首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
The objective of this study was to estimate parameters required for genetic evaluation of Simmental carcass merit using carcass and live animal data. Carcass weight, fat thickness, longissimus muscle area, and marbling score were available from 5,750 steers and 1,504 heifers sired by Simmental bulls. Additionally, yearling ultrasound measurements of fat thickness, longissimus muscle area, and estimated percentage of intramuscular fat were available on Simmental bulls (n = 3,409) and heifers (n = 1,503). An extended pedigree was used to construct the relationship matrix (n = 23,968) linking bulls and heifers with ultrasound data to steers and heifers with carcass data. All data were obtained from the American Simmental Association. No animal had both ultrasound and carcass data. Using an animal model and treating corresponding ultrasound and carcass traits separately, genetic parameters were estimated using restricted maximum likelihood. Heritability estimates for carcass traits were 0.48 +/- 0.06, 0.35 +/- 0.05, 0.46 +/- 0.05, and 0.54 +/- 0.05 for carcass weight, fat thickness, longissimus muscle area, and marbling score, respectively. Heritability estimates for bull (heifer) ultrasound traits were 0.53 +/- 0.07 (0.69 +/- 0.09), 0.37 +/- 0.06 (0.51 +/- 0.09), and 0.47 +/- 0.06 (0.52 +/- 0.09) for fat thickness, longissimus muscle area, and intramuscular fat percentage, respectively. Heritability of weight at scan was 0.47 +/- 0.05. Using a bivariate weight model including scan weight of bulls and heifers with carcass weight of slaughter animals, a genetic correlation of 0.77 +/- 0.10 was obtained. Models for fat thickness, longissimus muscle area, and marbling score were each trivariate, including ultrasound measurements on yearling bulls and heifers, and corresponding carcass traits of slaughter animals. Genetic correlations of carcass fat thickness with bull and heifer ultrasound fat were 0.79 +/- 0.13 and 0.83 +/- 0.12, respectively. Genetic correlations of carcass longissimus muscle area with bull and heifer ultrasound longissimus muscle area were 0.80 +/- 0.11 and 0.54 +/- 0.12, respectively. Genetic correlations of carcass marbling score with bull and heifer ultrasound intramuscular fat percentage were 0.74 +/- 0.11 and 0.69 +/- 0.13, respectively. These results provide the parameter estimates necessary for genetic evaluation of Simmental carcass merit using both data from steer and heifer carcasses, and their ultrasound indicators on yearling bulls and heifers.  相似文献   

2.
Carcass and growth measurements of finished crossbred steers (n = 843) and yearling ultrasound and growth measurements of purebred bulls (n = 5,654) of 11 breeds were analyzed to estimate genetic parameters. Multiple-trait restricted maximum likelihood (REML) was used to estimate heritabilities and genetic correlations between finished steer carcass measurements and yearling bull ultrasound measurements. Separate analyses were conducted to examine the effect of adjustment to three different end points: age, backfat thickness, and weight at measurement. Age-constant heritability estimates from finished steer measurements of hot carcass weight, carcass longissimus muscle area, carcass marbling score, carcass backfat, and average daily feedlot gain were 0.47, 0.45, 0.35, 0.41, and 0.30, respectively. Age-constant heritability estimates from yearling bull measurements of ultrasound longissimus muscle area, ultrasound percentage of intramuscular fat, ultrasound backfat, and average daily postweaning gain were 0.48, 0.23, 0.52, and 0.46, respectively. Similar estimates were found for backfat and weight-constant traits. Age-constant genetic correlation estimates between steer carcass longissimus muscle area and bull ultrasound longissimus muscle area, steer carcass backfat and bull ultrasound backfat, steer carcass marbling and bull ultrasound intramuscular fat, and steer average daily gain and bull average daily gain were 0.66, 0.88, 0.80, and 0.72, respectively. The strong, positive genetic correlation estimates between bull ultrasound measurements and corresponding steer carcass measurements suggest that genetic improvement for steer carcass traits can be achieved by using yearling bull ultrasound measurements as selection criteria.  相似文献   

