首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Survival rates of the larvae of sutchi catfish Pangasianodon hypophthalmus are reported to be three times higher under dim conditions (0.1 lx) than those under 100 lx. In this study, larval behaviour of sutchi catfish was examined under various light intensities (<0.01, 0.1, 1, 10 and 100 lx) using a CCD camera to understand why survival rates vary under different light intensities. Five‐day‐old larvae showed significantly higher swimming activity under <0.01, 0.1 and 1 lx than those under 10 and 100 lx. On the other hand, the larvae showed significantly higher aggressive behaviour under 10 and 100 lx; swimming larvae attacked resting individuals more frequently under 10 and 100 lx than those under 0 and 0.1 lx. Aggressive behaviour was considered to induce lesions, inflicted by the sharp teeth of attacking larvae, on larval skin surfaces. It is considered that the chemical substances would generate from injured skin surfaces then acted as stimuli, causing the cannibalistic behaviour in other fish around the injured fish. This study provided evidence that the observed higher survival rates depended on lower frequency of aggressive behaviour under dark or dim conditions. It is therefore recommended that larval rearing of sutchi catfish be conducted under dim (less than 1 lx) conditions.  相似文献   

2.
The effects of four light intensities on growth and survival of first‐feeding stage black sea bass larvae Centropristis striata were investigated in a controlled‐environment laboratory. Fertilized eggs, obtained from LHRHa‐induced spawning of captive broodstock, were stocked (72 eggs L?1) into twenty 15 L black tanks under light intensities of 100, 500, 1000 and 1500 lx, with five replicate tanks per treatment. The photoperiod was 12L:12D, the temperature was 20°C and the salinity was 35 g L?1. Larvae were fed rotifers Brachionus rotundiformis from day 2 post‐hatching (d 2ph) at 5–10 rotifers mL?1. Microalgae Nannochloropis oculata and Isochrysis sp. were added (1:1) daily to maintain a density of 300 000 cells mL?1. Hatching success and larval growth and survival from d 2ph through d 15ph were monitored. Hatching success was 28–38% under all light intensities, and notochord length at hatching ranged from 2.8 to 3.0 mm, with no significant differences among treatments. By d 15ph, growth (mg wet weight) was significantly higher in the 1000 lx (0.914) and 1500 lx treatments (0.892) than in 100 lx (0.483), and a highly significant trend (P<0.01) towards increased survival with increasing light intensities was observed, from 1.3% at 100 lx to 13.9% at 1500 lx. Higher light intensities within the range of 100–1500 lx improved growth and survival of early larval black sea bass, suggesting that even higher light intensities may improve culture performance. This is consistent with conditions in shallow, near‐shore locations where eggs and larvae are distributed in nature.  相似文献   

3.
This study investigated the effect of different light intensities on feeding, growth and survival of early stage leopard coral grouper Plectropomus leopardus larvae. Four different light intensities (0, 500, 1000 and 3000 lx) were used and larvae were kept under constant light conditions from 0 day after hatching (DAH) to 5 DAH. The larvae were fed a small S-type of Thai strain rotifers at a density of 20 individuals/mL from 2 DAH. The number of rotifers in larval digestive organ and total length of larvae were examined at 3 h intervals between 04:00 and 22:00 h on 3 DAH, and thereafter at 6 h intervals until the end of the experiment (5 DAH). Four experimental trials of the larval rearing were repeated using by 60 kL mass-scale rearing tanks. The results indicate that coral grouper larvae are visual feeders and their food intake increases with increasing light intensity. Food intake of larvae reared at 3000 lx was significantly higher than those reared at 0–1000 lx on 3 DAH despite being the first-feeding day (< 0.01). On 4 DAH, total length of larvae reared at 3000 lx was significantly larger than those reared at the lower light intensities (0, 500 and 1000 lx), and thereafter light intensity significantly influenced larval feeding and growth until the end of the experiment. Survival on 5 DAH did not show a significant difference between light intensities, but survival rate at 3000 lx and 1000 lx had a tendency to be higher than those reared at the lower light intensities (0 and 500 lx). In contrast, larvae reared at 0 lx exhibited stagnant and/or negative growth. These results indicate that light intensity is significantly the factor affecting larval feeding, growth, and survival in coral grouper larvae under the rearing conditions.  相似文献   

