首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The objectives were to investigate effects of nutritional plane and Se supply during gestation on yield and nutrient composition of colostrum and milk in first parity ewes. Rambouillet ewe lambs (n = 84, age = 240 ± 17 d, BW = 52.1 ± 6.2 kg) were allocated to 6 treatments in a 2 × 3 factorial array. Factors included Se [adequate Se (ASe, 11.5 μg/kg of BW) or high Se (HSe, 77.0 μg/kg of BW)] initiated at breeding, and nutritional plane [60 (RES), 100 (CON), or 140% (HIH) of requirements] initiated at d 40 of gestation. Ewes were fed individually from d 40, and lambs were removed at parturition. Colostrum was milked from all ewes at 3 h postpartum, and one-half of the ewes (n = 42) were transitioned to a common diet meeting lactation requirements and mechanically milked for 20 d. Colostrum yield was greater (P = 0.02) for HSe ewes than ASe, whereas CON had greater (P < 0.05) colostrum yield than RES and HIH. Colostrum Se (%) was greater (P < 0.01) for HSe than ASe. Colostrum from ewes fed HSe had less (P = 0.03) butterfat (%), but greater (P ≤ 0.05) total butterfat, solids-not-fat, lactose, protein, milk urea N, and Se than ASe. Colostrum from HIH ewes had greater (P ≤ 0.02) solids-not-fat (%) than RES, whereas RES had greater (P ≤ 0.04) butterfat (%) than CON and HIH. Colostrum from ewes fed the CON diet had greater (P = 0.01) total butterfat than HIH. Total solids-not-fat, lactose, and protein were greater (P < 0.05) in colostrum from CON than RES and HIH. Ewes fed HSe had greater (P < 0.01) milk yield (g/d and mL/d) than ASe, and CON and HIH had greater (P < 0.01) yield than RES. Milk protein (%) was greater (P ≤ 0.01) in RES compared with CON or HIH. Ewes fed HSe had greater (P < 0.01) milk Se (μg/g and mg/d) than ASe on each sampling day. Milk from CON and HIH ewes had greater (P < 0.01) total solids-not-fat, lactose, protein, and milk urea N than RES. Total Se was greater (P = 0.02) in milk from ewes fed the CON diet compared with RES. Somatic cell count and total somatic cells were greater (P ≤ 0.05) in milk from CON than RES. A cubic effect of day (P ≥ 0.01) was observed for milk yield (g and mL). Butterfat, solids-not-fat, lactose, milk urea N, and Se concentration responded quadratically (P ≤ 0.01) to day. Protein (%), total butterfat, and total Se, and somatic cells (cells/mL and cells/d) decreased linearly (P < 0.01) with day. Results indicate that gestational nutrition affects colostrum and milk yield and nutrient content, even when lactational nutrient requirements are met.  相似文献   

2.
To investigate the influence of maternal Se supply and plane of nutrition on lamb morbidity, mortality, and passive transfer of IgG, pregnant ewe lambs were used in 2 experiments with 2 × 3 factorial treatment arrangements. Supplementation of Se began at breeding and was either adequate Se (ASe, 9.5 μg/kg of BW) or high Se (HSe, 81.8 μg/kg of BW) in Exp. 1 or ASe (11.5 μg/kg of BW) or HSe (77.0 μg/kg of BW) in Exp. 2. On d 50 or 40 of gestation for Exp. 1 or 2, respectively, ewes were assigned randomly to 1 of 3 nutritional planes: 60% (RES), 100% (control, CON), or 140% (HI) of NRC requirements. This resulted in the following treatments: ASe-RES, ASe-CON, ASe-HI, HSe-RES, HSe-CON, and HSe-HI. Upon parturition, lambs were separated from their dams and serum samples obtained. Lambs were fed artificial colostrum for the first 20 h and then placed on milk replacer and grain pellets until completion of the study (Exp. 1, 57 d; Exp. 2, 21 d). Twenty-four hours after parturition, lamb serum samples were collected for IgG analysis. All lambs were reared similarly and morbidity and mortality assessed. Main effects were considered significant when P ≤ 0.05. In Exp. 1, there was a Se × plane of nutrition interaction (P ≤ 0.01) for lamb morbidity from birth to weaning and for 24-h IgG concentration. Lambs from ASe-RES and HSe-HI ewes were treated more frequently (P < 0.01) for respiratory and gastrointestinal disease, and lambs from HSe-HI ewes had the smallest (P < 0.01) 24-h serum IgG concentration. In Exp. 1, lambs from HI ewes also had the greatest (P < 0.01) mortality rates from birth to weaning compared with lambs from CON and RES ewes. In Exp. 2, there was an effect (P < 0.01) of maternal plane of nutrition with lambs from RES ewes having increased 24-h IgG compared with lambs from CON and HI ewes. There was no effect of maternal Se supplementation on lamb 24-h IgG in Exp. 2; however, there was a Se × plane of nutrition interaction (P < 0.01) for morbidity. From birth to 21 d of age, lambs from ASe-CON ewes had fewer (P < 0.01) treatment days compared with lambs from any of the other treatment groups. There also tended (P = 0.08) to be an effect of maternal Se supplementation on lamb mortality with increased mortality observed in lambs from HSe ewes. Results from the studies show a restricted maternal plane of nutrition can increase lamb serum IgG concentration. Selenium results were not consistent between the 2 experiments and may be due to differences in maternal Se.  相似文献   