3.
Real time ultrasound (RTU) measures of longissimus muscle area and fat depth were taken at 12 and 14 mo of age on composite bulls (n = 404) and heifers (n = 514). Carcass longissimus muscle area and fat depth, hot carcass weight, estimated percentage lean yield, marbling score, Warner-Bratzler shear force, and 7-rib dissectable seam fat and lean percentages were measured on steers (n = 235). Additive genetic variances for longissimus muscle area were 76 and 77% larger in bulls at 12 and 14 mo than the corresponding estimates for heifers. Heritability estimates for longissimus muscle area were 0.61 and 0.52 in bulls and 0.49 and 0.47 in heifers at 12 and 14 mo, respectively. The genetic correlations of longissimus muscle area of bulls vs heifers were 0.61 and 0.84 at 12 and 14 mo, respectively. Genetic correlations of longissimus muscle area measured in steer carcasses were 0.71 and 0.67 with the longissimus muscle areas in bulls and heifers at 12 mo and 0.73 and 0.79 at 14 mo. Heritability estimates for fat depth were 0.50 and 0.35 in bulls and 0.44 and 0.49 in heifers at 12 and 14 mo, respectively. The genetic correlation of fat depth in bulls vs heifers at 12 mo was 0.65 and was 0.49 at 14 mo. Genetic correlations of fat depth measured in bulls at 12 and 14 mo with fat depth measured in steers at slaughter were 0.23 and 0.21, and the corresponding correlations of between heifers and steers were 0.66 and 0.86, respectively. Live weights at 12 and 14 mo were genetically equivalent (r(g) = 0.98). Genetic correlations between live weights of bulls and heifers with hot carcass weight of the steers were also high (r(g) > 0.80). Longissimus muscle area measured using RTU was positively correlated with carcass measures of longissimus muscle area, estimated percentage lean yield, and percentage lean in a 7-rib section from steers. Measures of backfat obtained using RTU were positively correlated with fat depth and dissectable seam fat from the 7-rib section of steer carcasses. Genetic correlations between measures of backfat obtained using RTU and marbling were negative but low. These results indicate that longissimus muscle area and backfat may be under sufficiently different genetic control in bulls vs heifers to warrant being treated as separate traits in genetic evaluation models. Further, traits measured using RTU in potential replacement bulls and heifers at 12 and 14 mo of age may be considered different from the corresponding carcass traits of steers.  相似文献   

4.
The objectives were to 1) evaluate genetic relationships of sex-specific indicators of carcass merit obtained by using ultrasound with carcass traits of steers; 2) estimate genetic parameters needed to implement combined analyses of carcass and indicator traits to produce unified national cattle evaluations for LM area, subcutaneous fat depth (SQF), and marbling (MRB), with the ultimate goal of publishing only EPD for the carcass traits; and 3) compare resulting evaluations with previous ones. Four data sets were extracted from the records of the American Angus Association from 33,857 bulls, 33,737 heifers, and 1,805 steers that had measures of intramuscular fat content (IMF), LM area (uLMA), and SQF derived from interpretation of ultrasonic imagery, and BW recorded at the time of scanning. Also used were 38,296 records from steers with MRB, fat depth at the 12th to 13th rib interface (FD), carcass weight, and carcass LM area (cLMA) recorded on slaughter. (Co)variance components were estimated with ASREML by using the same models as used for national cattle evaluations by the American Angus Association. Heritability estimates for carcass measures were 0.45 +/- 0.03, 0.34 +/- 0.02, 0.40 +/- 0.02, and 0.33 +/- 0.02 for MRB, FD, carcass weight, and cLMA, respectively. Genetic correlations of carcass measures from steers with ultrasonic measures from bulls and heifers indicated sex-specific relationships for IMF (0.66 +/- 0.05 vs. 0.52 +/- 0.06) and uLMA (0.63 +/- 0.06 vs. 0.78 +/- 0.05), but not for BW at scanning (0.46 +/- 0.07 vs. 0.40 +/- 0.07) or SQF (0.53 +/- 0.06 vs. 0.55 +/- 0.06). For each trait, estimates of genetic correlations between bulls and heifers measured by using ultrasound were greater than 0.8. Prototype national cattle evaluations were conducted by using the estimated genetic parameters, resulting in some reranking of sires relative to previous analyses. Rank correlations of high-impact sires were 0.91 and 0.84 for the joint analysis of MRB and IMF with previous separate analyses of MRB and IMF, respectively. Corresponding results for FD and SQF were 0.90 and 0.90, and for cLMA and uLMA were 0.79 and 0.89. The unified national cattle evaluation for carcass traits using measurements from slaughtered animals and ultrasonic imagery of seed stock in a combined analysis appropriately weights information from these sources and provides breeders estimates of genetic merit consistent with traits in their breeding objectives on which to base selection decisions.  相似文献   

