in ocean fish during the 1999 La Niña. Energy storage was significantly greater in ocean juvenile salmon during the 1998 El Niño as well. Mean triacylglycerol/cholesterol ratios increased following ocean entry in 1998, whereas they declined in ocean juveniles during 1999. Thus, not only was growth better in the El Niño period compared with La Niña, but lipid accumulation was also better. Oceanographic data for 1998 indicated elevated temperatures, lower salinity, greater freshwater outflow from San Francisco Bay, northerly flowing coastal currents, and positive upwelling index anomalies. This combination of environmental factors resulted in greater zooplankton productivity that, in conjunction with higher temperatures, allowed metabolic processes to enhance growth. Although El Niño events have certainly produced large-scale, and often adverse, effects on ecosystems, the results of this study emphasize the importance of local oceanographic conditions to growth and other physiological and ecological processes.  相似文献   

10.
通过统计学、酶联免疫学等方法研究3个池塘中养殖牙鲆(Paralichthys olivaceus)的生长状况、血清四碘甲状腺素(T4)和三碘甲状腺原氨酸(T3)、生长激素(GH)、类胰岛素生长因子-I(IGF-Ⅰ)和温度的周年变化规律。结果显示,在365 d的养殖过程中,3个池塘牙鲆体重和体长持续增长且体重日增长率和体长日增长率在温度较高的夏末秋初出现较高值。3个池塘牙鲆血清中T3、T4含量变化整体趋势一致,血清T4浓度在夏末出现最高值,T3浓度在秋初出现最高值,滞后于T4。IGF-I水平最高值出现在温度较高的夏末、秋初滞后于GH最高值夏初。牙鲆血清中T3、T4、GH和IGF-I 4种激素含量变化和生长率变化规律大体一致,呈现明显的周年变化规律。  相似文献   

11.
为探究主要脂肪和蛋白质水平对工业化养殖大西洋鲑(Salmo salar)成鱼脂肪相关代谢酶和生长相关基因表达的影响,本实验采用3×2双因素随机实验设计,设置3个脂肪水平:18%、21%、24%(分别以F18、F21、F24表示),2个蛋白质水平:38%、48%(分别以P38、P48表示)。组合为6个实验处理组,每组3个重复,每重复40尾鱼。实验在室内封闭循环水养殖系统中进行,实验鱼初始体重(650.0±45.50)g,实验期56 d。结果表明:(1)工业化养殖实验鱼的脂肪需求较国外深海网箱养殖明显降低,蛋白质需求相近。P48F21组增重率显著最佳,较其他各组提高22.23%~125.86%(P0.05);P48F24组饲料系数显著最低,较其他各组降低16.24%~30.00%(P0.05)。(2)单因素高脂肪显著提高肝体比(P0.05),高蛋白极显著降低肥满度(P0.01);P48F24组肝体比较其他各组显著提高10.92%~28.16%(P0.05),P48F18组肥满度较其他各组显著降低10.24%~12.31%(P0.05);并创新提出了600~900 g大西洋鲑形体营养调控初步方案。(3)单因素高、中脂肪显著提高肝脂肪分解酶(HL、LPL和总酯酶)活力,高蛋白显著提高LPL和总酯酶活力;P48F21和P48F24组饲粮显著提高肝脂肪分解酶活力,其中LPL活力比P38F18组分别提高46.51%、48.84%(P0.05)。实验处理主要对肝脂肪分解酶产生作用,显现了两组优良饲粮改善生长性能的脂肪生理代谢机制。(4)单因素中脂肪极显著增加肌肉和肝IGF-I基因表达量(P0.01);高蛋白极显著增加肌肉GH、IGF-I及肝IGF-I基因表达量(P0.01);GHR基因表达量,随脂肪或蛋白水平升高均有显著下降特征(P0.05)。P48F21和P48F24组试鱼肌肉GH、IGF-I及肝IGF-I基因表达量显著提高(P0.05),肌肉和肝GHR基因表达量显著降低(P0.05)。初步的新发现是,GH和IGF-I与GHR存在相互制约的负相关内在调控关系,以自身控制鱼类生长和生殖活动处于相对稳定和可控状态下。本研究初步确定,P48F21和P48F24组是工业化养殖大西洋鲑成鱼的主要营养素优良组合饲粮,其中以显著降低脂肪水平和饲料成本的P48F21组合饲粮更佳。  相似文献   

12.
Molecular cloning and expression of salmon pituitary hormones   总被引:2,自引:0,他引:2  
A cDNA library was prepared from chinook salmon pituitaries. Growth hormone (GH), prolactin (PRL) and the β subunit of gonadotropin (GTH) genes were screened using synthetic oligonucleotides as probes. Full size cDNA clones coding for these polypeptide hormones were isolated and characterized. The cDNA sequences for PRL and βGTH have been reported earlier from our laboratories. The cDNA clone for GH contains 1148 bp and codes for a preGH of 210 amino acids. The chinook salmon GH, reported in the present investigation, differs from chum salmon GH in only 1 amino acid, and from coho salmon GH in 5 amino acids. Plasmids containing modified nucleotide sequences coding for GH, PRL and βGTH were constructed individually into an expression vector using the heat-inducible λ pL promotor. Mature PRL, GH and unglycosylated βGTH were expressed in the bacteria at elevated temperature.  相似文献   