3.
Objectives were to investigate effects of nutritional plane and Se supply during gestation on visceral organ mass and intestinal growth and vascularization in ewes at parturition and during early lactation. Primiparous Rambouillet ewes (n = 84) were allocated to 2 × 3 × 2 factorial arrangement of treatments. Factors included dietary Se [adequate Se (ASe, 11.5 μg/kg BW) or high Se (HSe, 77.0 μg/kg BW)], nutritional plane [60% (restricted; RES), 100% (control; CON), or 140% (high; HIH)], and physiological stage at necropsy (parturition or d 20 of lactation). At parturition, lambs were removed and 42 ewes (7 per treatment) were necropsied. Remaining ewes were transitioned to a common diet which met lactation requirements and mechanically milked for 20 d. In the absence of interactions (P > 0.10), main effects are reported. At parturition, stomach complex and liver masses were greatest for HIH, intermediate for CON, and least for RES (P < 0.02). Small intestinal mass was greater (P ≤ 0.002) for HIH than RES and CON, and greater (P < 0.01) for ASe than HSe. During early lactation, RES and CON gastrointestinal masses increased disproportionally to BW (P < 0.05). At parturition, jejunal mucosal density was less (P ≤ 0.01) for RES than CON and HIH, whereas CON had greater (P < 0.003) jejunal mucosal RNA concentration and RNA:DNA than RES and HIH. Although there were no differences (P > 0.17) at parturition, jejunal cell percent proliferation was greatest in RES, intermediate in CON, and least in HIH (P ≤ 0.09) at d 20 lactation. At both stages, RES had less (P = 0.01) jejunal capillary area density than HIH and less (P ≤ 0.03) capillary surface density than CON and HIH. During lactation, jejunal capillary size was greater (P = 0.04) for ewes previously fed HSe compared with ASe. At parturition, ASe-HIH had greater (P < 0.02) jejunal mucosal endothelial nitric oxide synthase 3 mRNA than all other treatments and greater (P = 0.10) vascular endothelial growth factor (VEGF) than all treatments, except ASe-RES. In addition, CON had less (P ≤ 0.08) jejunal VEGF receptor-1 (FLT1) mRNA compared with RES and HIH, and ASe had greater (P = 0.003) FLT1 than HSe at parturition. Ewes fed HIH had greater (P = 0.04) jejunal VEGF receptor-2 mRNA compared with RES. Results indicate that maternal intestinal growth and vascularization are responsive to nutritional plane and dietary Se during gestation and undergo changes postpartum when under similar lactational management.  相似文献   

4.
To examine effects of nutrient restriction and dietary Se on maternal and fetal visceral tissues, 36 pregnant Targhee-cross ewe lambs were allotted randomly to 1 of 4 treatments in a 2 x 2 factorial arrangement. Treatments were plane of nutrition [control, 100% of requirements vs. restricted, 60% of controls] and dietary Se [adequate Se, ASe (6 microg/kg of BW) vs. high Se, HSe (80 microg/kg of BW)] from Se-enriched yeast. Selenium treatments were initiated 21 d before breeding and dietary restriction began on d 64 of gestation. Diets contained 16% CP and 2.12 Mcal/kg of ME (DM basis) and differing amounts were fed to control and restricted groups. On d 135 +/- 5 (mean +/- range) of gestation, ewes were slaughtered and visceral tissues were harvested. There was a nutrition x Se interaction (P = 0.02) for maternal jejunal RNA:DNA; no other interactions were detected for maternal measurements. Maternal BW, stomach complex, small intestine, large intestine, liver, and kidney mass were less (P < or = 0.01) in restricted than control ewes. Lung mass (g/kg of empty BW) was greater (P = 0.09) in restricted than control ewes and for HSe compared with ASe ewes. Maternal jejunal protein content and protein:DNA were less (P < or = 0.002) in restricted than control ewes. Maternal jejunal DNA and RNA concentrations and total proliferating jejunal cells were not affected (P > or = 0.11) by treatment. Total jejunal and mucosal vascularity (mL) were less (P < or = 0.01) in restricted than control ewes. Fetuses from restricted ewes had less BW (P = 0.06), empty carcass weight (P = 0.06), crown-rump length (P = 0.03), liver (P = 0.01), pancreas (P = 0.07), perirenal fat (P = 0.02), small intestine (P = 0.007), and spleen weights (P = 0.03) compared with controls. Fetuses from HSe ewes had heavier (P < or = 0.09) BW, and empty carcass, heart, lung, spleen, total viscera, and large intestine weights compared with ASe ewes. Nutrient restriction resulted in less protein content (mg, P = 0.01) and protein:DNA (P = 0.06) in fetal jejunum. Fetal muscle DNA (nutrition by Se interaction, P = 0.04) concentration was greater (P < 0.05) in restricted ewes fed HSe compared with other treatments. Fetal muscle RNA concentration (P = 0.01) and heart RNA content (P = 0.04) were greater in HSe vs. ASe ewes. These data indicate that maternal dietary Se may alter fetal responses, as noted by greater fetal heart, lung, spleen, and BW.  相似文献   

5.
To examine effects of maternal nutrition and Se intake on adiposity and insulin sensitivity in female offspring, treatments were imposed during gestation on 82 pregnant primiparous Rambouillet ewe lambs (52.2 ± 0.8 kg) allotted randomly to 1 of 6 treatments in a 2 × 3 factorial arrangement. Factors were adequate (9.5 μg Se·kg BW(-1)·d(-1); ASe) or high (81.8 μg Se·kg BW(-1)·d(-1); HSe) levels of dietary Se (Se-enriched yeast) and maternal nutritional intake (100% of metabolizable energy [ME] requirement [MOD], 60% of MOD [LOW], and 140% of MOD [HIGH]). Selenium treatments were initiated at breeding and global nutritional treatments at day 50 of gestation. At parturition, lambs were removed from ewes before nursing and managed similarly. Glucose tolerance tests were performed at 107 and 148 d of age. Necropsies were performed at 180 d of age. Although there was no effect of Se on maternal body condition or weight during gestation, both maternal nutritional intake and selenium treatment influenced (P ≤ 0.04) offspring growth and response to a glucose tolerance test. Female lambs from HSe ewes were heavier (P = 0.04) at birth. There were nutritional intake and Se interactions (P ≤ 0.05) on the growth rate of the lambs and their insulin response to a glucose bolus at 2 different times during growth. By 180 d, ewe lambs from HSe ewes had more (P ≤ 0.07) internal fat stores than lambs from ASe ewes. It appears that both maternal nutritional level and Se intake can influence insulin sensitivity, and maternal Se intake alone can enhance fat deposition in female offspring.  相似文献   

6.