5.
Partial carcass dissection data from 1,031 finished crossbred beef steers were used to calculate heritabilities and genetic correlations among subcutaneous, intermuscular, and body cavity fat percentage and marbling score adjusted to slaughter age-, HCW-, fat depth-, and marbling score-constant endpoints. Genetic correlations were also calculated among these fat partitions with live growth and ultrasound traits evaluated in yearling beef bulls (n = 2,172) and steer carcass measurements. Heritabilities of the different fat partitions ranged from 0.22 (marbling score-constant body cavity fat) to 0.46 (HCW-constant marbling score). Genetic correlations between subcutaneous fat and intermuscular fat (rg = 0.16 to 0.32) and between intermuscular fat and body cavity fat (rg = 0.38 to 0.50) were more highly associated than subcutaneous fat and body cavity fat (rg = -0.08 to 0.05), indicating that fat depots are not under identical genetic control. Adjusting fat depots to different end points affected the magnitude but usually not the sign of the genetic correlations. Bull postweaning gain was associated with intermuscular (-0.24 to -0.35), body cavity (-0.24 to -0.29), and marbling fat (-0.24 to -0.39) in steers. Bull hip height was associated with body cavity (-0.20 to -0.29) and marbling fat (-0.20 to -0.47) in steers. Bull ultrasound fat depth was associated with subcutaneous (0.11 to 0.29), intermuscular (0.05 to 0.36), body cavity (0.27 to 0.49), and marbling fat (0.27 to 0.73) in steers. Bull ultrasound intramuscular fat percentage was associated with subcutaneous (-0.22 to -0.44) and intermuscular fat (-0.06 to 0.31) in steers. Bull ultrasound LM area was associated with body cavity (-0.25 to -0.31) and marbling fat (-0.25 to -0.30) in steers. Ultrasound LM width measurements were negatively correlated with subcutaneous fat (rg = -0.09 to -0.18), intermuscular fat (rg = -0.53 to -0.61), body cavity fat (rg = -0.63 to -0.69), and marbling score (rg = -0.75 to -0.87) at slaughter age-, HCW-, and fat depth-constant endpoints; correlations were generally lower at a marbling score-constant end point (rg = 0.07 to -0.49). Ultrasound indicator traits measured in seedstock may be useful in altering fat partitioning in commercial beef carcasses.  相似文献   

6.
This study was carried out to investigate the carcass characteristics of Hanwoo (Korean cattle) from different sex conditions, raising altitudes and slaughter seasons. The total number of cattle used in this study was 3608 heads which comprised of 1336 bulls and 1660 steers. The data was analyzed according to sex condition (bull and steer), raising altitude (low: 0–100 m and high: 700–800 m) and slaughter season (spring, summer, autumn and winter). At 24 h post-slaughter, the carcasses were weighed and evaluated for carcass traits according to the Korean carcass grading standard by an official grader. Carcass weight, ribeye area, yield index and grade, and meat color, firmness and maturity scores of carcass from bulls were significantly higher (P < 0.001) than those from steers. Inversely, the backfat thickness, marbling score and quality grade of carcass from steers were significantly higher (P < 0.001) than those from bulls. The maturity score of carcass from a high area was significantly higher (P < 0.01) than that from a low area. The ribeye area of carcass from summer was significantly smaller (P < 0.05) than that from other seasons. The maturity score of carcass from the summer season was highest among that from other seasons and the lowest was that from the winter season. Marbling score and carcass quality grade from the winter season were highest among those from other seasons and the lowest were those from the autumn season. There were no significant interactions between sex condition and raising altitude on carcass traits except the ribeye area. There were significant interactions between sex condition and slaughter season on marbling score and carcass quality grade. There were no significant interactions between raising altitude and slaughter season on all of the carcass traits. There were significant interactions among sex condition, raising altitude and slaughter season on meat color score. It was concluded that sex condition affected muscle and fat depositions on the carcass, raising altitude affected maturity and slaughter season affected ribeye area, maturity and marbling.  相似文献   

