首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of the spatial variability of soil properties and of forage yield is needed for informed use of soil inputs such as variable rate technology (VRT) for lime and fertilizers. The objective of this research was to map and evaluate the spatial variability of soil properties, yield, lime and fertilizer needs and economic return of an alfalfa pasture. The study was conducted in a 5.3 ha irrigated alfalfa pasture in Sao Carlos, SP, Brazil that was directly grazed and intensively managed in a 270-paddock rotational system. Alfalfa shoot dry matter yield was evaluated before grazing. Soil samples were collected at 0–0.2 m depth, and each sample represented a group of 2 or 3 paddocks. Apparent soil electrical conductivity (ECa) was measured with a contact sensor. The cost of producing 1 ha of alfalfa was estimated from the amount of lime and fertilizer needed and was then used to estimate the total cost of production for the dairy system. The alfalfa dry matter yield was used to simulate the pasture stocking rate, milk yield, gross revenue and net profit. The spatial variability of soil properties and site-specific liming and fertilizer needs were modeled using semi-variograms with VESPER software, the soil fertility information and economic return were modeled with SPRING software. The results showed that geostatistics and GIS were effective tools for revealing soil and pasture spatial variability and supporting management strategies. Soil nutrients were used to classify the soil spatial distribution map and design site-specific lime and fertilizer application maps. Spatial variation in forage and spatial estimates of stocking and milk yield are adequate pasture management tools. Spatial analyses of needs, forage availability and economic return are management tools for avoiding economic problems, as well as potential environmental problems, caused by unbalanced nutrient supplies and over- or under-grazing.  相似文献   

2.
The general objectives of this study were to evaluate (i) the specificity of the spatial and temporal dynamics of apparent soil electrical conductivity (ECa) measured by a electromagnetic induction (EMI) sensor, over 7 years, in variable conditions (of soil moisture content (SMC), soil vegetation cover and grazing management) and, consequently, (ii) the potential for implementing site-specific management (SSM). The DUALEM 1S sensor was used to measure the ECa in a 6 ha pasture experimental field four times between June 2007 and February of 2013. Soil spatial variability was characterized by 76 samples, geo-referenced with the global positioning system (GPS). The soil was characterized in terms of texture, moisture content, pH, organic matter content, nitrogen, phosphorus and potassium. This study shows a significant temporal stability of the ECa patterns under several conditions, behavior that is an excellent indicator of reliability of this tool to survey spatial soil variability and to delineate potential site-specific management zones (SSMZ). Significant correlations were obtained in this work between the ECa and relative field elevation, pH, silt and soil moisture content. These results open perspectives for using the EMI sensor as an indicator of SMC in irrigation management and of needs of limestone correction in Mediterranean pastures. However, it is interesting to extend the findings to other types of soil to verify the origin of the lack of correlation between the ECa data measured by DUALEM sensor and properties such as the clay, organic matter or phosphorus soil content, fundamental parameters for establishment of pasture SSM projects.  相似文献   

3.
By selecting a typical peak-cluster depression area of karst region in Southwest China, we evaluated the effect of land use types and topographic factors on soil nutrients. Grid and line sampling methods were used to sample soil in depression and slope lands respectively, and classical statistical tools were applied to analyze the spatial variability character of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (AK), pH, and C/N. It was found that land use type was the dominant factor that effected the spatial heterogeneity of SOC, TN, TP, TK, AN, and AP. The content of SOC, TN, and AN decreased with the increase of land use intensity. Due to high fertilizer input, TP and AP in tillage fields were higher than those in the other land use types. TK had no obvious change trend among various land use types. Topographic factors had a significant effect on SOC, TN, TP, AN, AP, AK, and pH. Habitat factor was the dominant factor that effected AK. Altitude factor was the dominant factor for pH. However, all of these factors had no significant effect on C/N. Tillage practice had important effect on soil nutrients loss and soil degradation in the fragile karst ecosystem, and the input of organic manure should be increased in this region.  相似文献   