Background

Objectives were to examine the effects of selenium (Se) supply and maternal nutritional plane during gestation on mammary gland growth, cellular proliferation, and vascularity at parturition and d 20 of lactation. Rambouillet primiparous ewes (n = 84) were allocated to treatments in a 2 x 3 factorial. Factors were dietary Se (adequate Se [ASe, 11.5 μg/kg BW] or high Se [HSe, 77.0 μg/kg BW]) and nutritional plane (60% [RES], 100% [CON], or 140% [EXC]). At parturition, lambs were removed and 42 ewes (7/treatment) were necropsied. Remaining ewes were fed a common diet meeting requirements for lactation and mechanically milked twice daily until necropsy on d 20. At both necropsy periods, mammary glands were dissected and tissues harvested. Samples were analyzed for RNA, DNA, and protein content, cell proliferation, and vascularity. Where interactions were present (P ≤ 0.05), least squares means from the highest-order interaction are presented.

Results

Final body weight of ewes was least (P ≤ 0.002) in RES, intermediate for CON, and greatest for EXC, regardless of stage of the ewe at necropsy (parturition or d 20 of lactation). In ewes necropsied at parturition, mammary glands were heavier (P = 0.02) in EXC compared to RES, with CON intermediate. Concentration of RNA (mg/g) was decreased (P = 0.01) in EXC compared to CON at parturition. There was a tendency (P = 0.07) for a Se by nutrition interaction in percentage of cells proliferating where ASe-EXC ewes had greater (P ≤ 0.02) number of proliferating cells then all other treatments. Mammary vascular area tended (P = 0.08) to be affected by a Se by nutrition interaction where ASe-CON had less (P = 0.007) vascular area than HSe-CON ewes. In ewes necropsied at d 20 of lactation, the number of alveoli per area was decreased (P ≤ 0.05) in RES compared to CON and EXC-fed ewes.

Conclusions

Results of this study indicate that proper maternal nutritional plane during gestation is important for mammary gland development, even out to d 20 of lactation.  相似文献   

7.
To determine the effects of maternal Se intake and plane of nutrition during mid or late gestation or both on AA concentrations and metabolite concentrations in the dam and fetus, pregnant ewe lambs (n = 64) were assigned to 1 of 8 treatments arranged in a 2 × 2 × 2 factorial array: Se level [initiated at breeding; adequate (ASe; 3.05 μg/kg of BW) or high (HSe; 70.4 μg/kg of BW)] and nutritional level [100% (control; CON) or 60% (restricted; RES) of NRC recommendations] fed at different times of gestation [d 50 to 90 (mid) or d 91 to 132 (late)]. A blood sample was obtained from each ewe and fetus on d 132 of gestation and used to measure circulating concentrations of glucose, NEFA, blood urea N, and AA. The late RES ewes and their fetuses had less (P ≤ 0.03) circulating glucose compared with late CON ewes and fetuses at d 132; however, no effect (P ≥ 0.14) of diet on the fetal:maternal glucose concentration ratio was observed. Late RES ewes had a smaller (P = 0.01) fetal:maternal NEFA ratio compared with late CON ewes. Ewes fed ASe had a greater (P = 0.01) fetal:maternal blood urea N ratio compared with HSe ewes. Fetal:maternal ratios of total circulating AA, total essential AA, and total nonessential AA were each affected (P ≤ 0.03) by the combination of Se treatment and late gestation nutritional level.  相似文献   

8.
The effects of maternal nutrition on offspring wool production (quality and quantity) were evaluated. Primiparous Rambouillet ewes (n = 84) were randomly allocated to 1 of 6 treatments in a 2 × 3 factorial design. Selenium treatment [adequate Se (ASe, 9.5 μg/kg of BW) vs. high Se (HSe, 81.8 μg/kg of BW)] was initiated at breeding, and maternal nutritional intake [control (CON, 100% of requirements) vs. restricted (60% of CON) vs. overfed (140% of CON)] was initiated at d 50 of gestation. Lamb birth weight was recorded at delivery, and all lambs were placed on the same diet immediately after birth to determine the effects of prenatal nutrition on postnatal wool production and follicle development. At 180 ± 2.2 d of age, lambs were necropsied and pelt weights were recorded. Wool samples were collected from the side and britch areas, whereas skin samples were collected from the side of each lamb only. Although Se status did not influence side staple length in males, female lambs born from ewes on the ASe treatment had a shorter staple length (P < 0.05) when compared with females from ewes on the HSe treatment. Maternal nutritional intake and Se status did not influence (P ≥ 0.23) wool characteristics on the britch. However, at the britch, wool from female lambs had a reduced comfort factor (P = 0.01) and a greater (P = 0.02) fiber diameter compared with wool from male lambs. Maternal Se supplementation, maternal nutritional plane, sex of the offspring, or their interactions had no effect (P > 0.13) on primary (29.10 ± 1.40/100 μm(2)) and secondary (529.84 ± 21.57/100 μm(2)) wool follicle numbers. Lambs from ASe ewes had a greater (P = 0.03) secondary:primary wool follicle ratio compared with lambs from HSe ewes (20.93 vs. 18.01 ± 1.00). Despite similar postnatal diets, wool quality was affected by maternal Se status and the maternal nutritional plane.  相似文献   

