首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study compared response to prostaglandin F2α (PG), synchrony of ovulation and pregnancy per AI (P/AI) in a 5‐ vs a 7‐day Ovsynch + PRID protocol and investigated whether the initial GnRH affects P/AI in lactating dairy cows. Two hundred and seventy‐six cows (500 inseminations) were assigned to one of four timed‐AI (TAI) protocols: (i) PRID‐7G; 100 μg GnRH im, and a progesterone‐releasing intravaginal device (PRID) for 7 days. At PRID removal, PG (500 μg of cloprostenol) was given im. Cows received the second GnRH treatment at 60 h after PRID removal and TAI 12 h later. (ii) PRID‐5G; as PRID‐7G except the duration of PRID, treatment was 5 days and PG was given twice (12 h apart). (iii) PRID‐7NoG; as PRID‐7G except the initial GnRH, treatment was omitted. (iv) PRID‐5NoG; as PRID‐7NoG except the duration of PRID, treatment was 5 days. Response to treatments and pregnancy status at 32 and 60 days after TAI was determined by ultrasonography. The percentage of cows ovulating before TAI was greatest in PRID‐7G (17.1%), and the percentage of cows that did not have luteal regression was greatest in PRID‐5G (9.5%). The overall P/AI at 32 and 60 days did not differ among TAI protocols. However, during resynchronization, cows subjected to the 5‐day protocols had greater (p < 0.05) P/AI (45.3% vs 33.6%) than cows subjected to the 7‐day protocols. Pregnancy loss between 32 and 60 days tended (p = 0.10) to be greater in cows that did not receive initial GnRH (14.8%) compared to those that received GnRH (8.2%). In conclusion, the PRID‐5G protocol resulted in fewer cows responding to PG, but P/AI did not differ among TAI protocols. A 5‐day protocol resulted in more P/AI in resynchronized cows, and cows that did not receive initial GnRH tended to experience more pregnancy losses.  相似文献   

2.

This study aimed to determine whether reproductive performance of ewes submitted to laparoscopic timed artificial insemination (TAI) would be similar to ante meridiem (AM)/post meridiem (PM) rule and assisted natural mating (NM), and whether GnRH may enhance the pregnancy rate in TAI. In experiment I, 191 non-lactating ewes were synchronized, then TAI was performed either 48 h after progesterone (P4) removal (TAI-48 h) or 12 h after estrus detection (AM/PM); moreover, some ewes were submitted to NM (NM) as control treatment. In experiment II, 247 non-lactating ewes were allocated in five treatments, a control (no-GnRH on protocol) and four treatments arranged in a factorial design 2 × 2. The factors were time and dose of GnRH: ewes that received either 10 μg (TAI-10 μg-36 h) or 25 μg of GnRH (TAI-25 μg-36 h) 36 h after P4 removal and ewes that received either 10 μg (TAI-10 μg-48 h) or 25 μg of GnRH (TAI-25 μg-48 h) at time of insemination, 48 h after P4 removal. In experiment I, pregnancy rate in TAI-48 h was lower (P = 0.03) than AM/PM and NM. Moreover, the probability of pregnancy in TAI-48 h was higher (P = 0.06) in ewes detected in estrus early. In experiment II, the use of GnRH in TAI protocols increased (P < 0.01) pregnancy rate at synchronization, and TAI-25 μ-48 h and TAI-10 μg-36 h treatments increased (P = 0.02) pregnancy rate compered to TAI-10 μg-48 h. We conclude that TAI decreased pregnancy rate compered to NM and AM/PM, which may be improved by GnRH use in TAI to synchronize ovulation.

  相似文献   

3.
This short communication reports the impact of endometrial biopsies, uterine flushings and follicular fluid aspiration procedures at day 6 post artificial insemination (AI) on pregnancy rates. In Experiment 1, cows were timed AI (TAI) and assigned to the following treatment groups: control (n = 37), uterine flushing (n = 35) and endometrial biopsy (n = 38). On day 30 post AI, pregnancy rates were 40.5%, 33% and 28.5%, respectively (p > 0.1). Pregnancy rate on day 60 was lower (p < 0.004) in flushed cows than in the controls. In Experiment 2, oestrus was detected and cows were assigned to flushing (n = 32) or biopsy (n = 33) treatments 6 days after AI, which resulted in pregnancy rates of 31% and 36%, respectively (p > 0.1). In Experiment 3, cows were, 6 days after TAI, randomly assigned to the following treatments: control (n = 84) or aspiration of the largest follicle (n = 73). Pregnancy rates on day 30 post AI were 63.5% for the control group and 53% for the aspirated group (p > 0.1). In conclusion, uterine flushing and endometrial biopsy negatively affect pregnancy rates, but neither procedure can be considered to be incompatible with pregnancy maintenance. Follicular aspiration during pregnancy does not interact with pregnancy success. The amount and quality of samples obtained are compatible with the use of cellular and molecular analysis of uterine variables from cows that failed or succeeded on maintaining pregnancy.  相似文献   