4.
样点数对县域土壤养分空间变异特征评价的影响   总被引:2,自引:0,他引:2  
以广东省阳西县测土配方施肥耕地地力调查数据为基础,应用地统计学和GIS空间分析技术,对耕层土壤pH、有机质、全氮、有效磷和速效钾进行空间插值质量研究。结果表明:(1)土壤养分变异系数的顺序为速效钾>速效磷>有机质>全氮>pH,插值误差随土壤养分空间变异系数增大而增加。(2)插值精度随着插值样点数的增加而不断提高,土壤养分的预测值与实测值的相关系数逐渐增加。采样密度相同时,土壤养分的标准均方根误差(NRMSE)值由大到小的变化顺序是速效钾>有效磷>全氮>有机质>pH值。(3)对阳西县土壤养分空间变异情况进行评价时,土壤pH值和全氮采样时应以30~60 hm2耕地为一个采样单元;土壤有机质采样时应以20~30 hm2耕地为一个采样单元;土壤有效磷和速效钾采样时应最大以20 hm2耕地为一个采样单元。  相似文献   

5.
Effective variable-rate nitrogen (N) management requires an understanding of temporal variability and field-scale spatial interactions (e.g. lateral redistribution of nutrients). Modeling studies, in conjunction with field data, can improve process understanding of agricultural management. CropSyst-Microbasin (CS-MB) is a fully distributed, 3-dimensional hydrologic cropping systems model that simulates small (10 s of hectares) heterogeneous agricultural watersheds with complex terrain. This study used a highly instrumented 10.9 ha watershed in the Inland Pacific Northwest, USA, to: (1) assess the accuracy of CS-MB simulations of field-scale variability in water transport and crop yield in comparison to observed field data, and (2) quantify differences in simulated yield and farm profitability between variable-rate and uniform fertilizer applications in low, average and high precipitation treatments. During water years 2012 and 2013 (a “water year” refers to October 1st through the following September 30th, where a given water year is named for the calendar year on September 30th), the model simulated surface runoff with a Nash–Sutcliffe efficiency (NSE) of 0.7, periodic soil water content (comparison to seasonal soil core measurements) with a root mean square error (RMSE) ≤0.05 m3 m?3, and continuous soil water content (comparison to in situ soil sensors) at 15 of 20 microsites with NSE ≥0.4. The model predicted 2013 field variability in winter wheat yield with RMSE of 1100 kg ha?1. Simulated uniform N management resulted in 0–35 kg ha?1 greater field average yield in comparison to variable-rate management. The savings in fertilizer costs under variable-rate N management resulted in $23–$32 ha?1 greater field average returns to risk. This study demonstrated the capacity of CS-MB to further understanding of simulated and observed field-scale spatial variability and simulated crop response to low, medium and high annual precipitation.  相似文献   

6.
以白水河小流域退耕坡地为研究对象,应用地统计学分析方法,分析研究区0~10 cm土层土壤有机碳(SOC)、全氮(TN)、全磷(TP)和全钾(TK)的空间分布特征及其变异规律,探讨植被覆盖类型及其他环境因子对土壤养分空间分布的影响,为土壤养分的有效利用和管理提供理论依据。结果表明,(1)研究区SOC(Mean=18.847 g/kg)和TN(Mean=0.749 g/kg)的含量属于中等水平,TP(Mean=0.291 g/kg)和TK(Mean=3.333 g/kg)的含量则比较缺乏。各养分含量的变异系数(CV)在10%~100%之间,为中等变异性。(2)SOC拟合模型为高斯模型,TN和TK为球状模型,TP为指数模型。其中,TP和TK有强烈的空间自相关性,自相关变程范围分别为23.43 m和27.48 m,其空间变异主要由土壤母质、地形、气候等非人为的结构因素引起。SOC和TN表现为中等的空间自相关性,自相关变程范围分别为37.78 m和32.65 m,其变异是随机因素(施肥、耕作措施、种植制度等人为活动)和结构因素的共同作用。(3)各土壤养分总体呈空间连续分布的特点。不同的植被覆盖类型下土壤养分含量差异明显,植被自然恢复,人为干扰较小的灌木和樱桃+草本分布点的SOC和TN含量较高,经营管理强度较高的樱桃和樱桃+玉米分布点的SOC和TN含量较低。耕地施用磷钾肥明显提高了其TP和TK的含量。植被覆盖类型与TK的相关性不显著,说明植被对TK的分布影响较小。(4)相关性分析表明,SOC、TN、TP在土层浅薄、坡度大、岩石裸露率高的区域土壤养分含量较高,反之亦然。而TK含量的分布规律则与其他土壤养分相反,这可能与研究区施肥和土壤属性有关。不同土地利用方式施肥和种植结构的差异是引起这种空间分布特点的主要因素。  相似文献   