7.
Carcass measurements for weight, longissimus muscle area, 12-13th-rib fat thickness, and marbling score, as well as for live animal measurements of weight at the time of ultrasound, ultrasound longissimus muscle area, ultrasound 12-13th-rib fat thickness, and ultrasound-predicted percentage ether extract were taken on 2,855 Angus steers. The average ages for steers at the time of ultrasound and at slaughter were 391 and 443 d, respectively. Genetic and environmental parameters were estimated for all eight traits in a multivariate animal model. In addition to a random animal effect, the model included a fixed effect for contemporary group and a covariate for measurement age. Heritabilities for carcass weight, carcass longissimus muscle area, carcass fat thickness, carcass marbling score, ultrasound weight, ultrasound longissimus muscle area, ultrasound fat thickness, and ultrasound-predicted percentage ether extract were 0.48, 0.45, 0.35, 0.42, 0.55, 0.29, 0.39, and 0.51, respectively. Genetic correlations between carcass and ultrasound longissimus muscle area, carcass and ultrasound fat thickness, carcass marbling score and ultrasound-predicted percentage ether extract, and carcass and ultrasound weight were 0.69, 0.82, 0.90, and 0.96, respectively. Additional estimates were derived from a six-trait multivariate animal model, which included all traits except those pertaining to weight. This model included a random animal effect, a fixed effect for contemporary group, as well as covariates for both measurement age and weight. Heritabilities for carcass longissimus muscle area, carcass fat thickness, carcass marbling score, ultrasound longissimus muscle area, ultrasound fat thickness, and ultrasound-predicted percentage ether extract were 0.36, 0.39, 0.40, 0.17, 0.38, and 0.49, respectively. Genetic correlations between carcass and ultrasound longissimus muscle area, carcass and ultrasound fat thickness, and carcass marbling and ultrasound-predicted percentage ether extract were 0.58, 0.86, and 0.94, respectively. The high, positive genetic correlations between carcass and the corresponding real-time ultrasound traits indicate that real-time ultrasound imaging is an alternative to carcass data collection in carcass progeny testing programs.  相似文献   

8.
Carcass traits have been successfully used to determine body composition of steers. Body composition, in turn, has been used to predict energy content of ADG to compute feed requirements of individual animals fed in groups. This information is used in the Cornell value discovery system (CVDS) to predict DM required (DMR) for the observed animal performance. In this experiment, the prediction of individual DMR for the observed performance of group-fed yearling bulls was evaluated using energy content of gain, which was based on ultrasound measurements to estimate carcass traits and energy content of ADG. One hundred eighteen spring-born purebred and crossbred bulls (BW = 288 +/- 4.3 kg) were sorted visually into 3 marketing groups based on estimated days to reach USDA low Choice quality grade. The bulls were fed a common high-concentrate diet in 12 slatted-floor pens (9 to 10 head/pen). Ultrasound measurements including back-fat (uBF), rump fat, LM area (uLMA), and intramuscular fat were taken at approximately 1 yr of age. Carcass measurements including HCW, backfat over the 12th to 13th rib (BF), marbling score (MRB), and LM area (LMA) were collected for comparison with ultrasound data for predicting carcass composition. The 9th to 11th-rib section was removed and dissected into soft tissue and bone for determination of chemical composition, which was used to predict carcass fat and empty body fat (EBF). The predicted EBF averaged 23.7 +/- 4.0%. Multiple regression analysis indicated that carcass traits explained 72% of the variation in predicted EBF (EBF = 16.0583 + 5.6352 x BF + 0.01781 x HCW + 1.0486 x MRB - 0.1239 x LMA). Because carcass traits are not available on bulls intended for use as herd sires, another equation using predicted HCW (pHCW) and ultrasound measurements was developed (EBF = 39.9535 x uBF - 0.1384 x uLMA + 0.0867 x pHCW - 0.0897 x uBF x pHCW - 1.3690). This equation accounted for 62% of the variation in EBF. The use of an equation to predict EBF developed with steer composition data overpredicted the EBF predicted in these experiments (28.7 vs. 23.7%, respectively). In a validation study with 37 individually fed bulls, the use of the ultrasound-based equation in the CVDS to predict energy content of gain accounted for 60% of the variation in the observed efficiency of gain, with 1.5% bias, and identified 3 of the 4 most efficient bulls.  相似文献   