9.
The objectives were to examine effects of dietary Se supplementation and nutrient restriction during defined periods of gestation on maternal adaptations to pregnancy in primigravid sheep. Sixty-four pregnant Western Whiteface ewe lambs were assigned to treatments in a 2 x 4 factorial design. Treatments were dietary Se [adequate Se (ASe; 3.05 microg/kg of BW) vs. high Se (HSe; 70.4 microg/kg of BW)] fed as Se-enriched yeast, and plane of nutrition [control (C; 100% of NRC requirements) vs. restricted (R; 60% of NRC requirements]. Selenium treatments were fed throughout gestation. Plane of nutrition treatments were applied during mid (d 50 to 90) and late gestation (d 90 to 130), which resulted in 4 distinct plane of nutrition treatments [treatment: CC (control from d 50 to 130), RC (restricted from d 50 to 90, and control d 90 to 130), CR (control from d 50 to 90, and restricted from d 90 to 130), and RR (restricted from d 50 to 130)]. All of the pregnant ewes were necropsied on d 132 +/- 0.9 of gestation (length of gestation approximately 145 d). Nutrient restriction treatments decreased ewe ADG and G:F, as a result, RC and CR ewes had similar BW and maternal BW (MBW) at necropsy, whereas RR ewes were lighter than RC and CR ewes. From d 90 to 130, the HSe-CC ewes had greater ADG (Se x nutrition; P = 0.05) than did ASe-CC ewes, whereas ADG and G:F (Se x nutrition; P = 0.08) were less for HSe-RR ewes compared with ASe-RR ewes. The CR and RR treatments decreased total gravid uterus weight (P = 0.01) as well as fetal weight (P = 0.02) compared with RC and CC. High Se decreased total (g; P = 0.09) and relative heart mass (g/kg of MBW; P = 0.10), but increased total and relative mass of liver (P < or = 0.05) and perirenal fat (P < or = 0.06) compared with ASe. Total stomach complex mass was decreased (P < 0.01) by all the nutrient restriction treatments, but was reduced to a greater extent in CR and RR compared with RC. Total small intestine mass was similar between RC and CC ewes, but was markedly reduced (P < 0.01) in CR and RR ewes. The mass of the stomach complex and the small and large intestine relative to MBW was greater (P = 0.01) for RC than for CR ewes. Increased Se decreased jejunal DNA concentration (P = 0.07), total jejunal cell number (P = 0.03), and total proliferating jejunal cell number (P = 0.05) compared with ASe. These data indicate that increased dietary Se affected whole-body and organ growth of pregnant ewes, but the results differed depending on the plane of nutrition. In addition, the timing and duration of nutrient restriction relative to stage of pregnancy affected visceral organ mass in a markedly different fashion.  相似文献   

10.
Pregnant Targhee ewe lambs (n = 32; BW = 45.6 +/- 2.2 kg) were allotted randomly to 1 of 4 treatments in a completely randomized design to examine the effects of level and source of dietary Se on maternal and fetal visceral organ mass, cellularity estimates, and maternal jejunal crypt cell proliferation and vascularity. Diets contained (DM basis) either no added Se (control) or supranutritional Se from high-Se wheat at 3.0 ppm Se (SW) or from sodium selenate at 3 (S3) or 15 (S15) ppm Se. Diets were similar in CP (15.5%) and ME (2.68 Mcal/kg of DM) and were fed to meet or exceed requirements. Treatments were initiated at 50 +/- 5 d of gestation. The control, SW, S3, and S15 treatment diets provided 2.5, 75, 75, and 375 microg of Se/kg of BW, respectively. On d 134 +/- 10 of gestation, ewes were necropsied, and tissues were harvested. Contrasts, including control vs. Se treatments (SW, S3, and S15), SW vs. S3, and S3 vs. S15, were used to evaluate differences among Se levels and sources. There were no differences in ewe initial and final BW. Full viscera and liver mass (g/kg of empty BW and g/kg of maternal BW) and maternal liver protein concentration (mg/g) and content (g) were greater (P < 0.04) in Se-treated compared with control ewes. Maternal liver protein concentration was greater (P = 0.01) in SW vs. S3 ewes, and content was greater (P = 0.01) in S15 compared with S3 ewes. Maternal jejunal mucosal DNA concentration (mg/g) was greater (P = 0.08) in SW compared with S3 ewes. Total number of proliferating cells in maternal jejunal mucosa was greater (P = 0.02) in Se-fed compared with control ewes. Capillary number density within maternal jejunal tissue was greater (P = 0.08) in S3 compared with SW ewes. Selenium treatment resulted in reduced fetal heart girth (P = 0.08). Fetal kidney RNA (P = 0.04) and protein concentrations (mg/g; P = 0.03) were greater in Se-treated compared with control ewes. These results indicate that supranutritional dietary Se increases cell numbers in maternal jejunal mucosa through increased crypt cell proliferation. No indications of toxicity were observed in any of the Se treatments.  相似文献   