4.
Two experiments were conducted during 2 yr to evaluate differences in ovulation potential and fertility in response to GnRH or hCG. In Exp. 1, 46 beef cows were given 100 microg of GnRH or 500, 1,000, 2,000, or 3,000 IU of hCG. Ovulation incidence was not different between GnRH and any of the hCG doses, indicating that ovulatory capacity of at least 500 IU of hCG was equivalent to GnRH. In Exp. 2, beef cows (n = 676) at 6 locations were assigned randomly to a 2 x 3 factorial arrangement of treatments. Main effects were: 1) pre-timed AI (TAI) treatment (GnRH or hCG) and 2) post-TAI treatment (saline, GnRH, or hCG) to initiate resynchronization of ovulation in previously inseminated cattle. Blood samples were collected (d -21 and -10) to determine progesterone concentrations and assess cyclicity. Cattle were treated with a progesterone insert on d -10 and with 100 microg of GnRH or 1,000 IU of hCG. A PGF(2alpha) injection was given at insert removal on d -3. Cows were inseminated 62 h (d 0) after insert removal. On d 26 after first TAI, cows of unknown pregnancy status were treated with saline, GnRH, or hCG to initiate a CO-Synch protocol. Pregnancy was diagnosed 33 d after first TAI to determine pregnancies per AI (P/AI). Nonpregnant cows at 6 locations in yr 1 and 1 location in yr 2 were given PGF(2alpha) and inseminated 56 h later, concurrent with a GnRH injection. Five weeks later, pregnancy diagnosis was conducted to determine pregnancy loss after first TAI and pregnancy outcome of the second TAI. Injection of pre-TAI hCG reduced (P < 0.001) P/AI compared with GnRH, with a greater reduction in cycling cows. Post-TAI treatments had no negative effect on P/AI resulting from the first TAI. Serum progesterone was greater (P = 0.06) 7 d after pre-TAI hCG than after GnRH and greater (P < 0.05) after post-TAI hCG on d 26 compared with saline 7 d after treatment in association with greater frequency of multiple corpora lutea. Compared with saline, injections of post-TAI GnRH and hCG did not increase second insemination P/AI, and inconsistent results were detected among locations. Use of hCG in lieu of GnRH is contraindicated in a CO-Synch + progesterone insert protocol. Compared with a breeding season having only 1 TAI and longer exposure to cleanup bulls, total breeding season pregnancy rate was reduced by one-third, subsequent calving distribution was altered, and 50% more AI-sired calves were obtained by applying 2 TAI during the breeding season.  相似文献   

5.
The aim of this study was to develop a resynchronization strategy before the return of oestrus in cows diagnosed as not pregnant after fixed‐time artificial insemination (TAI). A total of 839 cows, approximately 45 days post‐partum, were synchronized using TAI. On day 0, intravaginal progesterone‐releasing devices were inserted and 2 mg of oestradiol benzoate was administered. Eight days later (D8), the progesterone‐releasing devices were removed and oestradiol cypionate (0.5 mg, eCG [300 IU]) and prostaglandin (7.5 mg) were administered. All cows were inseminated between 48 and 56 hr after device removal (D10). Thirty days after TAI, cows that were not diagnosed as pregnant by ultrasound were immediately resynchronized and again inseminated at a fixed time. The hormonal protocol used in the first and second rounds of TAI was the same. The pregnancy rate after the first TAI was 52%, and after the second TAI, it was 49%. The increase in the total pregnancy rate (synchronization + second oestrous synchronization) compared to a single synchronization was 23.5%. In conclusion, resynchronization of oestrus and ovulation in zebu cows that had previously undergone TAI protocols is effective in increasing the reproductive efficiency.  相似文献   