9.
Leptin is the hormone product of the obese gene that is synthesized and predominantly expressed by adipocytes. This study estimated the genetic variation in serum leptin concentration and evaluated the genetic and phenotypic relationships of serum leptin concentration with performance, efficiency of gain, and carcass merit. There were 464 steers with records for serum leptin concentration, performance, and efficiency of gain and 381 steers with records for carcass traits. The analyses included a total of 813 steers, including those without phenotypic records. Phenotypic and genetic parameter estimates were obtained using SAS and ASREML, respectively. Serum leptin concentration was moderately heritable (h2 = 0.34 +/- 0.13) and averaged 13.91 (SD = 5.74) ng/mL. Sire breed differences in serum leptin concentration correlated well with breed differences in body composition. Specifically, the serum leptin concentration was 20% greater in Angus-sired steers compared with Charolais-sired steers (P < 0.001). Consequently, ultrasound backfat (27%), carcass 12th-rib fat (31%), ultrasound marbling (14%), and carcass marbling (15%) were less in Charolais- than Angus-sired steers (P < 0.001). Conversely, carcass LM area (P = 0.05) and carcass lean meat yield (P < 0.001) were greater in Charolais- compared with Angus-sired steers. Steers with greater serum leptin concentration also had greater DMI (P < 0.001), greater residual feed intake (P = 0.04), and partial efficiency of growth (P = 0.01), but did not differ in feed conversion ratio (P > 0.10). Serum leptin concentration was correlated phenotypically with ultrasound backfat (r = 0.41; P < 0.001), carcass 12th-rib fat (r = 0.42; P < 0.001), ultrasound marbling (r = 0.25; P < 0.01), carcass marbling (r = 0.28; P < 0.01), ultrasound LM area (r = -0.19; P < 0.01), carcass LM area (r = -0.17; P < 0.05), lean meat yield (r = -0.38; P < 0.001), and yield grade (r = 0.32; P < 0.001). The corresponding genetic correlations were generally greater than the phenotypic correlations and included ultrasound backfat (r = 0.76 +/- 0.19), carcass 12th-rib fat (r = 0.54 +/- 0.23), ultrasound marbling (r = 0.27 +/- 0.22), carcass marbling (r = 0.76 +/- 0.21), ultrasound LM area (r = -0.71 +/- 0.19), carcass LM area (r = -0.75 +/- 0.20), lean meat yield (r = -0.59 +/- 0.22), and yield grade (r = 0.39 +/- 0.26). Serum leptin concentration can be a valuable tool that can be incorporated into appropriate selection programs to favorably improve the carcass merit of cattle.  相似文献   

10.
Fine mapping of quantitative trait loci (QTL) for 16 ultrasound measurements and carcass merit traits that were collected from 418 hybrid steers was conducted using 1207 SNP markers covering the entire genome. These SNP markers were evaluated using a Bayesian shrinkage estimation method and the empirical critical significant thresholds (α = 0.05 and α = 0.01) were determined by permutation based on 3500 permuted datasets for each trait to control the genome-wide type I error rates. The analyses identified a total of 105 QTLs (p < 0.05) for seven ultrasound measure traits including ultrasound backfat, ultrasound marbling and ultrasound ribeye area and 113 QTLs for seven carcass merit traits of carcass weight, grade fat, average backfat, ribeye area, lean meat yield, marbling and yield grade. Proportion of phenotypic variance accounted for by a single QTL ranged from 0.06% for mean ultrasound backfat to 4.83% for carcass marbling (CMAR) score, while proportion of the phenotypic variance accounted for by all significant (p < 0.05) QTL identified for a single trait ranged from 4.54% for carcass weight to 23.87% for CMAR.  相似文献   

11.
Genetic parameters for carcass traits of 1774 field progeny (1281 steers and 493 heifers), and their genetic relationships with feed efficiency traits of their sire population (740 bulls) were estimated with REML. Feed efficiency traits included feed conversion ratio (FCR) and residual feed intake (RFI). RFI was calculated by the residual of phenotypic (RFIphe) and genetic (RFIgen) regression from the multivariate analysis of feed intake on metabolic weight and daily gain. Progeny traits were carcass weight (CWT), rib eye area (REA), rib thickness (RBT), subcutaneous fat, yield estimate (YEM), marbling score (MSR), meat quality grade, meat color, fat color, meat firmness and meat texture. The estimated heritability for CWT (0.70) was high and heritabilities for all the other traits were moderate (ranged from 0.32 to 0.47), except for meat and fat color and meat texture which were low (ranged from 0.02 to 0.25). The high genetic correlation (0.62) between YEM and MSR suggests that simultaneous improvement of high carcass yield and beef marbling is possible. Estimated genetic correlations of RFI (RFIphe and RFIgen) of sires with CWT (− 0.60 and − 0.53) and MSR (− 0.62 and − 0.50) of their progeny were favorably negative indicating that the selection against RFI of sires may have contributed to produce heavier carcass and increase in beef marbling. The correlated responses in CWT, REA and RBT of progeny were higher to selection against RFI than those to selection against FCR of sires. This study provides evidence that selection against RFI is preferred over selection against FCR in sire population for getting better correlated responses in carcass traits of their progeny.  相似文献   