11.
The objective of these studies was to evaluate the effects of dietary restriction and Se on maternal and fetal metabolic hormones. In Exp. 1, pregnant ewe lambs (n = 32; BW = 45.6 +/- 2.3 kg) were allotted randomly to 1 of 4 treatments. Diets contained (DM basis) either no added Se (control), or supranutritional Se added as high-Se wheat at 3.0 mg/kg (Se-wheat), or sodium selenate at 3 (Se3) and 15 (Se15) mg/kg of Se. Diets (DM basis) were similar in CP (15.5%) and ME (2.68 Mcal/kg). Treatments were initiated at 50 +/- 5 d of gestation. The control, Se-wheat, Se3, and Se15 treatments provided 2.5, 75, 75, and 375 microg/kg of BW of Se, respectively. Ewe jugular blood samples were collected at 50, 64, 78, 92, 106, 120, and 134 d of gestation. Fetal serum samples were collected at necropsy on d 134. In Exp. 2, pregnant ewe lambs (n = 36; BW 53.8 +/- 1.3 kg) were allotted randomly to treatments in a 2 x 2 factorial arrangement. Factors were nutrition (control, 100% of requirements vs. restricted nutrition, 60% of control) and dietary Se (adequate Se, 6 microg/kg of BW vs. high Se, 80 microg/kg of BW). Selenium treatments were initiated 21 d before breeding, and nutritional treatments were initiated on d 64 of gestation. Diets were 16% CP and 2.12 Mcal/kg of ME (DM basis). Blood samples were collected from the ewes at 62, 76, 90, 104, 118, 132, and 135 d of gestation. Fetal blood was collected at necropsy on d 135. In Exp.1, dietary Se source and concentration had no effect (P > 0.17) on maternal and fetal serum IGF-I, triiodothyronine (T(3)), or thyroxine (T(4)) concentrations. Selenium supplementation increased (P = 0.06) the T(4):T(3) ratio vs. controls. In Exp. 2, dietary Se had no impact (P > 0.33) on main effect means for maternal and fetal serum IGF-I, T(3), or T(4) concentrations from d 62 to 132; however, at d 135, high-Se ewes had lower (P = 0.01) serum T(4) concentrations than adequate-Se ewes. A nutrition by Se interaction (P = 0.06) was detected for the T(4):T(3) ratios; ewes fed restricted and adequate-Se diets had greater (P = 0.10) T(4):T(3) ratios compared with the other treatments. Nutrient-restricted ewes had lower (P < 0.05) serum IGF-I, T(3), and T(4) concentrations. Fetal serum IGF-I concentrations were lower (P = 0.01) in restricted-vs. control-fed ewes; however, fetal T(3) and T(4) concentrations were unaffected (P > 0.13) by dietary Se or maternal plane of nutrition. These data indicate that dietary Se may alter maternal T(4):T(3) ratios. In addition, nutrient restriction during gestation reduces maternal IGF-I, T(3), and T(4) and fetal IGF-I concentrations.  相似文献   

12.
This study was conducted to determine the effects of either dietary Se source or dose on the Se status of horses. Twenty-five mature horses were blocked by BW and randomly allocated to 1 of 5 dietary treatments that comprised the same basal diet that differed only in Se source or dose. Treatments were as follows: negative control (0.085 mg of Se/kg of DM), 3 different dietary concentrations of supplemental organic Se (Se yeast; 0.2, 0.3, and 0.4 mg of total Se/kg of DM), and positive control (0.3 mg of total Se/kg of DM) supplemented with Na selenite. Horses initially received the control diet (6 kg of grass hay and 3 kg of concentrate per horse daily) for 56 d to allow diet adaptation. After the period of diet adaptation, horses were offered their respective treatments for a continuous period of 112 d. Jugular venous blood samples were collected before the morning feed on d 0, 28, 56, 84, and 112. Whole blood and plasma were analyzed for total Se, glutathione peroxidase activity in whole blood (GPX-1) and plasma, and thyroid hormones (thyroxine and triiodothyronine) in plasma. The proportion of total Se as selenomethionine (SeMet) or selenocysteine in pooled whole blood and plasma samples was determined on d 0, 56, and 112. Data were analyzed as repeated measures. Total Se in blood and plasma and GPX-1 activity were greater in all supplemented horses (P < 0.001, except P < 0.01 for GPX-1 in horses supplemented with the least dose of Se yeast) with a linear dose effect of Se yeast for whole blood and plasma Se (P < 0.001) and a quadratic dose effect (P < 0.05) for whole blood GPX-1 activity. A plateau for total Se in plasma was achieved within 75 to 90 d, although this was not observed in blood total Se or GPX-1 activity. On d 84 and 112, horses supplemented with Se yeast showed greater total Se in blood (P < 0.05) compared with horses supplemented with Na selenite, and a source effect (P < 0.05) was observed in the relationship between total blood Se and GPX-1 activity. Selenocysteine (the predominant form of Se in whole blood and plasma) increased in all horses supplemented with Se. The SeMet content of whole blood and plasma increased in horses supplemented with Se yeast, but it was not observed in those supplemented with selenite. The rate of increase in SeMet over time was greater in whole blood (P < 0.05) and plasma (P = 0.10) with the Se yeast product. In conclusion, Se yeast was more effective than Na selenite in increasing total Se in blood, mainly as consequence of a greater increase of the proportion of Se comprised as SeMet, but it did not modify GPX-1 activity.  相似文献   