13.
Two trials with Atlantic salmon (Salmo salar) were conducted to evaluate the potential of krill meal to improve feed intake. In the first experiment, after transfer to sea water, salmon smolts were fed diets added 75 or 150 g kg?1 Antarctic krill meal in substitution for fish meal for 13 weeks. The apparent digestibility coefficient for crude protein and the majority of the amino acids was significantly lower in the feeds added krill meal (around 83.5%) than in the control diet (84.9%), whereas the digestibility of crude lipids, dry matter and energy was not significantly different among the three diets. Krill meal addition resulted in higher feed intake, which led to higher growth rates and final body weights. In the second experiment, large salmon were fed a diet containing 100 g kg?1 krill meal for 6 weeks before slaughter. Their feed intake and growth performance were assessed, and fillet and visceral fat contents were measured. Salmon fed the 100 g kg?1 krill meal diet tended to eat more, resulting in significantly increased growth rates, when compared to control fish. Fish fed krill meal also had a significantly lower condition factor.  相似文献   

14.
Soybean meal (SBM) inclusion in salmonid diets can lower feed cost, but dramatically reduces growth and feed utilization, and increases mortality in juvenile chinook salmon Oncorhynchus tshawytscha, due to diminished diet palatability and/or other adverse physiological effects exerted by antinutritional factors in SBM. The objective of this study was to investigate whether commercial Antarctic krill meal Euphausia superba or hydrolysates enzymatically produced from Pacific hake Merluccius productus could reverse the negative palatability effects of SBM inclusion in juvenile chinook salmon diets. Diets without SBM or with SBM and no added feed attractant were used as positive and negative control diets respectively. Incorporation of 2% krill meal or Alcalase®‐produced hydrolysates into SBM‐containing diets (20% of dry matter by isonitrogenous replacement of fishmeal) significantly (P < 0.05) increased feed intake, feed utilization, fish weight gain and thermal growth coefficient during a 5‐week trial. Nevertheless, the negative effects on fish performance incurred by dietary inclusion of 20% SBM could not be fully reversed, indicating that most of those effects were likely unrelated to palatability. This study demonstrates the potential for using Pacific hake hydrolysates as a dietary feed attractant for salmonid diets, and supports the need for further research to optimize its application for ideal fish performance.  相似文献   

15.
This study was undertaken to assess the impacts of dietary astaxanthin supplementation on growth performance, feed utilization, survival, and serum growth hormone (GH) availability of Asian seabass, Lates calcarifer, with special reference to dose–response relationships and variations during different feeding phases (short‐term, medium‐term and long‐term). Fish were fed the following diets in triplicate for 90 days: the control (CD), AX50 (50 mg astaxanthin/kg diet), AX100 (100 mg astaxanthin/kg diet) and AX150 (150 mg astaxanthin/kg diet). The findings revealed that fish exhibited significant linear increments (p < .05) in specific growth rate (SGR), weight gain, feed utilization efficiency and survival when fed various diets with escalating levels of astaxanthin. Supplementation with dietary astaxanthin significantly augmented (p < .05) GH levels in fish. Significant positive associations (p < .05) were observed between circulating serum GH levels and SGR of fish from all groups following three consecutive feeding phases, denoting a robust cause‐and‐effect relationship. Circulating GH concentrations were considered as a sensitive biomarker of growth performance in Asian seabass. This study illustrated that supplemental astaxanthin could be administered in culture protocols to improve the growth rate and commercial hatchery production of Asian seabass, and possibly other teleost species.  相似文献   

16.
Six extruded dry diets formulated to contain one of two levels of digestible protein (37% or 44%) and one of three levels of digestible lipid (16%, 23% or 30%) on a dry weight basis and a seventh diet (commercial control) were used to feed triplicate groups of post‐juvenile coho salmon Oncorhynchus kisutch in sea water. Fish were fed to satiation twice daily for 168 days. Growth performances were monitored every 28 days. On day 168, samples were taken from each replicate group per dietary treatment for determinations of whole‐body and muscle proximate compositions. Fatty acid compositions and astaxanthin concentration in both the experimental diets and fish flesh were assessed by gas chromatography (GC) and high‐performance liquid chromatography (HPLC) respectively. Coho salmon fed diets containing the higher lipid levels (23–30%) exhibited improved feed efficiency, protein efficiency ratio, percentage protein deposition and percentage gross energy utilization. Higher protein content diets supported better growth than those that had lower protein content, but the former led to lowered protein efficiency ratio, percentage protein deposition and gross energy utilization. Fish fed the diets with high lipid levels (23% or 30%) also had higher astaxanthin content in raw flesh.  相似文献   