12.
Growth and carcass measurements were made on 2,411 Hereford steers slaughtered at a constant weight from a designed reference sire program involving 137 sires. A second data set consisted of ultrasound measures of backfat (USFAT) and longissimus muscle area (USREA) from 3,482 yearling Hereford cattle representing 441 sires. Restricted maximum likelihood procedures were used to estimate genetic parameters among carcass traits and live animal weight traits from these two separate data sets. Heritability estimates for the slaughter weight constant steer carcass backfat (FAT) and longissimus muscle area (REA) were .49 and .46, respectively. In addition, FAT had a negative genetic correlation with REA (-.37), weaning weight (-.28), and yearling weight (-.13) but positive with marbling (.19) and carcass weight (.36). Marbling was moderately heritable (.35) and highly correlated with total postweaning average daily gain (.54) and feedlot relative growth rate (.62). Heritability estimates for weight constant USFAT and USREA were .26 and .25, respectively. The genetic correlation between weight constant USFAT and USREA was positive (.39), indicating that in these young animals USFAT does not seem to be an indication of maturity. Mean USFAT measures and variability were small (.48 +/- .17 cm, n = 3,482). Results indicate that carcass fat on slaughter steers and ultrasound measures of backfat on young breeding animals may have different relationships with growth and muscling. These relationships need to be explored before wide scale selection based on ultrasound is implemented.  相似文献   

13.
A 2(3) factorial arrangement of treatments was utilized to determine effects of postweaning zeranol implantation, breed (Angus vs Limousin) and castration (bull vs steer) on growth, behavior and carcass traits. An initial slaughter group was used to account for breed differences in composition and to determine fat and lean growth in the 9-10-11th rib section (NTE). The remaining cattle were fed a finishing diet to a fat end point of .76 cm, as determined by a backfat probe. Control bulls outgained (P less than .01) control steers both to the first kill date and over the entire test and did not require significantly more time to reach the fat end point. The implant did not influence gain in bulls but did increase gain in steers. Angus and Limousins were similar in growth rate for the first 126 d before the first slaughter date. Limousins required more (P less than .01) time to reach the fat end point. Bulls and Limousins produced heavier (P less than .01) carcasses and larger rib eyes (P less than .05; bulls; P less than .01; Limousins). Steers and Angus had higher (P less than .01) marbling scores and lower bone maturity. Implanting decreased (P less than .05) marbling and increased carcass maturity. Small but significant shifts in carcass wholesale cut weight distribution were found between breed and sex condition groups. Bulls and Limousins had greater lean growth in the NTE. Bulls and steers were similar in fat growth, but Angus exceeded Limousin in this trait. Zeranol reduced scrotal circumference (P less than .01) and testicle weight at slaughter (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Estimates of heritabilities and genetic correlations were obtained for weaning weight records of 23,681 crossbred steers and heifers and carcass records from 4,094 crossbred steers using animal models. Carcass traits included hot carcass weight; retail product percentage; fat percentage; bone percentage; ribeye area; adjusted fat thickness; marbling score, Warner-Bratzler shear force and kidney, pelvic and heart fat percentage. Weaning weight was modeled with fixed effects of age of dam, sex, breed combination, and birth year, with calendar birth day as a covariate and random direct and maternal genetic and maternal permanent environmental effects. The models for carcass traits included fixed effects of age of dam, line, and birth year, with covariates for weaning and slaughter ages and random direct and maternal effects. Direct and maternal heritabilities for weaning weight were 0.4 +/- 0.02 and 0.19 +/- 0.02, respectively. The estimate of direct-maternal genetic correlation for weaning weight was negative (-0.18 +/- 0.08). Heritabilities for carcass traits of steers were moderate to high (0.34 to 0.60). Estimates of genetic correlations between direct genetic effects for weaning weight and carcass traits were small except with hot carcass weight (0.70), ribeye area (0.29), and adjusted fat thickness (0.26). The largest estimates of genetic correlations between maternal genetic effects for weaning weight and direct genetic effects for carcass traits were found for hot carcass weight (0.61), retail product percentage (-0.33), fat percentage (0.33), ribeye area (0.29), marbling score (0.28) and adjusted fat thickness (0.25), indicating that maternal effects for weaning weight may be correlated with genotype for propensity to fatten in steers.  相似文献   

15.
We carried out a genetic association study between five nucleotide polymorphisms (5′UTR microsatellite ((TG)n), nt‐7(C>A), L24V, DelR242 and Intron 1 microsatellite) of the GHSR1a gene and growth and carcass traits in 1285 steers sired by 117 Japanese Black bulls in a progeny testing program. We report herein, a significant association between the 5′UTR microsatellite and nt‐7(C>A) loci and growth and carcass traits. We also propose a translational hypothesis that the association is due to differences in the secondary structure of GHSR1b mRNA (the non‐spliced type with the 5′UTR microsatellite) among the GHSR1a gene haplotypes. Furthermore, we predicted the potential increase in profitability due to increased carcass weight in cow‐calf fattening enterprises through planned matings based on DNA testing of the 5′UTR microsatellite. Statistical analysis revealed that the 5′UTR microsatellite locus had a significant additive effect on carcass weight (CW) and average daily gain (ADG), but not on beef marbling score (BMS). One of the four major microsatellite alleles (19‐TG allele) with an allele frequency of 0.145, had a significantly (P < 0.0007) desirable effect on CW and ADG. We concluded that the 19‐TG allele could potentially be economically useful nucleotide markers for growth and carcass traits in Japanese Black cattle.  相似文献   