13.
Forty-eight Blackbelly X Dorset, 27 Finnish, 26 Finnish X Dorset, 28 Rambouillet and 8 Dorset Suffolk-sired lambs were used in this experiment. Three weeks before lambing, one-half of the ewes received a selenium emulsion (Se-E) containing .05 mg selenium and 3.7 IU of vitamin E/kg body weight (BW). A 2 X 3 X 2 factorial arrangement was used; lambs from either treated or nontreated ewes were randomly assigned irrespective of breed to one of six treatment combinations consisting of 0 or .025 mg/kg BW selenium (Se) injected at birth or two .025 mg/kg BW Se injections, one at birth and one 2 to 3 wk later, and two levels of injectable Vitamin E (E; 0 and 100 IU) given at birth. Both lambs and ewes were provided access to 75% concentrate diets supplemented with Se and E at recommended NRC levels. Plasma activity of creatine phosphokinase (CPK) was highest at 1 d of age and exhibited decreases (P less than .001) over time. In lambs, the E injection tended to decrease plasma activity of CPK. Plasma glutathione peroxidase activity was lowest at 1 d of age and increased over the course of the experiment but was unaffected by treatments (P less than .05). Plasma tocopherol concentration decreased (P less than .01) with time, with E therapy tending to increase tocopherol concentration. Differences in mean plasma tocopherol concentrations among breeds were also observed (P less than .01). Selenium concentration increased over time and with the E injection (P less than .01). An interaction between ewe and lamb Se-E treatments also was observed (P less than .10), with nontreated lambs from nontreated ewes exhibiting lower Se concentrations than treated lambs from injected ewes. An increase in lamb plasma Se concentration was noted in response to Se-E treatments (P less than .001). In the ewes, plasma tocopherol concentration was lower while Se concentration was higher at 18 d than at 1 d postpartum (P less than .01 and P less than .001, respectively). Milk Se concentration was lower at 18 d than at 1 d (P less than .001) and was higher (P less than .10) in Se-E-treated ewes.  相似文献   

14.
The relationship between available threonine (Thr) intake and whole-body protein deposition (PD) was established using the serial slaughter method in 36 individually housed growing gilts between 39 and 77 kg live BW. Pigs were prescreened for their maximum PD (PDmax), based on a N balance starting at 25 kg BW while they consumed semi-ad libitum a nonlimiting diet. Pigs were fed combinations of a casein and cornstarch-based diet that was confirmed to be first-limiting in Thr and a protein-free diet starting at approximately 30 kg BW. Casein-bound Thr was provided at 60, 70, 80, 90, 100, or 120% of estimated Thr requirements for PDmax. Energy intake was kept constant across treatments and exceeded requirements for PDmax. Pigs were fed three equal meals per day; feeding levels were adjusted weekly based on BW. Pigs were killed at either 39 kg BW (n = 2 per treatment) or 77 kg BW (n = 4 per treatment) for determining chemical body composition. Composition of 39-kg BW pigs was not different across treatments (P > 0.10); therefore, an overall mean initial body composition was used to estimate body protein content at the initial BW. Across treatments, mean daily ME intake was 25.3 (SE 0.08) MJ/d and did not differ (P > 0.10) among treatments. Average daily true ileal digestible Thr intake varied between 5.33 and 9.66 g/d, representing means for pigs on the lowest and the highest Thr intakes, respectively. Mean PD was 93, 102, 118, 124, 139, and 133 (SE 4.2) g/d for pigs on the six respective treatments. Dietary Thr intake did not influence (P > 0.10) Thr content of body protein at the final BW or the partitioning of body protein between carcass, viscera, and blood. The efficiency of Thr utilization for PD was lowest (P < 0.05) at the highest Thr intake level and highest (P < 0.05) at the lowest Thr intake level. It was similar (P > 0.10) at the four intermediate Thr intake levels, in which the relationship between true ileal digestible Thr intake and PD was linear. Based on these four treatments, calculated Thr disappearance, which is closely associated with inevitable Thr catabolism, was 23.5 (SE 0.55)% of available Thr intake. This value is consistent with an efficiency of using available Thr intake above maintenance Thr requirements (54 mg/kg BW0.75) for Thr retention with PD of 73.4 (SE 1.11)%. Based on N balances conducted at approximately 40 and 75 kg BW, the marginal efficiency of Thr utilization was not influenced by BW.  相似文献   

15.
This study evaluated the effect of feeding level and protein content in feed in first- and second-parity sows during the first month of gestation on sow BW recovery, farrowing rate, and litter size during the first month of gestation. From d 3 to 32 after the first insemination, sows were fed either 2.5 kg/d of a standard gestation diet (control, n = 49), 3.25 kg/d (+30%) of a standard gestation diet (plus feed, n = 47), or 2.5 kg/d of a gestation diet with 30% greater ileal digestible AA (plus protein, n = 49). Feed intake during the experimental period was 29% greater for sows in the plus feed group compared with those in the control and plus protein groups (93 vs. 72 kg, P < 0.05). Sows in the plus feed group gained 10 kg more BW during the experimental period compared with those in the control and plus protein groups (24.2 ± 1.2 vs. 15.5 ± 1.2 and 16.9 ± 1.2 kg, respectively, P < 0.001). Backfat gain and loin muscle depth gain were not affected by treatment (P = 0.56 and P = 0.37, respectively). Farrowing rate was smaller, although not significantly, for sows in the plus feed group compared with those in the control and plus protein groups (76.6% vs. 89.8 and 89.8%, respectively, P = 0.16). Litter size, however, was larger for sows in the plus feed group (15.2 ± 0.5 total born) compared with those in the control and plus protein groups (13.2 ± 0.4 and 13.6 ± 0.4 total born, respectively, P = 0.006). Piglet birth weight was not different among treatments (P = 0.65). For both first- and second-parity sows, the plus feed treatment showed similar effects on BW gain, farrowing rate, and litter size. In conclusion, an increased feed intake (+30%) during the first month of gestation improved sow BW recovery and increased litter size, but did not significantly affect farrowing rate in the subsequent parity. Feeding a 30% greater level of ileal digestible AA during the same period did not improve sow recovery or reproductive performance in the subsequent parity.  相似文献   