4.
A 35‐day experiment was carried out to investigate the effect of light intensity on growth of Brachymystax lenok under different light intensities: 10, 70, 240 and 1000 lx. Fish(5.5 ± 0.24 g)used in the experiment were fed to satiation twice a day (08:00 hours, 14:00 hours).The photoperiod was 12L:12D (08:00–20:00 hours). The specific growth rate(SGR) of B. lenok under lower intensities(10 lx,70 lx)was significantly higher than the other groups(< 0.05).No significant difference in feed intake was observed at different light intensities, but feed efficiency (FE) in wet weight at lower intensities (1070 lx) was higher than that at higher intensities(240,1000 lx) (< 0.05).The final survival rate of juveniles varied from 86.33% to 93.66%,and there was no significant difference between experimental groups. The tested fish under higher light intensities (240 and 1000 lx) spent much more energy in respiration and excretion while depositing less energy for growth than those fish under lower light intensities. It is concluded that light intensity significantly affected growth and optimal light intensity for B. lenok juveniles was about 10–70 lx.  相似文献   

5.
The effects of four light intensities (1000 lx, 500 lx, 50 lx, 3 lx) on growth, survival and feeding activity in common sole (Solea solea L.) larvae were studied from 4 to 51 days post hatching (dph). During the pelagic larval stage (4–12 dph), larvae reared at 3 lx showed a lower growth. From 19 onwards, the larvae reared under 3 lx displayed a significant ( 0.05) higher SGR than the other treatments and a higher final weight compared to 1000 lx and 500 lx. Survival rate was higher under intermediate light intensities (500 and 50 lx). Larvae reared at 3 lx displayed a significant delay in the degree of metamorphosis compared to the other treatments, while at 33 dph metamorphosis was completed under all treatments. Histological examination revealed the importance of vision and light in the first feeding of this species, while after metamorphosis, the full development of other sensory organs indicated that feeding activity is also mediated by chemosensory perception. Results indicate that high light intensity seems to be more suitable during the pelagic larvae, while the opposite would ensure better growth from the onset of metamorphosis to the benthic phase.  相似文献   

6.
This study aimed to establish feeding strategies covering the whole larval period of the forktail blenny, Meiacanthus atrodorsalis, based on the standard hatchery feeds of rotifers and Artemia. Three purposely designed experiments were conducted to determine the appropriate times and techniques to transition larvae from rotifers onto Artemia nauplii of a Great Salt Lake (GSL) strain, and a specialty AF strain, as well as subsequent transition onto enriched metanauplii of GSL Artemia. With a 3‐day co‐feeding period, larvae adapted well to a transition from rotifers to newly hatched GSL Artemia nauplii as early as 5 days posthatching (DPH), and as early as 3 DPH when fed the smaller AF Artemia nauplii. However, prolonging the rotifer‐feeding period up to 11 DPH did not negatively affect survival. Larvae fed Artemia nauplii of the AF strain showed 17–21% higher survival, 24–33% greater standard length and body depth, and 91–200% greater dry weight, after 20 days relative to those fed nauplii of the GSL strain. Meanwhile, enriched Artemia metanauplii of the GSL strain were shown to be an acceptable alternative to AF Artemia nauplii for later larvae, producing similar survival and growth when introduced from 8 DPH. Based on our findings, we recommend feeding M. atrodorsalis larvae rotifers as a first food between 0 and 2 DPH, introducing AF Artemia nauplii from 3 DPH, followed by enriched GSL Artemia metanauplii from 8 DPH onward, with a 3‐day co‐feeding period between each prey change.  相似文献   