16.
We studied genetic relationships between age-constant live yearling beef bull growth and ultrasound traits and steer carcass traits with dissected steer carcass lean percentage adjusted to slaughter age-, HCW-, fat depth-, and marbling score-constant end points. Three measures of steer carcass lean percentage were used. Blue Tag lean percentage (BTLean) was predicted from HCW, fat depth, and LM area measurements. Ruler lean percentage (RulerLean) was predicted from carcass fat depth and LM depth and width measurements. Dissected lean percentage (DissLean) was based on dissection of the 10-11-12th rib section. Both BTLean (h2 = 0.30 to 0.44) and DissLean (h2 = 0.34 to 0.39) were more heritable than RulerLean (h2 = 0.05 to 0.14) at all end points. Genetic correlations among DissLean and RulerLean (rg = 0.61 to 0.70), DissLean and BTLean (rg = 0.56 to 0.72), and BTLean and RulerLean (rg = 0.59 to 0.90) indicated that these traits were not genetically identical. Adjusting Diss-Lean to different end points changed the magnitude, but generally not the direction, of genetic correlations with indicator traits. Ultrasound scan-age-constant live yearling bull lean percentage estimates were heritable (h2 = 0.26 to 0.42) and genetically correlated with each other (rg = 0.68 to 0.99) but had greater correlations with DissLean at slaughter age (rg = 0.24 to 0.48) and HCW (rg = 0.16 to 0.40) end points than at fat depth (rg = -0.08 to 0.13) and marbling score (rg = 0.02 to 0.11) end points. Scan-age-constant yearling bull ultrasound fat depth also had stronger correlations with DissLean at slaughter age (rg = -0.34) and HCW (rg = -0.25) than at fat depth (rg = -0.02) and marbling score (rg = -0.03) end points. Yearling bull scan-age-constant ultrasound LM area was positively correlated with DissLean at all endpoints (rg = 0.11 to 0.23). Genetic correlations between yearling bull LM method 1 width (rg = 0.38 to 0.56) and method 2 depth (rg = -0.17 to -0.38) measurements with DissLean suggested that LM shape may be a valuable addition to genetic improvement programs for carcass lean percentage at slaughter age, HCW, and fat depth constant end points. At all end points, steer carcass fat depth (rg = -0.60 to -0.64) and LM area (rg = 0.48 to 0.59) had stronger associations with DissLean than did corresponding live yearling bull measurements. Improved methods that combine live ultrasound and carcass traits would be beneficial for evaluating carcass lean percentage at fat depth or marbling score end points.  相似文献   

17.
Variances caused by the differential expression of paternally and maternally imprinted genes controlling carcass traits in Japanese Black cattle were estimated in this study. Data on marbling score (BMS), carcass weight, rib thickness, rib‐eye area (REA) and subcutaneous fat thickness (SFT) were collected from a total of 13,115 feedlot steers and heifers in a commercial population. A sire–maternal grandsire model was used to analyse the data, and then, imprinting parameters were derived by replacing the genetic effect of the dam with the effect of the maternal grandsire in the imprinting model to calculate the genetic parameter estimates. The proportions of the total genetic variance attributable to imprinted genes ranged from 8.7% (SFT) to 35.2% (BMS). The remarkably large imprinting variance of BMS was mainly contributed by maternally expressed inheritance because the maternal contribution of the trait was much larger than that of the paternal trait. The parent‐of‐origin effect originating from maternal gene expression was also observed for REA. The results suggested the existence of genomic imprinting effects on the traits of the Japanese Black cattle. Hence, the parent‐of‐origin effect should be considered for the genetic evaluation of Japanese Black cattle in breeding programmes.  相似文献   