16.
Two experiments were conducted to determine the optimal apparent ileal digestible lysine:ME (Lys:ME) ratio and the effects of lysine and ME levels on N balance (Exp. 1) and growth performance (Exp. 2) in growing pigs. Diets were designed to contain Lys:ME ratios of 0.6, 0.7, 0.8, and 0.9 g/MJ at 13.5 and 14.5 MJ of ME/kg of diet in a 4 x 2 factorial arrangement. In Exp. 1, conventional N balances were determined on 48 crossbred barrows (synthetic line 990, initial BW = 13.1 +/- 0.7 kg) at approximately 15, 20, and 25 kg of BW with six pigs per diet. At 15 kg of BW, an energy density x Lys:ME ratio interaction on daily N retention was observed (P < 0.05). At each BW, N retention improved with an increase in N intake associated with increasing ME concentration. In 15-kg BW pigs, increasing the Lys:ME ratio increased daily N retention at the 13.5 (linear, P < 0.001) and 14.5 MJ of ME level (linear, P < 0.01; quadratic, P < 0.05). In 20-kg BW pigs, N retention (g/d) increased (linear, P < 0.001; quadratic, P < 0.01) and N retention (percentage) increased (linear, P < 0.001) as the Lys:ME ratio increased. At 25 kg of BW, N retention (g/d) increased quadratically (P < 0.05) with an increase in Lys:ME ratio. The Lys:ME ratios that maximized daily N retention at 15 kg of BW were 0.88 and 0.85 g/MJ at the 13.5 and 14.5 MJ of ME levels, respectively and 0.81 and 0.77 g/MJ (for both ME levels) at 20 and 25 kg of BW, respectively. Over the 28-d trial, an energy density x Lys:ME ratio interaction on ADG was observed (P < 0.05). Increasing energy density increased growth performance, whereas increasing the Lys:ME ratio in high-energy diets increased ADG (linear, P < 0.05; quadratic, P < 0.01) and gain:feed ratio (G/F) quadratically (P < 0.01). Average daily gain and G/F ratio were greatest in pigs fed the 14.5 MJ of ME diet and the Lys:ME ratio of 0.82 g/MJ. In Exp. 2, 128 individually housed crossbred barrows and gilts (initial BW = 12.8 +/- 1.6 kg) were used to determine the effect of diets used in Exp. 1 on growth performance in a 4 x 2 x 2 factorial arrangement. The ME level increased ADG and G/F from d 0 to 14 and from d 0 to 28. Increasing the Lys:ME ratio increased ADG from d 0 to 14, whereas growth performance was maximized in pigs fed Lys:ME ratio of 0.82 g/MJ. These results suggest that pigs from 13 to 20 and from 20 to 30 kg of BW fed diets containing 14.5 MJ of ME/kg had maximum N retention and ADG at 0.85 and 0.77 g of apparent ileal digestible lysine/MJ of ME, respectively.  相似文献   

17.
The relationship of injected Fe doses on blood hematology and pig growth performance during both preweaning and postweaning periods was studied. In Exp. 1, the effect of BW of 347 pigs injected with 200 mg of Fe (dextran) intramuscularly (i.m.) at birth on hemoglobin (Hb) and percent hematocrit (Hct) at weaning was assessed. As BW increased there was a decline (P < 0.01) in Hb and Hct. In Exp. 2, Fe injection doses and timing of injected Fe on blood hematology and pig growth were evaluated. Injections were as follows: 1) 200 mg of Fe at birth; 2) 300 mg of Fe at birth; or 3) 200 mg of Fe at birth + 100 mg of Fe at d 10. A total of 269 pigs were allotted within litter to 3 treatments. The 2 greater quantities of injected Fe (i.e., 300 or 200 + 100 mg of Fe) had similar but greater (P < 0.05) Hb and Hct values than pigs receiving 200 mg of Fe, but growth rates were similar at weaning. The effects of injecting 200 mg of Fe at birth and either saline or 100 mg of Fe at 10 d of age were investigated in Exp. 3. Weaned pigs of each group were fed diets with 0, 80, or 160 mg/kg of added Fe for 35 d as a 2 × 3 factorial arrangement with 12 replicates (n = 360 pigs) in a randomized complete block design (RCB). The innate Fe contents of diets averaged 200 mg/kg. The greater Fe injection group (200 + 100 mg) had greater (P < 0.01) Hb and Hct values through 14 d postweaning (P < 0.05) and greater (P < 0.01) Hct values through 21 d postweaning. As dietary Fe increased, Hb was greater only at d 14 (P < 0.05 4), whereas Hct increased linearly to d 35 (P < 0.01) postweaning. Dietary Fe resulted in linear increases (P < 0.01) in ADG from d 21 to 35 and d 0 to 35. In Exp. 4, 3 dietary Fe (80, 160, and 240 mg/kg of diet), 2 injected Fe treatments (200 or 300 mg of Fe) at birth, and birth BW (<1.5 or ≥1.5 kg) were evaluated as a 2 × 2 × 3 factorial arrangement of treatments in a RCB design with 6 replicates (n = 280 pigs). The 300 mg of Fe injection group had lighter BW in both birth BW groups, with a birth BW × injected Fe interaction (P < 0.01). This resulted in the lighter birth BW pigs receiving 200 mg of Fe having greater BW gains to 240 mg/kg of dietary Fe, whereas light birth BW pigs injected with 300 mg of Fe plateaued at 160 mg/kg of Fe. Pigs in the heavy birth BW group injected with 200 or 300 mg of Fe at birth responded similarly to dietary Fe postweaning. These results indicate that blood Hb and Hct were affected by pig BW at weaning, but the additional 100 mg of Fe i.m. at 10 d of age increased blood hematology and that Fe injected preweaning affected initial postweaning performance.  相似文献   