7.
The aim of this study was to evaluate the effects of hatchery‐tank colours (white, yellow, red, blue, green and black) on the performance of larval culture of Macrobrachium amazonicum. The larvae were fed daily with newly hatched Artemia nauplii. The hatchery‐tank colours affected the light level inside the tanks, the consumption of Artemia nauplii (AN), larval development, survival, mass gain and productivity of postlarvae (PL). The overall consumption of Artemia nauplii per larva during the larval cycle was 30% and 45% higher in the green and red tanks respectively. The significant variation of AN consumption among tank colours (= 0.0006) indicates that M. amazonicum larvae are visual predators. Survival was higher in the black, blue and green tanks, reaching more than 75%. However, the highest productivity was obtained in the black tanks (80.1 PL L?1). Lighter coloured tanks and excess luminosity (more than 2 μmol s?1 m2 at tank bottom) appear to be important stress factors for larvae, contributing to reduce survival and productivity. The results indicate that rearing M. amazonicum in black tanks will improve larvae condition, ensure greater productivity of postlarvae and lower Artemia consumption, increasing technological and economic viability.  相似文献   

8.
Southern bluefin tuna, Thunnus maccoyii, are cultured in Australia following collection of wild juveniles. Hatchery culture from egg is in the experimental stage. High early mortality has hindered the production of quality juveniles in the hatchery. This study investigated the visual capacity of T. maccoyii during early larval ontogeny in order to describe the best larval rearing conditions to produce high‐quality seed stock. Functional visual ability, determined through behavioural experimentation, identified the effect of light intensity, prey density, turbidity, tank colour and turbulence on the feeding response. Larvae were visually challenged to feed under a range of conditions in short‐duration (4 h) feeding experiments. Feeding performance was measured as the proportion of larvae feeding and the intensity of feeding. First‐feeding performance was positively affected by increasing prey density and lower turbidities and unaffected by light intensity, tank colour, turbulence, prey size and larval density. The key findings from feeding experiments on 6 and 9 dph larvae was that as T. maccoyii aged, lower light intensities and higher prey densities significantly increased feeding performance. In addition, the study has identified that high light intensity and high air‐driven turbulence induced significant mortality. The proficient first‐feeding response indicated that early mortality common in culture is unlikely to be associated with a failure to initiate feeding. Our findings show the use of low light intensity has the potential to significantly improve survival and feeding response during the first two critical weeks of culture, when the major bottleneck in hatchery production is currently experienced.  相似文献   

9.
Live prey used in aquaculture to feed marine larval fish – rotifer and Artemia nauplii – lack the necessary levels of n‐3 polyunsaturated fatty acids (n‐3 PUFA) which are considered essential for the development of fish larvae. Due to the high voracity, visual feeding in conditions of relatively high luminosity, and cannibalism observed in meagre larvae, a study of its nutritional requirements is needed. In this study, the effect of different enrichment products with different docosahexaenoic acid (DHA) concentrations used to enrich rotifers and Artemia metanauplii have been tested on growth, survival, and lipid composition of the larvae of meagre. The larvae fed live prey enriched with Algamac 3050 (AG) showed a significantly higher growth than the rest of the groups at the end of the larval rearing, while the larvae fed preys enriched with Multigain (MG) had a higher survival rate. DHA levels in larvae fed prey enriched with MG were significantly higher than in those fed AG‐enriched prey. High levels of DHA in Artemia metanauplii must be used to achieve optimal growth and survival of meagre larvae.  相似文献   

10.
The present study analyzed the effects of prey density, the time of day, and ontogenetic development on the predation of Artemia nauplii by the larvae of the Amazon river prawn, Macrobrachium amazonicum, as well as possible synergy among these factors. Larvae were raised in 120‐L tanks with biological filter systems, and fed on recently hatched Artemia nauplii, using two feeding management protocols: (a) fed once per day at 2000 h (high density – HD) and (b) half of the ration provided at 2000 h, complemented at 0800 h the following day by a replacement of the nauplii consumed up to a maximum of the full ration (low density with replacement – LDWR). Each treatment consisted of six replicates. The consumption of nauplii was estimated prior to the feeding times. Consumption varied according to time of day, ontogenetic development, and feeding protocol. The larvae ingested more nauplii during the daytime at most developmental stages. Ingestion rates were similar during the day under both treatments, but at night the higher density of prey in the HD treatment caused a higher encounter rate and increased ingestion of nauplii by the larvae. Among the performance indicators only survival was greater in HD in comparison with LDWR; productivity and dry weight were similar. The results indicate a circadian trophic rhythm in M. amazonicum, with the encounter rate being an important mechanism for the capture of prey during the night. A second mechanism – probably the visual system – aids the perception of prey during the daytime. Based on these results, we suggest that feeding captive Amazon river prawn larvae only once a day would be appropriate and economically beneficial. Further work is necessary to determine the most effective time that this single feed should be applied.  相似文献   