6.
This experiment was conducted to investigate the effects of different exogenous progesterone sources administrated after artificial insemination (AI) on serum progesterone (P(4) ) concentration and pregnancy rates in Holstein lactating cows. Sixty-four lactating Holstein dairy cows were allocated to four different treatments (n = 16 per treatment): the cows 1) were injected with physiological saline on days 5 and 13 after AI (control group); 2) were injected with progesterone on days 5 and 13 after AI (P group); 3) received controlled internal drug releasing device (CIDR) for a period from day 5 to 19 after AI (CIDR group); and 4) were injected with gonadotropin-releasing hormone (GnRH) agonist on days 5 and 13 after AI (GnRH group). Blood samples were collected on days 0 (AI day), 5, 13, 16 and 19 after AI to determine serum P(4) concentration. The results revealed a significant difference among treatment groups for serum P(4) concentration on days 13, 16 and 19 with the lowest concentration of serum P(4) for the control group. The pregnancy rate was also positively affected by all the treatments with CIDR having the greatest effect on pregnancy rate. Overall, the results indicated that CIDR has the greatest effect on serum P(4) concentration and pregnancy rate, although the administration of P and GnRH during days after AI increased serum P(4) concentration in lactating dairy cows as well.  相似文献   

7.
We determined whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or estrous detection plus TAI, and whether adding a controlled internal device release (CIDR) to GnRH-based protocols would enhance fertility. Estrus was synchronized in 2,598 suckled beef cows at 14 locations, and AI was preceded by 1 of 5 treatments: 1) a CIDR for 7 d with 25 mg of PG F(2alpha) (PGF) at CIDR removal, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received 100 mug of GnRH and TAI at 84 h (control; n = 506); 2) GnRH administration, followed in 7 d with PGF, followed in 60 h by a second injection of GnRH and TAI (CO-Synch; n = 548); 3) CO-Synch plus a CIDR during the 7 d between the first injection of GnRH and PGF (CO-Synch + CIDR; n = 539); 4) GnRH administration, followed in 7 d with PGF, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received GnRH and TAI at 84 h (Select Synch & TAI; n = 507); and 5) Select Synch & TAI plus a CIDR during the 7 d between the first injection of GnRH and PGF (Select Synch + CIDR & TAI; n = 498). Blood samples were collected (d -17 and -7, relative to PGF) to determine estrous cycle status. For the control, Select Synch & TAI, and Select Synch + CIDR & TAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed using the AM/PM rule. Pregnancy was diagnosed by transrectal ultrasonography. Percentage of cows cycling at the initiation of treatments was 66%. Pregnancy rates (proportion of cows pregnant to AI of all cows synchronized during the synchronization period) among locations across treatments ranged from 37% to 67%. Pregnancy rates were greater (P < 0.05) for the Select Synch + CIDR & TAI (58%), CO-Synch + CIDR (54%), Select Synch & TAI (53%), or control (53%) treatments than the CO-Synch (44%) treatment. Among the 3 protocols in which estrus was detected, conception rates (proportion of cows that became pregnant to AI of those exhibiting estrus during the synchronization period) were greater (P < 0.05) for Select Synch & TAI (70%; 217 of 309) and Select Synch + CIDR & TAI (67%; 230 of 345) cows than for control cows (61%; 197 of 325). We conclude that the CO-Synch + CIDR protocol yielded similar pregnancy rates to estrous detection protocols and is a reliable TAI protocol that eliminates detection of estrus when inseminating beef cows.  相似文献   

8.
Conception rates after Ovsynch have been higher in primiparous than in multiparous cows. The objective of this study was to investigate whether this difference might be due to differences in ovulation rate or follicular size. The experiment was conducted with 136 Holstein Frisian cows from a commercial herd in Brandenburg, Germany. All cows were synchronized using Buserelin (GnRH analogue) at day ?10, Tiaprost (PGF2α analogue) at day ?3 and again GnRH at day ?1. Timed artificial insemination (TAI) was carried out 16–20 h after the second dose of GnRH on day 0. Milk samples for analysis of milk progesterone were obtained on days ?17, ?10, ?3 and at TAI. Progesterone concentrations were used to determine the stage of oestrus cycle at the start of the synchronization protocol and to investigate the presence of functional luteal tissue before treatment with PGF2α and TAI. All animals were examined by ultrasound at the second treatment with GnRH, at AI, 8 and 24 h after AI. Overall synchronization rate (proportion of cows with an ovulation within 40 h after GnRH) was 86.8% in primiparous and 88.2% in multiparous cows, respectively. Ovulation occurred earlier in primparous than in multiparous cows (p < 0.05) and ovulatory follicles were smaller. Conception rates were numerically higher in primiparous cows but the difference was not significant. Cows that displayed signs of oestrus on day ?1 and received an additional AI on this day were more likely to conceive than cows that only received TAI 16 to 20 h after GnRH2. It is concluded that ovulation occurs earlier in primiparous than in multiparous cows after Ovsynch. However, a significant relationship between these differences and the probability of conception could not be established.  相似文献   