7.
[目的]对川西米亚罗亚高山暗针叶林土壤pH和养分空间异质性进行研究,可为深入了解川西亚高山林区土壤质量以及区域生态恢复提供科学依据.[方法]依托在四川米亚罗省级自然保护区建立的亚高山暗针叶林9.6 hm2(400m×240 m)动态样地,采用野外布点采样、实验室测定、经典统计学、地统计学分析相结合的方法,分析了动态样地...  相似文献   

8.
艾比湖湿地土壤水分-盐分-养分空间异质性分析   总被引:2,自引:0,他引:2  
为了解艾比湖湿地土壤水分-盐分-养分空间异质性,在环湖一周160 km范围内,以湖心质点为中心,将艾比湖湿地划分为东北、西北、西南、东南4个区域,于2014—2015年5、8月采样,对表层(0~20 cm)土壤含水量、盐分、养分、pH值空间异质性进行研究,结果表明:不同区域土壤盐分、养分、pH值8月高于5月,土壤含水量则相反,其中土壤含水量、盐分、养分属于中等变异,土壤pH值为弱变异;5、8月不同区域土壤盐渍化在中度盐化与盐土化水平之间,pH值呈碱性或强碱性,土壤养分等级较低,总体较为贫瘠。球状模型、指数模型、高斯模型能较好地描述艾比湖湿地土壤空间变异特征,决定系数变化范围为31%~96%;不同区域土壤含水量块金系数小于34%;除5月西南部土壤pH和东北部土壤养分外,不同区域土壤盐分、pH、养分块金系数均小于25%;土壤盐分、pH、养分的Moran′s I(莫兰)系数波动均较大,表明空间相关性较强。从空间上看,5、8月土壤含水量呈带状分布,高值区出现在西北部与西南部,低值区主要在东南部与东北部;土壤盐分高值区主要在西北与东南部,低值区在西南部与东北部;土壤pH高值区主要在西北部及湖周围;土壤有机质、全氮高值区都出现在西北部、西南部,土壤全磷呈无规则斑点状分布,高、低值区较为分散。研究发现,影响艾比湖湿地空间异质性的因素中,土壤盐分、pH、养分主要受结构性因素影响,土壤含水量受结构性因素和随机性因素共同影响。  相似文献   

9.
大比例尺度下土壤的养分特征及其空间变异性研究   总被引:7,自引:0,他引:7  
利用“网格”取样、土壤养分状况系统研究法、地统计学方法及地理信息系统技术探讨了湖北省 1个自然村 (光芒村 )土壤的养分特征及其空间变异性。结果表明 :(1)土壤有机质、NH4+ N和有效K的含量普遍较低 ,有效P的含量相对较高 ,土壤有效S、B、Mn和Zn的含量低于临界值的比例分别为 4 8.8%、4 9.6 %、6 4 .3%和73.6 % ;(2 )土壤 pH及有效养分含量的变异系数按如下顺序逐渐增大 :pH 相似文献   

10.
冬小麦-夏玉米轮作区土壤养分时空变化特征   总被引:8,自引:2,他引:6  
【目的】研究冬小麦-夏玉米轮作区土壤养分的时间和空间变化规律以及多年轮作对土壤养分的影响。【方法】以国家精准农业示范研究基地为例,利用GIS技术和地统计学方法,结合《北京土壤养分分等定级标准》,分析冬小麦-夏玉米轮作区土壤养分时空变异特征。【结果】从2000—2007年,研究区严重缺乏磷、钾养分,且含量等级呈下降趋势;土壤全氮含量虽在部分区域偏高,但盈亏等级也呈下降趋势;有机质含量略微增加,处于平衡状态。不同年度的各土壤养分的变异系数范围为11.00%—51.71%,属于中等程度的变异。随着时间的推移,有效磷、有机质、全氮和碱解氮空间分布稳定。速效钾在2001年空间分布规律与2000年和2007年不同,但2000年和2007年空间分布一致,说明土壤速效钾空间分布也具有一定的稳定性。【结论】整体上来说,研究区南部和东北部土壤养分含量偏高,中部含量偏低。当田块土壤物理特性有大的变动时,土壤养分的空间结构特征会受到一定影响;但当长时间田块耕作管理相对一致时,结构性因素(尤其土壤特性、气候)起主要作用。  相似文献   