11.
The growth rate, survival rate, development and setting rate of larval sea cucumber Apostichopus japonicus were measured under four light intensities (0, 50, 500 and 2,000 lx), and the growth rate and metabolism of the juvenile sea cucumbers were investigated under four light intensity treatments (0, 100, 1,000 and 2,500 lx). The light requirements (i.e. intensity) of the sea cucumber changed as they grew. Better growth performance, development and survival rate were observed in embryos and larvae under 500 lx treatment. However, reduced light intensity (50 lx) increased the settlement rate of the larvae. The highest specific growth rate occurred in juvenile sea cucumbers under 1,000 lx. The sea cucumbers in this group also had the lowest oxygen consumption rate and ammonia excretion rate, but the highest O:N ratio, indicating that the optimal light intensity for the juvenile sea cucumber culture was 1,000 lx. Therefore, appropriate light intensities were suggested to provide larval and juvenile sea cucumbers with better growth and development conditions.  相似文献   

12.
Two 10-day hatchery experiments were conducted to evaluate s-type (Hawaiian strain) and ss-type (Thailand strain) rotifers Brachionus plicatilis and cryogenically preserved oyster Crassostrea gigas trochophores as first feeds for larval Nassau grouper Epinephelus striatus. Newly hatched grouper larvae were reared at densities of 11.2–20.8/L in 500-L tanks at 36–38 ppt salinity, 25–26 C, and under a 11-h light: 13-h dark photoperiod. Beginning on day 2 posthatching (d2ph), prey were maintained at a density of 20 individuals/mL, while phytoplankton (Nanochloropsis oculata) was maintained at 500 × 103 cells/mL. In experiment 1, survival and growth were higher (P < 0.05) for fish fed small s-type rotifers (mean lorica length = 117 μm; fish survival = 7.96%) selected by sieving than for fish fed non-selected rotifers (mean lorica length = 161 μm; fish survival = 2.13%). These results demonstrated the advantage of small prey size and suggested that super-small (ss-type) rotifer strains would be beneficial. In experiment 2, three feeding regimens were compared: 1) ss-type rotifers (mean lorica length = 147 μm); 2) oyster trochophores (mean diameter = 50 μm) gradually replaced by ss-type rotifers from d5ph; and 3) a mixed-prey teatment of 50% oyster trochophores and 50% ss-type rotifers. Survival was higher (P < 0.05) for larvae fed mixed prey (15.6%) than for those fed rotifers (9.73%) or trochophores and rotifers in sequence (2.55%), which also showed the slowest growth. Oyster trochophores, although inadequate when used exclusively, enhanced survival when used in combination with rotifers, possibly by improving size selectivity and dietary quality. In a pilot-scale trial, larvae were cultured through metamorphosis in two 33.8-m3 outdoor tanks. Fertilized eggs were stocked at a density of 10 eggs/L and larvae were fed ss-type rotifers from d2ph-d20ph, newly hatched Artemia from d15ph-d18ph, 1-d-old Artemia nauplii from d18ph-d62ph. Survival on d62ph was 1.17%, with a total of 5,651 post-metamorphic juveniles produced.  相似文献   