9.
Two experiments were conducted to evaluate whether hCG administered 7 d before initiating the CO-Synch + controlled internal drug release (CIDR) ovulation synchronization protocol (Exp. 1 and 2), or replacing GnRH with hCG at the time of AI (Exp. 1), would improve fertility to a fixed-time AI (TAI) in suckled beef cows. In addition, the effects of hCG on follicle dynamics, corpus luteum development, and concentrations of progesterone (P4) were evaluated. In Exp. 1, cows were stratified by days postpartum, age, and parity and assigned randomly to a 2 × 2 factorial arrangement of 4 treatments: 1) cows received 100 μg of GnRH at CIDR insertion (d -7) and 25 mg of PGF(2α) at CIDR removal (d 0), followed in 64 to 68 h by a TAI plus a second injection of GnRH at TAI (CG; n = 29); 2) same as CG but the second injection of GnRH at the time of insemination was replaced by hCG (CH; n = 28); 3) same as CG, but cows received hCG 7 d (d -14) before CIDR insertion (HG; n = 28); and 4) same as HG, but cows received hCG 7 d (d -14) before CIDR insertion (HH; n = 29). Pregnancy rates were 52, 41, 59, and 38% for GG, GH, HG, and HH, respectively. Cows receiving hCG (39%) in place of GnRH at TAI tended (P = 0.06) to have poorer pregnancy rates than those receiving GnRH (56%). Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows with concentrations of P4 >1 ng/mL at d -7, increased (P < 0.02) concentration of P4 on d -7, and decreased (P < 0.001) the size of the dominant follicle on d 0 and 3, compared with cows not treated with hCG on d -14. In Exp. 2, cows were stratified based on days postpartum, BCS, breed type, and calf sex and then assigned to the CG (n = 102) or HG (n = 103) treatments. Overall pregnancy rates were 51%, but no differences in pregnancy rates were detected between treatments. Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows cycling on d -7 and increased (P < 0.05) concentrations of P4 on d -7 compared with pre-CO-Synch controls. Therefore, pretreatment induction of ovulation after hCG injection 7 d before initiation of CO-Synch + CIDR protocol failed to enhance pregnancy rates, but replacing GnRH with hCG at the time of AI may reduce pregnancy rates.  相似文献   

10.
We recorded conception rates and estimated pregnancy rates following second and later timed artificial inseminations (TAIs) after hormonal resynchronization on commercial dairy farms, using the so‐called G6G protocol (PGF day‐0; GnRH 2, 8 days; PGF 15, 16 days, GnRH 17 days; TAI 18 days), and the 5‐day Ovsynch protocol or 5DO (GnRH day 0; PGF 5, 6 days; GnRH 7 days; TAI 8 days). In four farms, both protocols were implemented in parallel, and these 1,368 s and later TAIs were used for the protocols’ comparison based on logistic regression (544 TAIs in primiparous; 824 in multiparous cows; 1,024 TAIs after G6G [600 TAIs in multiparous and 424 in primiparous]; 344 TAIs after 5DO [224 TAIs in multiparous and 120 in primiparous]; 280 TAIs during the hot season; 1,088 during the cool season). Conception rate (CR) was 31.7% ± 12.0% among all cows, 35.1% ± 10.7% among cows resynchronized with the G6G protocol and 21.8% ± 9.7% among cows resynchronized with the 5DO protocol (p < 0.0001). CR among all cows was lower during the hot season (19.3% ± 8.4%) than during the cool season (34.9% ± 10.6%; p < 0.0001), and similar seasonal results were observed with G6G protocols. Logistic regression showed significant effects on CR in second and later TAIs by protocol (OR = 0.514; 95% CI 0.385–0.686; p < 0.0001) and season (OR = 0.486; 95% CI 0.350–0.676; p < 0.0001). Parity did not influence CR after second and later TAIs (p > 0.1), and no interaction with season or resynchronization protocol was found. Estimated pregnancy rates based on these CR data from both hormonal protocols suggest that G6G can be effectively used for second and later TAIs and highlight the importance of considering protocol and season when designing strategies for second and later timed AIs on dairy farms.  相似文献   