11.
The accurate assessment of the spatiotemporal changes in soil nutrients influenced by agricultural production provides the basis for development of management strategies to maintain soil fertility and balance soil nutrients. In this paper, we combined spatial measurements from 2157 soil samples and geostatistical analysis to assess the spatiotemporal changes in soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP) and available potassium content (AK) from the first soil survey (in the 1980s) to the second soil survey (in the 2000s) in the Taihu region of Jiangsu Province in China. The results showed that average soil nutrients in three soil types all exhibited the increased levels in the 2000s (except for AK in the yellow brown soil). The standard deviation of soil nutrient contents increased (except for TN in the paddy soil). Agricultural production in the 20 years led to increases in SOC, TN, AP and AK by 74, 82, 89 and 65%, respectively, of the Taihu areas analyzed. From the 1980s to 2000s all the nugget/sill ratios of soil nutrients indices were between 25 and 75% (except for AK in the yellow brown soil in the 2000s), indicating moderate spatial dependence. The ratio of AP in the yellow brown soil in the 2000s was 88.74%, showing weak spatial dependence. The spatial correlation range values for SOC, TN, AP and AK in the 2000s all decreased. The main areas showing declines in SOC, TN and AP were in the northwest. For AK, the main region with declining levels was in the east and middle of western areas. Apparently, the increase in soil nutrients in the Taihu region can be mainly attributed to the large increase in fertilizer inputs, change in crop systems and enhanced residues management since the 1980s. Future emphasis should be placed on avoiding excess fertilizer inputs and balancing the effects of the fertilizers in soils.  相似文献   

12.
Our current understanding of the mechanisms driving spatiotemporal yield variability in rice systems is insufficient for effective management at the sub-field scale. The overall objective of this study was to evaluate the potential of precision management for rice production. The spatiotemporal properties of multiyear yield monitor data from four rice fields, representing varying soil types and locations within the primary rice growing region in California, were quantified and characterized. The role of water management, land-leveling, and the spatial distribution of soil properties in driving yield heterogeneity was explored. Mean yield and coefficient of variation at the sampling points within each field ranged from 9.2 to 12.1 Mg ha?1 and from 7.1 to 14.5 %, respectively. Using a k-means clustering and randomization method, temporally stable yield patterns were identified in three of the four fields. Redistribution of dissolved organic carbon, nitrogen, potassium and salts by lateral flood water movement was observed across all fields, but was only related to yield variability via exacerbating areas with high soil salinity. The effects of cold water temperature and land-leveling on yield variability were not observed. Soil electrical conductivity and/or plant available phosphorus were identified as the underlying causes of the within-field yield patterns using classification and regression trees. Our results demonstrate that while the high temporal yield variability in some rice fields does not permit precision management, in other fields exhibiting stable yield patterns with identifiable causes, precision management and modified water management may improve the profitability and resource-use efficiency of rice production systems.  相似文献   

13.
武汉市区绿地土壤养分空间变异性分析   总被引:1,自引:0,他引:1  
采用GIS与地统计学相结合的方法,对武汉市区绿地土壤中pH值、有机质、全氮、速效磷、速效钾的空间分布进行了研究。结果表明,武汉市区绿地大部分土壤为碱性或中性;土壤养分空间变异性较大,在0.46~0.88,有机质的变异系数最大为0.88;各区域养分含量不均等,绿地养分等级处于中等水平。并绘制了武汉市区绿地养分等级分布图。从而为城市绿地土壤养分管理及绿地建设规划提供指导。  相似文献   