13.
The influence of tank wall color and up‐welling water flow on growth and survival of Eurasian perch larvae (Perca fluviatilis) was tested in an intensive culture system. Newly hatched larvae were fed Artemia nauplii, later combined with dry feed, and reared for 5 wk in either black tanks with up‐welling water flow or in gray tanks with or without up‐welling water flow. The perch larvae grew significantly faster in black tanks than in gray tanks regardless of water flow. Two weeks after hatching, a significantly higher mean weight was shown in larvae reared in black tanks compared to larvae reared in gray tanks with up‐welling water flow, and after 4 wk, the mean weight was significantly higher than in both of the other treatments. The difference in growth was further enhanced during the last week of the experiment, and the final mean weights were 51.1 ± 1.9 mg in black tanks with up‐welling water flow, 23.8 ± 2.1 mg in gray tanks with up‐welling water flow, and 23.7 ± 2.2 mg in gray tanks without up‐welling water flow. The cumulative mortality at the end of the experiment averaged 75% in all treatment groups. Taken together, the enhanced growth of Eurasian perch larvae in black tanks could be explained by high prey contrast and increased prey consumption. Up‐welling water flow had no impact on growth and survival of the perch larvae in gray tanks, indicating that the availability and consumption of the prey were independent of water movement.  相似文献   

14.
The impact of shrimp larvae development, as well as water and food inputs upon the increase of bacterial populations within the bacterial community of hatchery tank biofilms, was studied. For this study, a total of 68 biofilm samples were collected from concrete tanks at three larvae production times in a commercial shrimp hatchery. Seventeen samples were taken at each larval development stage (Zoea I, Mysis I, postlarvae 1 and postlarvae 16), as well as 37 samples from water, shrimp nauplii and food, introduced into the shrimp hatchery tanks. Culturable and direct bacterial counts were performed and 16S‐rRNA‐targeted oligonucleotide probes were used to quantify the presence of specific bacterial groups. An average of 27–70% of DAPI total cell counts were detected with the EUB338 probe, while the GAM42a probe signal ranged from 1% to 11%. Vibrio‐like bacteria (VLB) counts in TCBS agar ranged from <10 to 101 VLB/cm−2, with a tendency to increase at the last postlarvae stage. The most significant external source of bacteria registered with GAM42a probe and TCBS agar were found in live Artemia nauplii, used as food; nevertheless, biofilms remain with low counts of these groups.  相似文献   

15.
Land‐based cultured juvenile Pacific bluefin tuna Thunnus orientalis (PBT) have high mortality rates due to collisions or contacts with tank walls after about 30 days of hatching. To determine the effect of night‐time lighting on their survival, juvenile PBT were reared under four different night‐time light intensities (0, 5, 15 and 150 lx) for 9 days, followed by a 3‐day observation period. High‐intensity, night‐time lighting (150 lx) significantly improved the survival rate (75.8%; < 0.001) compared with the unlit control group (0 lx, 64.3%). The survival rate in the high‐intensity group decreased after the end of the lighting period. Lighting did not influence whole‐body cortisol levels, glucose levels, or diel changes in plasma cortisol levels. In contrast, the survival rates of fish exposed to light intensities between 5 and 15 lx were slightly lower than that of the unlit control group. These results suggest that providing night‐time lighting of 150 lx or higher is an effective method for reducing the mortality of cultured PBT.  相似文献   

16.
The effects of light intensity on feeding incidence and prey consumption at first feeding of spotted sand bass larvae (Paralabrax maculatofasciatus Steindachner), using four light intensity treatments (0, 100, 400, and 700 lx) were evaluated. Specimens were fed the rotifer Brachionus plicatilis at a density of 3 rotifers mL?1. One hour after the addition of prey, 30±3 (mean±SEM) larvae were sampled from each treatment aquarium. Feeding incidence was evaluated as the percentage of larvae with prey in the digestive tract. Feeding intensity was measured as the number of prey in the digestive tract of the larvae. Histological analysis was carried out to describe the eye structure at the time of first feeding. Larvae fed in darkness (0 lx) had a significantly lower (P<0.05) feeding incidence (1.2±2.2%) and intensity (0.4±0.7 rotifers larvae?1) than those larvae fed at 100 (28±11%, 1.8±0.2 rotifers larvae?1), 400 (48±10%, 2.4±0.3 rotifers larvae?1), and 700 lx (52±4%, 2.4±0.1 rotifers larvae?1). Feeding incidence of the spotted sand bass larvae increased with light intensity while the feeding intensity showed no significant difference (P>0.05) between light treatments. Histological analysis of the eye structure showed that first feeding larvae had well‐formed lens along with a retina composed of pure single cones as photoreceptors.  相似文献   