18.
Longissimus muscle area and fat thickness were measured following weaning, at yearling, and prior to harvest using real-time ultrasound, and corresponding carcass measurements were recorded 3 to 7 d following the preharvest scan in composite steers (n = 116, 447 +/- 19 d), bulls (n = 224, 521 +/- 11 d), and heifers (n = 257,532 +/- 12 d). Although fat deposition was limited in bulls and heifers from weaning to yearling, coefficients of variation ranged from 8.46 to 13.46% for muscle area, and from 27.55 to 38.95% for fat thickness, indicating that significant phenotypic variance exists across genders. Residual correlations, adjusted for the effects of year of birth, gender, and age at measurement, were high and ranged from 0.79 to 0.87 among ultrasound and carcass measures of muscle area. Residual correlations among ultrasound and carcass measures of fat thickness were also high, ranging from 0.64 to 0.86. Weaning and/or yearling ultrasound muscle area yielded similarly accurate predictions of carcass muscle area. Yearling ultrasound fat thickness accounted for 13% more of the observed variance in carcass fat thickness than the weaning ultrasound measure in single-trait prediction models. When both weaning and yearling ultrasound measures were used to predict carcass fat thickness, partial R2 values were 0.15 and 0.61 for weaning and yearling ultrasound fat thickness, respectively. The difference between predicted and carcass measures with respect to muscle area (fat thickness) was less than 6.45 cm2 (2.5 mm) for 80.2 to 88.9% (90.3 to 95%) of animals. Preharvest ultrasound measures yielded standard errors of prediction of less than 4.95 cm2 for muscle area and 1.51 mm or less for fat thickness. These results indicate that ultrasound measures taken between weaning and yearling provide accurate predictors of corresponding carcass traits in steers, bulls, and heifers.  相似文献   

19.
Angus bulls (n = 20) from three pure-bred herds in Georgia were acquired to determine the impact of selecting sires based on phenotypic yearling ultrasound intramuscular fat percentage (UIMF) or UIMF EPD on marbling score of steer progeny. Each year in each herd, pairs of bulls were selected to create large differences based on their age adjusted phenotypic yearling UIMF measurements. The average UIMF, weighted by number of progeny per sire, was 3.75% (SD = 1.10%) and 1.70% (SD = 0.53%) for high UIMF (HU) and low UIMF (LU) bulls, respectively. All available ultrasound measurements collected in the purebred co-operator herds were combined with other ultrasound records collected by the American Angus Association for the computation of genetic values for ultrasound fat thickness, ribeye area, and intramuscular fat percentage. Each year bulls were randomly mated to 14 to 30 commercial Angus females. Carcass weight, fat thickness at the 12th rib, ribeye area at the 12th rib, marbling score, yield grade, and quality-grade measurements were collected on 188 steer progeny. Carcass data were linearly adjusted to 480 d of age at slaughter. Steer progeny sired by HU bulls had higher age-adjusted marbling score and quality grade (P < 0.05), and smaller age-adjusted ribeye area (P < 0.05) than steer progeny sired by LU bulls. No significant differences between phenotypic UIMF lines were found for age-adjusted fat thickness (P = 0.84) and yield grade (P = 0.33) in the steer progeny. The regression of age-adjusted carcass marbling score and quality grade of the steer progeny on ultrasound intramuscular fat percentage EPD of the sires produced highly significant regression coefficients of 90.50 and 49.20, respectively. Thus, yearling Angus bulls selected for high-phenotypic UIMF and UIMF EPD can be expected to produce steer progeny with significantly higher amounts of marbling and quality grade. It also appears that marbling can be increased without corresponding increases in external fat thickness and yield grade.  相似文献   

20.
This study was conducted to compare carcass EPD predicted using yearling live animal data and/or progeny carcass data, and to quantify the association between the carcass phenotype of progeny and the sire EPD. The live data model (L) included scan weight, ultrasound fat thickness, longissimus muscle area, and percentage of intramuscular fat from yearling (369 d of age) Simmental bulls and heifers. The carcass data model (C) included hot carcass weight, fat thickness, longissimus muscle area, and marbling score from Simmental-sired steers and cull heifers (453 d of age). The combined data model (F) included live animal and carcass data as separate but correlated traits. All data and pedigree information on 39,566 animals were obtained from the American Simmental Association, and all EPD were predicted using animal model procedures. The genetic model included fixed effects of contemporary group and a linear covariate for age at measurement, and a random animal genetic effect. The EPD from L had smaller variance and range than those from either C or F. Further, EPD from F had highest average accuracy. Correlations indicated that evaluations from C and F were most similar, and L would significantly (P < 0.05) re-rank sires compared with models including carcass data. Progeny (n = 824) with carcass data collected subsequent to evaluation were used to quantify the association between progeny phenotype and sire EPD using a model including contemporary group, and linear regressions for age at slaughter and the appropriate sire EPD. The regression coefficient was generally improved for sire EPD from L when genetic regression was used to scale EPD to the appropriate carcass trait basis. The EPD from C and F had similar linear associations with progeny phenotype, although EPD from F may be considered optimal because of increased accuracy. These data suggest that carcass EPD based on a combination of live and carcass data predict differences in progeny phenotype at or near theoretical expectation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号