14.
红树林是单位生产力最高的生态系统之一,能够持续地固定有机碳,对全球碳平衡及生物地球化学循环有深远影响。在海南岛北部东寨港、八门湾、新盈港地区等典型红树林湿地的林内、林缘和光滩开展垂直采样,共采集15个样点,在室内对样品的有机碳含量、物理化学性质进行分析,探讨红树林湿地土壤有机碳的分布规律以及影响碳储量的主要因素。结果显示:红树林湿地0~40cm土壤有机碳含量为0.88~134.00g/kg,平均为25.18(±10.34)g/kg。在空间分布上,表现为八门湾红树林(36.61g/kg±4.46g/kg)东寨港红树林(25.57g/kg±3.14g/kg)新盈红树林(13.36g/kg±1.71g/kg);水平分布规律为林内(41.69g/kg±0.71g/kg)林缘(21.24g/kg±0.43g/kg)光滩(13.88g/kg±0.32g/kg);垂直分布最大值出现在10~20cm土层,为32.11(±3.45)g/kg。进一步相关分析显示,土壤有机碳含量与粘粒和粉粒呈极显著正相关关系,与砂粒和pH值呈极显著负相关关系。  相似文献   

15.
Fusion of different data layers, such as data from soil analysis and proximal soil sensing, is essential to improve assessment of spatial variation in soil and yield. On-line visible and near infrared (Vis–NIR) spectroscopy have been proved to provide high resolution information about spatial variability of key soil properties. Multivariate geostatistics tools were successfully implemented for the delineation of management zones (MZs) for precision application of crop inputs. This research was conducted in a 18 ha field to delineate MZs, using a multi-source data set, which consisted of eight laboratory measured soil variables (pH, available phosphorus (P), cation exchange capacity, total nitrogen (TN), total carbon (TC), exchangeable potassium (K), sand, silt) and four on-line collected Vis–NIR spectra-based predicted soil variables (pH, P, K and moisture content). The latter set of data was predicted using the partial least squares regression (PLSR) technique. The quality of the calibration models was evaluated by cross-validation. Multi-collocated cokriging was applied to the soil and spectral data set to produce thematic spatial maps, whereas multi-collocated factor cokriging was applied to delineate MZ. The Vis–NIR predicted K was chosen as the exhaustive variable, because it was the most correlated with the soil variables. A yield map of barley was interpolated by means of the inverse distance weighting method and was then classified into 3 iso-frequency classes (low, medium and high). To assess the productivity potential of the different zones of the field, spatial association between MZs and yield classes was calculated. Results showed that the prediction performance of PLSR calibration models for pH, P, MC and K were of excellent to moderate quality. The geostatistical model revealed good performance. The estimates of the first regionalised factor produced three MZs of equal size in the studied field. The loading coefficients for TC, pH and TN of the first factor were highest and positive. This means that the first factor can be assumed as a synthetic indicator of soil fertility. The overall spatial association between the yield classes and MZs was about 40 %, which reveals that more than 50 % of the yield variation can be attributed to more dynamic factors than soil parameters, such as agro-meteorological conditions, plant diseases and nutrition stresses. Nevertheless, multivariate geostatistics proved to be an effective approach for site-specific management of agricultural fields.  相似文献   

16.
猫儿山森林土壤养分的空间变化特征   总被引:1,自引:0,他引:1  
应用多重比较、相关性分析和线性回归分析等方法对猫儿山不同海拔(1145、1468、1536、2024 m)4种林分类型固定样地内表层土壤(0-20 cm)进行养分测定。结果表明:(1)土壤pH、全钾含量沿海拔梯度的变化呈现出单调递减的规律性;有机质、全氮、全磷和速效钾含量呈现先降后升的趋势;速效氮含量呈现先微上升后下降再上升的波形趋势;有效磷含量呈现强烈的先降后升的空间变异趋势。(2)海拔与有机质、全氮、速效氮、有效磷含量呈极显著正相关,与pH值和全钾含量呈极显著负相关,与速效钾含量呈显著正相关,与全磷含量之间的相关性不显著。(3)除了全磷外,有效磷含量与其它养分指标间呈显著或极显著线性相关。猫儿山土壤养分空间分布具有一定的异质性,有效磷的空间变化最强烈。  相似文献   