11.
Two experiments were conducted to develop protocols for the use of fixed-time artificial insemination and embryo transfer (TAI and TET, respectively) to increase beef cattle productivity. Suckled beef cows were given GnRH (100 µg im) on Day − 10, and PGF (25 mg im) on Day − 3, with TAI on Day 0 (66 h later), and assigned to either embryo recipient (ER) or no embryo (NR) treatments on Days 6 or 7. Semen from Gelbvieh (GB) beef sires was used for TAI; sexed-male in vivo developed Holstein embryos (HO) were placed nonsurgically (TET) into the uterine horn contralateral to the corpus luteum. In Experiment 1, ovarian status of cows (n = 111; 69 ± 11 d postpartum; mean ± SD on Day 0) in Groups I and II was presynchronized with a single PGF treatment on Day − 24; Groups II and III received GnRH concurrent with TAI, and ER (n = 78) were selected from all groups on Days 6 or 7. Neither presynchronization nor GnRH affected rates of recipient selection, Day 45 pregnancy (43.2, 43.2, and 54.0% for Groups I, II and III, respectively), or calving (40.5, 37.8, and 43.2%). However, treatment with GnRH increased HO-birth rate (8.0, 14.0 and 24.0%; P < 0.05). In Experiment 2, cows (n = 99, 113 ± 10 d postpartum) were assigned on Day 7 to NR and ER, with and without hCG (2500 IU im), following a TAI protocol (as per Group III in Experiment 1). Treatment with hCG increased reproductive rate (1.16 vs 1.44 calves/calving; P < 0.05), but had no significant effect on rates of Day 45 pregnancy (45.3 vs 41.3%), calving (31.2 vs 37.0%) or HO-births (20.0 vs 26.0%). In summary, GnRH-based synchronization rates were 71.2% (based on circulating progesterone concentrations that were < 1.0 ng/mL on Day 0 and ≥ 1.0 ng/mL on Day 7); TET did not affect GB-birth rate, but more calves were produced by ER than NR cows (1.43 vs 1.02 calves/calving; P < 0.01); and weaned calf production was 53% greater for twin- than singleton-suckled cows (392 ± 25 vs 256 ± 11 kg/dam; mean ± SEM, P < 0.05). Therefore, GnRH-based TAI and TET protocols for mixed-breed twin production increased beef cow productivity.  相似文献   

12.
The study aimed to evaluate pregnancy per artificial insemination (P/AI) of cows subjected to synchronization and resynchronization in ovulation protocols using intravaginal progesterone‐releasing insert (P4) before pregnancy diagnosis (PD) and the relationship of PR with the diameter of preovulatory follicles (ØPOF) before TAI. Cows (n = 378) were distributed into two groups: a resynchronization group with new devices (GRN; n = 185) and resynchronization group with used devices (GRU; n = 193). On Day 0, both groups received a new P4 and estradiol benzoate (EB). On D8, P4 removal + D‐cloprostenol + eCG + estradiol cypionate (EC) was done. On d10, TAI was conducted. On d32, cows were resynchronized and divided into two groups, GRN (n = 185) and GRU (n = 193). The GRN group received a new P4 + EB, and the GRU group received a used P4 + EB. On d40, the P4 was removed + PD. The non‐pregnant cows received D‐cloprostenol + eCG + EC. US was done again on d42 to determine ØPOF before the second TAI. The P/AI of the GRN and GRU groups after synchronization were 56.2% and 57.0% (p = 0.87), respectively, and those after resynchronization were 58.0% and 37.3% (p < 0.008), respectively. The P/AI of the GRN and GRU groups observed after TAI (synchronization + resynchronization) were 81.6% and 73.1%, respectively (p = 0.047). No difference (p = 0.067) in ØPOF between the pregnant and non‐pregnant cows in the GRN was found, whereas the GRU group showed a significant difference (p = 0.003). Resynchronization protocols optimized the P/AI in both groups. New intravaginal devices resulted in greater P/AI and P/AI accumulation in resynchronization as compared with the GRU; the ØPOF was related with P/AI.  相似文献   