18.
选用12头(21±1)d断奶仔猪,随机分为2个处理,研究脂多糖(LPS)刺激对肠黏膜免疫屏障功能的影响。禁食12h后,LPS组仔猪腹膜注射100μg/kgBW LPS,对照组注射等量的生理盐水。48h后,屠宰仔猪,打开腹腔,取小肠组织样品,测定小肠上皮间淋巴细胞、杯状细胞、肥大细胞数、肠集合淋巴结增殖、凋亡细胞数。结果表明:LPS刺激显著降低十二指肠、回肠上皮间淋巴细胞数(P<0.01),极显著增加小肠各段肥大细胞数(P<0.01);LPS刺激显著增加回肠集合淋巴结凋亡细胞数(P<0.05),但对增殖细胞数没有影响(P>0.05);LPS刺激可增加仔猪小肠杯状细胞数,但两处理组间差异不显著(P>0.05)。这些结果显示,LPS应激可导致肠黏膜免疫屏障功能改变,进而加重机体出现急性感染症状。  相似文献   

19.
Twelve crossbred steers (351 +/- 24 kg initial BW) were used to determine effects of high-Se wheat on visceral tissue mass, intestinal cell growth, and intestinal cellularity and vascularity. Steers were allotted randomly by BW to one of two treatments consisting of 75% concentrate diets that supplied 1) adequate Se concentration (7 to 12 microg x kg x BW(-1) x d(-1)) or 2) high-Se concentration (60 to 70 microg x kg x BW(-1) x d(-1)). Diets were similar in composition, including 25% grass hay, 25% wheat, 39% corn, 5% desugared molasses, and 6% wheat middlings supplement on a DM basis. In the Se treatment, high-Se wheat (10 ppm Se, DM basis) was replaced with low-Se wheat (0.35 ppm Se, DM basis). Diets were formulated to be similar in CP and energy (14.0% CP, 2.12 Mcal of NEm/kg, and 1.26 Mcal NEg/kg of DM) and were offered daily (1500) to individual steers in an electronic feeding system. Diets were fed at 2.38% BW. After 126 d, steers were slaughtered, and individual visceral tissue weights determined. Concentrations of DNA, RNA, and protein of duodenum, ileum, and total small intestine were not affected (P > or = 0.33) by treatment. Similarly, RNA:DNA and protein:DNA ratios in duodenum, jejunum, ileum, and whole small intestine were not (P > or = 0.33) affected by feeding high-Se wheat. Conversely, jejunal weight was greater (P < 0.002) in steers fed high-Se wheat than in controls (916 vs. 1,427 +/- 84 g). Jejunal DNA was increased (P < 0.04) in steers fed high-Se wheat (2.95 vs. 3.56 +/- 0.19 mg/g), suggesting increased cell number. Concentrations of jejunal RNA and protein were not altered by treatment; however, because the jejunal weight increased in high-Se steers, DNA, RNA, and protein contents (grams) were greater than in control steers (P < 0.05). Vascularity of jejunal tissue decreased (P < 0.10) with high-Se wheat; however, because jejunal mass was greater for the high-Se wheat treatment, total microvascular volume was not affected by treatment. Percentage of jejunal crypt cell proliferation was not affected (P = 0.48) by treatment; however, total number of cells proliferating within the jejunum was increased in steers fed high-Se wheat. Data indicate that the lower jejunal vascularity in the diet high in Se (provided from wheat) may have resulted in increased jejunal mass to meet physiological nutrient demand. Therefore, negative effects of Se level used in this study on productive performance of feedlot steers are not expected.  相似文献   

20.
To determine the effect of repeated ketoprofen (K) administration to surgically castrated bulls on cortisol, acute-phase proteins, immune function, feed intake, growth and behavior, 50 Holstein x Friesian bulls (11 mo old; 300 +/- 3.3 kg) were assigned to one of five treatments: 1) untreated control (C); 2) surgical castration at 0 min (S); 3) S following an i.v. injection of 3 mg/kg of BW of K at -20 min (SK1); 4) S following 1.5 mg/kg of BW of K at -20 and 0 min (SK2); or 5) S following 1.5 mg/kg of BW of K at -20 and 0 min and 3 mg/kg of BW of K at 24 h (SK3). Castration acutely increased plasma cortisol concentrations in S- and K-treated animals compared with C, with no differences in peak and interval to peak cortisol responses among the castration groups. Overall, the integrated cortisol response was greater (P < 0.05) in the castrates than in C, whereas K treatments decreased (P < 0.05) this response compared with S alone, with no differences between K treatments. Plasma haptoglobin and fibrinogen concentrations were increased (P < 0.05) on d 3 in the castration groups compared with C as the result of tissue trauma induced by castration, whereas SK1 and SK2 had lower (P < 0.05) haptoglobin concentrations than S animals. On d 1, concanavalin A-induced interferon-gamma production was suppressed (P < 0.05) in S and SK3 compared with C, SK1, and SK2 animals. Overall from d 1 to 33, DMI were lower (P < 0.05) in S, SK1, and SK3 than in C animals. From d -1 to 35, ADG were lower (P < 0.05) in S, SK2, and SK3 compared with C animals. A higher (P < 0.05) incidence of standing postures and lower incidence of lying postures was observed in S compared with C during the first 6 h after treatment. However, the higher (P = 0.02) incidence of abnormal standing activities observed for S was reversed (P < 0.05) by the K treatments. In conclusion, surgical castration increased plasma cortisol and acute-phase proteins and decreased immune function, feed intake, and growth rate. Ketoprofen effectively reduced the cortisol response to castration, but there was no advantage in treating with two split doses of K (1.5 mg/kg of BW per dose). A repeated K dose 24 h after treatment (3 mg/kg of BW) had no influence on changes in acute-phase proteins and immune response. Systemic analgesia with K is an effective method for alleviating acute inflammatory stress associated with castration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号