17.
在我国东南6省(市)选择代表性区域(自然村),采用ASI和地统计学等方法对耕作土壤的pH值、有机质、有效氮、磷和钾的空间变异性与合理取样数量进行了研究。结果表明,①pH值和有机质是相对稳定的土壤属性,在整个研究区域其变异较小,近似于正态分布;施肥元素的变异则较大,表现出明显的负偏峰分布特征。②尽管某些土壤属性或大量元素的总体变异性相似,但在各研究区域,其实际半方差结构并不相同。③对于明显偏峰分布的土壤养分来说,建议采用最适分配法确定合理取样数量。纯随机合理取样数量可在一定程度作为参考。  相似文献   

18.
褐土区乡镇级农田土壤养分时空变异研究   总被引:7,自引:3,他引:4  
充分了解土壤养分的时空变异特性,结合施肥现状针对性地调节养分供应、合理施肥是提高养分资源利用效率的途径之一,也是促进精准农业快速发展的重要基础。利用经典统计学与地统计学相结合的方法,对寿阳县宗艾镇的土壤养分进行了跨度10年的时空变异分析,结果表明,从空间变异方面来说,速效钾2008年、有效磷2008年、有机质1998年都有强烈的空间变异,有机质2008年、全氮2008年、全氮1998年、速效钾1998年为中等空间变异,有效磷1998年具有弱的空间自相关性。从时间变异方面来说,1998—2008年之间,土壤有机质的平均含量下降了2.06g/kg,而土壤全氮的平均含量则增加了0.07g/kg。土壤有机质含量为20.1~30.0g/kg的面积减少了10.45%;土壤全氮含量为0.76~1.00g/kg的面积增加了11.9%;土壤速效钾含量为100~150mg/kg的面积增加了15.6%;土壤有效磷含量为5.1~10.0mg/kg的面积增加了23%。有机质、全氮、速效钾在时间上表现为中等稳定性,有效磷在时间上表现为不稳定性。  相似文献   

19.
  目的  通过探究油松林Pinus tabulaeformis土壤有机碳质量分数和储量的垂直变化和时间变化特征,为油松林土壤碳储量预测和碳汇管理提供理论依据。  方法  基于1980?2017年文献数据,综合运用单因素方差分析、多重比较、相关性分析和通径分析等方法,探讨棕壤和褐土2种土壤类型下油松林土壤有机碳质量分数及储量变化特征,并结合不同时期中国森林经营措施和油松生长特征分析其驱动因素。  结果  油松林土壤有机碳质量分数和储量变化随土层深度增加而显著降低(P<0.05),0~20 cm土层是碳库的主要贡献层,占0~60 cm土层土壤有机碳储量的45%~50%;近40 a间土壤有机碳质量分数和储量呈先减少后增加的时间变化特征,其中,2000?2009年为最低点,而后出现较大幅度增加,在2017年达到储量最高点,为247.02 Tg。  结论  土壤容重、土壤全氮和林分郁闭度是油松林土壤有机碳质量分数(储量)变化的主要因素,不同时期森林经营和保护措施对三者的深刻影响是油松林土壤有机碳质量分数和储量呈现明显时间变化的重要原因。图3表5参49  相似文献   

20.
Soil organic carbon (SOC) is the most important indicators of soil quality and health. Identifying the spatial distribution of SOC and its influencing factors in cropland is crucial to understand the terrestrial carbon cycle and optimize agronomic management. Yunnan Province, characterized by mountainous topography and varied elevation, is one of the highest SOC regions in China. Yet its SOC stock of cropland and influencing factors has not been fully studied due to the lack of adequate soil investigation. In this study, the digital mapping of SOC at 1 km resolution and the estimation of total SOC stock in cropland of Yunnan Province was undertaken using 8 637 topsoil (0–20 cm) samples and a series of spatial data through Random Forest (RF) model. It was showed that across the cropland of Yunnan Province, the mean SOC density and total stock were 4.84 kg m–2 and 337.5 Mt, respectively. The spatial distribution indicated that relatively high SOC density regions resided in the northwest and northeast parts of Yunnan Province. Elevation (19.5%), temperature (17.3%), rainfall (14.5%), and Topographic wetness index (9.9%) were the most important factors which controlled spatial variability of SOC density. Agronomic practices (e.g., crop straw treatments, fertilizer management) should be optimized for the sustainable development of crop production with high SOC sequestration capacity in Yunnan Province.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号