13.
Lactating dairy cows (n = 667) at random stages of the oestrous cycle were assigned to either ovsynch (O, n = 228), heatsynch (H, n = 252) or control (C, n = 187) groups. Cows in O and H groups received 100 μg of GnRH agonist, i.m. (day 0) starting at 44 ± 3 days in milk (DIM), and 500 μg of cloprostenol, i.m. (day 7). In O group, cows received 100 μg of GnRH (day 9) and were artificially inseminated without oestrus detection 16–20 h later. In H group, cows received 1 mg oestradiol benzoate (EB) i.m., 24 h after the cloprostenol injection and were artificially inseminated without oestrus detection 48–52 h after the EB injection. Cows in C group were inseminated at natural oestrus. On the day of artificial insemination (AI), cows in all groups were assigned to subgroups as follows: human Chorionic Gonadotrophin (O‐hCG) (n = 112), O‐saline (n = 116), H‐hCG (n = 123), H‐saline (n = 129), C‐hCG (n = 94) and C‐saline (n = 93) subgroups. Cows in hCG and saline subgroups received 3000 IU hCG i.m. and or 10 ml saline at day 5 post‐AI (day 15), respectively. Pregnancy status was assessed by palpation per rectum at days 40 to 45 after AI. The logistic regression model using just main effects of season (summer and winter), parity (primiparous and pluriparous), method1 (O, H and C) and method2 (hCG and saline) showed that all factors, except method1, were significant. Significant effects of season (p < 0.01), hCG and parity (p < 0.01), and a trend of parity and season (p < 0.1) were detected. A clear negative effect of warm period on first service pregnancy rate was noted (p < 0.01). The pregnancy rate was the lowest in the H protocol during warm period (p < 0.05). Treatment with hCG 5 days after AI significantly improved pregnancy rates in those cows that were treated with the H protocol compared with saline treatments (41.5% vs 24.8%; p < 0.01). O and H were more effective in primiparous than in pluriparous cows (46.1% vs 29.9%; p < 0.1 and 43.6% vs 24.6%; p < 0.01). First service pregnancy rates were higher in primiparous hCG‐treated than in pluriparous hCG‐treated cows (57.9% vs 32.3%; p < 0.01). The pregnancy rate was higher for the hCG‐treated cows compared with saline‐treated cows during warm period (37.9% vs 23.6%; p < 0.001).  相似文献   

14.
Timed artificial insemination (TAI) has boosted the use of conventional artificial insemination (CAI) by employing hormonal protocols to synchronize oestrus and ovulation. This study aimed to evaluate the efficiency of a hormonal protocol for TAI in mares, based on a combination of progesterone releasing intravaginal device (PRID), prostaglandin (PGF) and human chorionic gonadotropin (hCG); and compare financial costs between CAI and TAI. Twenty-one mares were divided into two groups: CAI group (CAIG; n = 6 mares; 17 oestrous cycles) and TAI group (TAIG; n = 15 mares; 15 oestrous cycles). The CAIG was subjected to CAI, involving follicular dynamics and uterine oedema monitoring with ultrasound examinations (US), and administration of hCG (1,600 IU) when the dominant follicle (DF) diameter's ≥35 mm + uterine oedema + cervix opening. The AI was performed with fresh semen (500 × 106 cells), and embryo was recovered on day 8 (D8) after ovulation. In TAI, mares received 1.9 g PRID on D0. On D10, PRID was removed and 6.71 mg dinoprost tromethamine was administered. Ovulation was induced on D14 (1,600 IU of hCG) regardless of the DF diameter's, and AI was performed with fresh semen (500 × 106 cells). On D30 after AI, pregnancy was confirmed by US. The pregnancy rate was 80.0% in TAIG and 82.3% in CAIG (p > .05). The TAI protocol resulted in 65% reduction in professional transport costs, and 40% reduction in material costs. The TAI was as efficient as CAI, provided reduction in costs and handlings, and is recommended in mares.  相似文献   