17.
18.
This study was conducted to evaluate three canola protein products as partial replacements of steam-dried whole herring meal (HM) in a practical diet for juvenile chinook salmon in seawater. Groups of 30–40 g chinook salmon held in 9.5–12°C seawater on a natural photoperiod were fed one of seven equivalent protein (390 g kg−1) and isoenergetic (20 MJ gross energy kg−1) diets to satiation. Each of three test protein sources, namely, commercial canola meal (CM), low-temperature extruded CM (90°C; LT), and high-temperature extruded CM (150°C; HT) comprised about 120 and 240 g kg−1 of dietary protein by replacement of 15 and 30%, respectively, of the HM protein in the control diet. Chinook salmon growth and feed intake were markedly depressed by replacing HM protein with a high level of CM, but these responses were not lowered by replacement with LT and HT. The phytic acid content in commercial canola meal was reduced by about 10 and 30% from the original level by extrusion cooking at low (90°C) and high (150°C) temperature, respectively. Therefore, the diets containing HT still had significant amounts of phytic acid. Terminal whole-body zinc contents were inversely related to the dietary levels of the different canola protein products. Thyroid function was altered by CM but this effect was offset by heat treatment. The results suggest that extrusion cooking of CM improves its nutritive value for chinook salmon in seawater. Indeed, it was found that HT could comprise 240 g kg−1 of the dietary protein without adversely affecting performance.  相似文献   

19.
A 2 ± 4 factorial experiment was conducted to examine effects of dietary protein level (28, 32, 36, and 40%) and feeding rate (satiation or ± 90 kg/ha per d) on production characteristics, processing yield, body composition, and water quality for pond-raised channel catfish Ictalurus punctatus. Fingerling channel catfish with a mean weight of 64 g/fish were stocked into 40 0.04-ha ponds at a rate of 17,290 fish/ha. Fish were fed once daily to apparent satiation or at a rate of ± 90 kg/ha per d for 134 d during the growing season. Dietary protein concentration had no effect on feed consumption, weight gain, feed conversion, survival, aeration time, or on fillet moisture, protein, and fat levels. Fish fed to satiation consumed more feed, gained more weight, had a higher feed conversion, and required more aeration time than fish fed a restricted ration. Visceral fat decreased, and fillet yield increased as dietary protein concentration increased to 36%. Carcass yield was lower for fish fed a diet containing 28% protein. Increasing feeding rate increased visceral fat but had no major effect on carcass, fillet, and nugget yields. Fish fed to satiation contained less moisture and more fat in the fillets that those fed a restricted ration. Nitrogenous waste compounds were generally higher where the fish were fed the higher protein diets. Although there was a significant interaction in pond water chemical oxygen demand between dietary protein and feeding rate, generally ponds in the satiation feeding group had higher chemical oxygen demand than ponds in the restricted feeding group. There was a trend that pond water total phosphorus levels were slightly elevated in the satiation feeding group compared to the restricted feeding group. However, pond water soluble reactive phosphorus and chlorophyll-a were not affected by either diet or feeding rate. Results from the present study indicate that a 28% protein diet provides the same level of channel catfish production as a 40% protein diet even when diet is restricted to 90 kg/ha per d. Although there was an increase in nitrogenous wastes in ponds where fish were fed high protein diets, there was little effect on fish production. The long term effects of using high protein diets on water quality are still unclear. Feeding to less than satiety may be beneficial in improving feed efficiency and water quality.  相似文献   

20.
Based on the regulatory effects of body fat on appetite and seasonal variations in fat deposition and growth of Atlantic salmon, the present study tested the hypothesis that body fat content prior to declining day length in the autumn can significantly modulate growth rate. The growth rate of salmon (mean initial body weight, BW = 2.3 kg) with different muscle fat content prior to autumn, subjected to natural photoperiod and temperature, during a 7‐month period (mean final BW = 6.6 kg) was studied. In August, three fish groups (HF, LF and 0.5LF group) with significantly different muscle fat content (HF = 16.4%, LF = 13.2% and 0.5LF = 11.3%), individually marked with PIT‐tag, were mixed into the four net‐pens and fed a standard high‐energy diet until March the following year. The muscle fat content prior to the autumn had a highly significant (p < .0001) effect on growth during the 7‐month main‐dietary period, even after identical fat stores among the groups were restored, indicating a more complex explanation than just a lipostatic regulation mechanism. Mean thermal growth coefficients were HF = 2.9, LF = 3.4 and 0.5 LF = 3.9, resulting in increased final weight gain for LF and 0.5LF of 590 g and 980 g, respectively, compared to the HF group. The LF groups obtained a significantly higher homogeneity in BW and shape than HF‐fed fish in March, optimizing automatic gutting and filleting at slaughter. The improved growth response among the LF groups by reducing lipid levels can potentially be utilized in closed and semi‐closed production units where photoperiod can be manipulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号