17.
本研究以紫海胆(Anthocidaris crassispina)为研究对象,通过水槽实验方法,模拟分析了自然光周期条件下光照强度对紫海胆浮游幼体生长、存活以及体内消化酶活性的影响,旨在为紫海胆苗种的规模化繁育提供必要的生物学参数。研究发现,在实验设计的光照强度梯度(0、500、1000、2000、3000 lx)内,光照强度对紫海胆浮游幼体的体长、躯干部骨针长度和口后腕骨针长度的影响趋势一致,影响程度由高到低为500 lx>0 lx>1000 lx>2000 lx>3000 lx。在500 lx条件下,紫海胆浮游幼体的体长、躯干部骨针长度和口后腕骨针长度都达到最高,且显著优于其他实验组(P<0.05),此时脂肪酶和淀粉酶活性最强;在2000 lx条件下,紫海胆的胃蛋白酶活性最强;在3000 lx条件下,紫海胆浮游幼体发育到11 d已全部死亡。研究表明,在500 lx光照强度下,紫海胆浮游幼体可保持最佳的生长速度、消化酶活性以及存活率,500 lx为紫海胆浮游幼体生长发育的最佳光照强度。  相似文献   

18.
Variations in digestive enzymes and hormones during the larval development of gilthead seabream (Sparus aurata) fed on live prey (Artemia nauplii) enriched with free methionine were investigated for 16 days (from day 24 to day 40). Prior to initiation of the experiment, newly hatched larvae were transferred from incubators to fiber glass tanks (300 l) with black walls and fed with same diets until day 24. Each experiment was performed in triplicate. In the experimental group, the content of the free methionine in the Artemia nauplii was increased by adding a 5.3 mM free methionine solution to the culture water during a 16-h enrichment period. The larvae of both the control and enriched-methionine groups were sampled four times, with 4-day intervals between samplings, during a 16-day period. The larvae in the control group had a significantly lower growth than those of the methionine group at the end of the study (P < 0.05). The highest trypsin activity and leucine aminopeptidase N/leucine–alanine peptidase ratios were observed in the control group. A significant difference between bombesin activities in the treatment groups was not found at 5th minute after the initiation of feeding (P > 0.05), but they were significant at 15th minute post-initiation of feeding (P < 0.05). A significant difference between the cholecystokinin levels of the treatment groups was found (P < 0.05).  相似文献   

19.
An experiment was conducted to evaluate the rearing performance of different larval stages for optimum growth and survival during fingerling production of Clarias batrachus with an aim to reduce the rearing time of the catfish larvae in a hatchery system. The larvae were reared for 5, 10 and 15 days before stocking them in the nursery tanks. No significant (< 0.05) difference could be found in length increment at the end of first week of rearing. But the total length was reduced during rest three weeks in five days old larvae compared to that of other two higher age groups. In 5 days old larvae the reduced weight (< 0.05) was observed during the entire rearing period. However, the specific growth rate (SGR) did not vary among the groups. The survival rate as well as total biomass was decreased while stocking five days old larvae for rearing, compared to that of other two age groups.  相似文献   

20.
In this work performance parameters of larval pike-perch (Sander lucioperca) reared under four different light intensities (100, 500, 1000 and 2500 lx) until 21 days post hatch (dph) were investigated. As performance parameters change in length and weight, swim bladder inflation, feed consumption, natural mortality, stress induced mortality and RNA-DNA ratio were measured. Aim was to investigate the influence of light intensity on pike-perch performance during the first three weeks of larval rearing. Significant differences were found in natural and stress induced mortality as well as in weight growth. No single light exposure level combined optimal performance of all tested performance parameters. Highest light intensity of 2500 lx showed good weight growth but an increase in stress induced mortality. Bright light of 500 and 1000 lx intensity was found to improve growth and stress mortality whereas dim light conditions of 100 lx showed significantly lower natural mortality. Thus data suggested that most favorable illumination during larval pike-perch rearing comprise a tradeoff between optimal natural mortality under dim light conditions (100 lx) or optimal larval growth and stress resistance under bright light conditions (500 and 1000 lx). It is shown that high light intensities during larval rearing can be beneficial for pike-perch rearing if offspring supply is not limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号