15.
Application of AI in extensive beef cattle production would be facilitated by protocols that effectively synchronize ovarian follicular development and ovulation to enable fixed-time AI (TAI). The objectives were to determine whether use of a controlled internal drug release (CIDR) device to administer progesterone in a GnRH-based estrous synchronization protocol would optimize blood progesterone concentrations, improve synchronization of follicular development and estrus, and increase pregnancy rates to TAI in beef cows. Beef cows (n = 1,240) in 6 locations within the US Meat Animal Research Center received 1 of 2 treatments: 1)?an injection of GnRH [100 μg intramuscularly (i.m.)] followed by PGF(2α) (PGF; 25 mg i.m.) 7 d later (CO-Synch), or 2) CO-Synch plus a CIDR during the 7 d between GnRH and PGF injections (CO-Synch + CIDR). Cows received TAI and GnRH (100 μg i.m.) at 60 h after PGF. Progesterone was measured by RIA in blood samples collected 2 wk before and at initiation of treatment (d 0) and at PGF injection (d 7). Estrous behavior was monitored by Estrotect Heat Detectors. Pregnancy was diagnosed by ultrasonography 72 to 77 d after TAI. Plasma progesterone concentrations did not differ (P > 0.10) between synchronization protocols at first GnRH injection (d 0), but progesterone was greater (P < 0.01) at PGF injection (d 7) in cows receiving CO-Synch + CIDR vs. CO-Synch as a result of fewer CIDR-treated cows having progesterone ≤1 ng/mL at PGF (10.7 vs. 29.6%, respectively). A greater (P < 0.01) proportion of CO-Synch + CIDR vs. CO-Synch cows were detected in estrus within 60 h after PGF (66.7 vs. 57.8 ± 2.6%, respectively) and a greater (P < 0.01) proportion were pregnant to TAI (54.6 vs. 44.3 ± 2.6%, respectively). For both synchronization protocols, cows expressing estrus within 60 h before TAI had a greater pregnancy rate than cows without estrus. For cows with plasma progesterone ≤1 ng/mL at PGF injection, CO-Synch + CIDR increased pregnancy rate (65.2 ± 5.9 vs. 30.8 ± 3.4% with vs. without CIDR), whereas pregnancy rates did not differ (P > 0.10) between protocols (52.1 ± 2.1 vs. 50.0 ± 2.4%, respectively) when progesterone was >1 ng/mL (treatment × progesterone; P < 0.01). Inclusion of a CIDR in the synchronization protocol increased plasma progesterone concentration, proportion of cows detected in estrus, and pregnancy rate; however, the increase in pregnancy rate from inclusion of the CIDR was primarily in cows with decreasing or low endogenous progesterone secretion during treatment.  相似文献   

16.
This is a review of the physiology and endocrinology of the estrous cycle and how ovarian physiology can be manipulated and controlled for timed artificial insemination (TAI) in beef and dairy cattle. Estrus detection is required for artificial insemination (AI), but it is done poorly in dairy cattle and it is difficult in beef cattle. Protocols that synchronize follicle growth, corpus luteum regression and ovulation, allowing for TAI, result in improved reproductive performance, because all animals are inseminated whether they show estrus or not. As result, TAI programs have become an integral part of reproductive management in many dairy herds and offer beef producers the opportunity to incorporate AI into their herds. Gonadotropin-releasing hormone-based protocols are commonly used in North America for estrus synchronization as part of a TAI program. Protocols that increase pregnancy rates in lactating dairy cows and suckling beef cows have been developed. Protocols that improve pregnancy rates in heifers, acyclic beef cows, and resynchronized lactating dairy cows are also discussed.  相似文献   

17.
[目的]探讨不同月份和精液类型对利用定时输精程序处理奶牛后第一情期受胎率的影响.[方法]选择93头产后60 d以上不发情和产后配1~3次仍未受胎的奶牛,不检查卵巢直接利用激素生源2+1进行同期发情处理.1~3月份处理41头奶牛,6~8月份处理52头;其中,利用性控精液配种58头,常规精液配种35头.[结果]表明:经定时...  相似文献   

18.
This study compared the responses shown by lactating dairy cows to four different P4-based protocols for AI at estrus. Cows with no estrous signs 96 h after progesterone intravaginal device (PRID) removal were subjected to fixed-time AI (FTAI), and their data were also included in the study. In Experiment I, follicular/luteal and endometrial dynamics were assessed every 12 h from the beginning of treatment until AI. The estrous response was examined in Experiment II, and fertility was assessed in both experiments. The protocols consisted of a PRID fitted for five days, along with the administration of different combinations of gonadotropin releasing hormone (GnRH), equine chorionic gonadotropin and a single or double dose (24 h apart) of prostaglandin F. In Experiment I (40 cows), animals receiving GnRH at the start of treatment showed a significantly higher ovulation rate during the PRID insertion period while estrus was delayed. In Experiment II (351 cows), according to the odds ratios, cows showing luteal activity at the time of treatment were less likely to show estrus than cows with no signs of luteal activity. Treatment affected the estrous response and the interval from PRID removal to estrus but did not affect conception rates 28–34 days post AI. Primiparous cows displayed a better estrous response than multiparous cows. Our findings reveal acceptable results of 5-day P4-based protocols for AI at estrus in high-producing dairy cows. Time from treatment to estrus emerged as a good guide for FTAI after a 5-day P4-based synchronization protocol.  相似文献   

19.
The objective of the study was to investigate whether a treatment with hCG 4 days after AI could reduce pregnancy losses in lactating dairy cows. Cows of a dairy herd presented to the veterinarian in a fixed reproductive management protocol were treated with an Ovsynch protocol if no corpus luteum (CL) could be palpated per rectum (Group OV). Cows with a CL received cloprostenol (0.15 mg). After 2 days, these cows were treated with buserelin (0.01 mg) and received timed AI 16–20 h later (Group PG). In both treatment protocols, cows were assigned to two groups to receive 2500 IU of hCG i.v. 4 days after AI or to serve as untreated controls (Groups OV‐hCG, OV‐Control, PG‐hCG and PG‐Control). Pregnancy diagnosis was carried out 27 days after AI via ultrasonography and 39 days after AI by rectal palpation. Pregnancy losses were defined as cows being pregnant on day 27 but not pregnant on day 39 after AI. Pregnancy rate (PR) by day 27 did not differ among the four groups (35.4, 35.0, 37.0 and 38.0% for Groups OV‐hCG, OV‐Control, PG‐hCG and PG‐Control, respectively). Pregnancy losses between day 27 and day 39 after AI were smaller in hCG treated animals in summer but not in autumn and spring. Pregnancy rate by day 39 after AI was higher in PG than in OV groups, but independent of hCG‐treatment. In conclusion, treatment with hCG 4 days after AI did not significantly increase PR on 39 days after AI. A positive effect of hCG on pregnancy losses during the summer months warrants further investigation.  相似文献   

20.
Two experiments were conducted to evaluate the effect of different ovulation inducers on E‐17β plasma concentrations, synchronized ovulations and pregnancy rates. In Experiment 1, cows received a progesterone intravaginal device (PID) with 1 g of progesterone (P4) plus 2 mg of estradiol benzoate (EB) (day 0). At PID removal (day 8), cows received 0.150 mg of D‐cloprostenol and were randomly assigned to four treatment groups (n = 10/treatment): Group ECP: 1 mg of estradiol cypionate at PID removal, Group EB: 1 mg of EB 24 hr after PID removal, Group GnRH: 10 μg of GnRH 48 hr after PID removal, Group ECP‐GnRH: 1 mg of ECP at PID removal plus 10 μg of GnRH 48 hr later. Ultrasonographic examinations were performed to detect the dominant follicle and ovulation. GnRH‐treated cows ovulated later (p < .05) compared to ECP‐ and ECP+GnRH‐treated cows. There were effects of treatment, time and their interaction on E‐17β concentrations (p < .05). ECP treatment affected plasma E‐17β concentration, which increased earlier and decreased later compared to treatments without ECP. In Experiment 2, cows received (i) ECP: n = 126; (ii) EB: n = 126; (iii) GnRH: n = 136; (iv) ECP+GnRH: n = 139; FTAI was performed 48–50 hr after PID removal. Pregnancy rates did not differ among ovulation inducers (p > .05; ECP: 54.0%, 68/126; EB: 49.2%, 62/126; GnRH: 40.4%, 55/136; ECP+GnRH: 43.9%, 61/139). In conclusion, ECP administration (ECP and ECP+GnRH treatments) affected E‐17β concentrations, determining its earlier increase and later decrease compared to treatments without ECP (EB and GnRH treatments). ECP+GnRH‐treated cows achieved the best distribution of ovulations without affecting pregnancy rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号